
ASIP Architecture for Multi-Standard Wireless Terminals

D. Lo Iacono, J. Zory, E. Messina, N. Piazzese, G. Saia, A. Bettinelli
Advanced System Technology

STMicroelectronics
daniele.loiacono@st.com

Abstract

This paper presents the Block Processing Engine
(BPE), an Application Specific Instruction-Set Processor
(ASIP) explicitly designed for the implementation of multi-
standard wireless terminals. Thanks to a high level of
parallelism and a consistent use of pipeline, the BPE
architecture fully satisfies stringent real-time constraints
imposed by emerging technologies. Its efficiency has been
proven through the implementation, the physical synthesis
for the CMOS 90nm STM technology and the FPGA
prototyping on the ARM Versatile platform of a dual-
standard Frequency Domain Equalizer (FDE) supporting
the 3GPP HSDPA and the IEEE 802.11a standards.

1. Introduction
Wireless communications are rapidly evolving toward a

large variety of systems offering high data-rate multimedia
services. Next generation terminals must be more and more
powerful and still flexible enough to support rapid
modifications of emerging standards or even multiple
standards. Architectures devoted to base-band processing
must endure high computational efforts while exhibiting
the potential of switching between different algorithms or
systems on-demand. In this context, traditional approaches
such as ASIC and DSP reveal some limitations. Indeed
ASIC design is highly efficient in terms of computational
capacity, power consumption and real-time processing
capabilities. However its lifetime is strongly shortened by
the limited flexibility, and is definitely inadequate to stay
on the track of a continuously changing market. Recent
DSPs, although powerful and flexible, are still not capable
of sustaining the data-rates imposed by most of the
emerging systems, whose requirements are growing even
faster than the DSPs technology itself [1][2]. Despite of its
limitations, ASIC design is often considered as the only
way to achieve high-throughputs. In this scenario,
emerging Application-Specific Instruction-set Processors
(ASIPs) seem an attractive way of satisfying real-time
requirements while assuring a certain degree of flexibility.
Exempt from supporting general-purpose applications,

ASIPs make use of a reduced set of dedicated instructions
with high level of parallelism, hence allowing efficiencies
comparable to that of ASICs [2].

This paper presents the Block Processing Engine (BPE),
a platform embedding a programmable processor capable
of simultaneously addressing a set of customized hardware
modules specifically suited for wireless processing. To
prove the potential of the BPE, a dual-standard Frequency
Domain Equalizer (FDE) supporting WCDMA/HSDPA
and OFDM/802.11a has been implemented, synthesized
and validated on FPGA.

2. Architecture description

2.1. General overview

The main feature of the Block Processing Engine (BPE)
is the support of an extended instruction-set acting on a
collection of Dedicated Processing Units (D-PU).

The BPE system architecture is shown in Figure 1.

R
O

U
TI

N
G

 M
ES

H

D-MEMORY
BANK

D-PU
BANK

I-MEMORY

D-INSTRUCTION
SCHEDULING AND

CONFIGURATION UNIT

ISTRUCTIONS
FETCH AND

DECODING UNIT

I-BUFFER

C
O

N
FI

G
U

R
AT

IO
N

R

EG
IS

TE
R

S
SP

AC
E

CONTEXT MANAGEMENT UNIT

MEMORY MANAGEMENT UNIT

D
AT

A
 R

EG
IS

TE
R

S
SP

A
C

E

B-INSTRUCTION
EXECUTION UNIT

SYSTEM BUS I/F

STACK

µC

Figure 1. Block Processing Engine architecture.

The core function is a programmable controlling unit
(µC) supporting Basic Instructions (B-instruction) mainly

3-9810801-0-6/DATE06 © 2006 EDAA

devoted to the flow control, and Dedicated Instructions (D-
instruction) acting on the D-PU bank embedding a
collection of D-PU performing intensive signal processing
on complex streams of data.

Starting from a program stored into the I-memory, the
instructions are fetched, decoded, and properly allocated
according to their type. More precisely, B-instructions are
dispatched to the µC execution unit for local execution,
while D-instructions are scheduled on the D-PU bank.

To match the stringent real-time constraints imposed by
emerging high-throughput systems, the µC unit has been
conceived to support parallel and pipelined processing on
complex arrays of data. The capability of treating arrays
instead of scalars reduces the latency overhead due to the
execution of multiple scalar operations on groups of data,
but requires a memory sub-system consisting of a bank of
concurrently accessible SRAM (D-memory bank).

High levels of parallelism can be achieved supporting
the concurrent execution of D-instruction bundles, while
pipelined processing requires the capability of directly
connecting a set of D-PUs to form a processing chain. To
fully support parallel and pipelined processing, the BPE
has been equipped with a routing mesh enabling all the
point-to-point connections between the D-PUs as well as
any possible connection between the D-PU bank and the
D-memory bank. A schematic view of the routing mesh is
depicted in Figure 2, where is visible the output routing
unit supporting data buffering for D-PUs synchronization.

PU PU PU PU DM DM

INPUT ROUTING CONFIGURATION

OUTPUT
BUFFERING

AND
ROUTING

Figure 2. Routing mesh structure.

To support the implementation of multi-mode or multi-
standard terminals, the µC embeds a context switching unit
capable of saving the status of the program under
execution and dynamically switching to another program
stored into a different logical partition of the I-memory.

The µC is programmed through the System Bus I/F by a
host entity called Communication Master (CM). Drivers
accessing the µC act mainly on the configuration registers
space, and can be implemented either in C or using the CM
native assembly language. Using the drivers, the CM can
perform a set of requests such as loading/saving data
from/to any data memory of the D-memory bank, loading
programs into the I-memory, running the execution of a

program. Moreover, the CM can access the µC registers of
the data registers space to update program parameters at
run-time, to retrieve feedback values from the D-PUs or to
monitor the status of the D-PU bank during the execution
of the program.

2.2. D-PUs structure and D-instructions

As stated, the µC is in charge of scheduling the D-PU
bank activity on the basis of a program loaded by the CM
into the I-memory. The D-PU bank must be intended as a
collection of objects (with a given granularity) each
embedding a set of functional units performing specific
processing on complex data arrays. Since parallelism can
be activated at D-PU level only, D-instructions addressing
the functional units of the same D-PU can not be executed
concurrently. They are considered by the µC as part of the
D-PU instructions sub-set. It can be argued that the trade-
off between processing speed and flexibility strongly
depends on the granularity of the D-PU set as well as on
the adequate splitting of potentially concurrent functions
within the D-PU bank. The granularity choice is crucial
since it is responsible of the D-PUs re-use degree.

The basic structure of a D-PU is depicted in Figure 3.

DX

DY

DZ

DO

OPC DS

FUNCTIONAL UNITS
BANK

D-PU CONTROLLER

OPM BS

CTRL

Figure 3. D-PU basic structure.

Each functional unit within the D-PU is addressed by
the following assembly-like instruction:

PUN.OPC[.OPM] [BS] [DX[,DY,DZ]] DO (1)

where PUN indicates the D-PU number, OPC indicates
the operation code addressing a specific D-PU functional
unit, OPM indicates the operation mode for the specific
OPC, BS is the array (block) size, while DX, DY, DZ and
D0 are the µC registers holding the information needed to
retrieve the three input operands and the output operand
respectively. Instruction operands can be either real or
complex scalar (registers file) or array (D-memory bank).

For instance, the D-instruction below uses the ALU to
perform the complex multiplication (MUL) between an
array of size B0 stored into the D-memory M0 and a scalar
stored into the µC data register R1:

ALU.MUL.RND B0 M0,R1 M1

The output vector, rounded over 16-bit according to the
specified OPM (RND) is stored into the memory M1.

After the D-instruction execution, each D-PU updates
the µC D-status registers (DS). Commonly these registers
are used to count the overflow occurrences during array
processing, and can be useful to detect for instance
quantization problems within the processing chain.

The mnemonic format (1) corresponds to a fixed-length
32-bit operating code supporting up to 16 D-PU equipped
with 8 functional units each having 4 operating modes.

2.3. Pipelined processing using macros

On top of classic concurrent processing, the BPE allows
the interconnection of D-PU sub-sets implementing more
complex functions, otherwise called macros. A macro is a
way of pipelining the processing among the D-PU without
having to perform intermediate accesses to the D-Memory
bank. This has consistent advantages in terms of speed and
power consumption. To associate a D-PU sub-set with a
macro, each D-PU must be explicitly linked using a special
µC register (LX).

For instance, the following macro adds the complex
value R0 to all the elements of the complex conjugate of
the FFT of the array residing into the memory M0:

M1 = ADD(CNJ(FFT(M0)),R0) (2)

It can be implemented linking the D-PU as follows:

FTU.FFT B0 M0 LX
CLU.CNJ B0 LX LX
ALU.ADD.SAT B0 LX,R0 M1

(3)

Figure 4 shows the latency reduction when using the
macro (3).

FFT

CNJ

ADD

I O

FFT

CNJ

ADD

I O

I/OI/O

(B)(A)

Figure 4. Normal (A) and linked (B) executions.

It must be noted that since intermediate results of a
macro are directly propagated from D-PU to D-PU, they
will not be anymore available after the macro execution.

2.4. Parallel processing

To perform concurrent processing, the program flow is
broken into bundles of instructions that are executed at

once. Each bundle can be formed by either B-instruction
only (B-bundle) or D-instruction only (D-bundle).

Since there is no parallelism within the B-instructions
set, a B-bundle merely indicates the chance of pipelining
the execution of a group of B-instruction when there is no
direct dependency among them, as depicted in Figure 5.

DECODEFETCH EXECUTE

DECODEFETCH EXECUTE

DECODEFETCH EXECUTE

DECODEFETCH EXECUTE

(B)

(A)

Figure 5. Normal (A) and B-bundle (B) execution.

Unlike the B-bundle, the D-bundle fully exploits the
parallelism within the D-PU bank. All the D-instruction
within a D-bundle are executed concurrently. Moreover,
the µC scheduling and configuration unit support macros
within the D-bundle, thus allowing both parallel and
pipelined processing within the same D-bundle.

The following example shows a D-bundle embedding
the macro (3):

CGU.SCR.INI B0 D1,D2 ;
FTU.FFT B0 M0 LX
CLU.CNJ B0 LX LX
ALU.ADD.SAT B0 LX,E1 M1 ;
HTU.FHT B1 M2 M3

(4)

It can be noted that concurrency is explicitly indicated
using the semicolon operator, as for VLIW processors [1].

Figure 6 shows the execution of the D-bundle (4),
where are clearly visible the D-PU configuration (CFG)
and the execution (EXE) phases.

FFT

CNJ

ADD

FHT

SCR

EXECFG

Figure 6. D-bundle configuration and execution.

During the configuration phase, the µC sets the routing
mesh, provides activation signals to the involved D-PUs
and schedules all the D-memory bank accesses. Execution
phase is then activated simultaneously on all the D-PUs
within the D-bundle.

2.5. Considerations on complexity and speed

Compared to an ASIC implementation, the BPE suffers
the major drawback of inherently introducing an overhead
in terms of both complexity and speed. The impact of the
additional logic, especially the µC and the routing mesh,
on the overall design needs to be carefully investigated. It
can be shown that the µC complexity depends linearly on
the number of D-PUs that have to be simultaneously
activated (i.e. the D-bundle size), while the dependency of
the routing mesh from the D-PU bank size is quadratic.

D-PU
BANK

 µC ROUTING
MESH

D-MEMORY
I-MEMORY

LOGIC
AREA

200

400

600

800

KGatesmm2

0.6

1.2

1.8

2.4

10003.0

CHIP
AREA

Figure 7. Complexity as a function of D-PU bank size.

Physical synthesis for the 90nm CMOS STM low-
power technology (1.20V) has been performed using
Synopsys Physical compiler. Results of Figure 7 refer to an
implementation embedding a D-Memory bank of 4 SRAM
of 4K×32 bit each, a I-memory of 4K×32 bit, and a D-PU
bank composed by an increasing number of dummy D-PU
(small ALU composed by a complex multiplier and an
adder) ranging from 4 to 16 (maximum number of D-PU
allowed by the 32-bit D-instruction operation code). The
logic area includes the logical cells only, while the chip
area takes into account the layout constraints and the net
routing. Gate equivalent complexity can be roughly
evaluated using a density of 330 KGates/mm2 for the core
logic and a density of about 1.6 mm2/Mbits for the SRAM.

4 8 12 16

MHz

150

170

190

210

230

D-PU NUMBER

Figure 8. µC speed as a function of the D-PU number.

In terms of processing speed, and finally of achievable
throughput, the µC core frequency is fundamental, and
must be sufficiently high to avoid introducing a bottleneck
when embedding fast D-PUs. Synthesis results of Figure 8
show a smooth dependency of the µC frequency from the
number of D-PU, and a still reasonable worst value.

3. Dual-standard HSDPA/WLAN equalizer

3.1. System description

As a case study, the BPE has been used to implement a
re-configurable equalizer supporting OFDM and CDMA,
and more specifically capable of demodulating WLAN
802.11a as well as multi-code UMTS/HSDPA signals. In
order to fully exploit the re-usability aspects of the BPE,
the equalization has been performed into the frequency
domain. While frequency domain equalization (FDE) is
commonly employed for multi-carrier systems, its use on
single-carrier systems has been investigated only in the last
few years [3][4]. Recent studies have demonstrated that
FDE for WCDMA is not only feasible, but even less
complex than the time-domain approach [5][6][7].

NF

1
NF−

r

CH

2σ

()
22

*

σ+⋅

⋅
CNH

*

s

MMSE/FDE

WCDMA/HSDPA

R B

b

dWLAN

dHSDPA

Figure 9. Frequency Domain Equalizer (FDE).

The block diagram of Figure 9 gives a clear picture of
what can be re-used within the dual-mode HSDPA/WLAN
equalizer. The pure MMSE/FDE equalization is common
to both systems, while the WCDMA/HSDPA multi-code
demodulation needs some additional units strictly related
to CDMA systems, such as the scrambling code and the
de-spreader (here implemented through Walsh-Hadamard
transform to support multi-code despreading).

The MMSE/FDE is performed using the following
element-wise equation:

i22
i

*
i

i R
H

H
B ⋅

σ+
= , (5)

where R, H and B are the Fourier transforms of the
received signal, the channel impulse response and the
estimated transmitted signal respectively, while σ2
represents the noise variance.

The channel response h, which in Figure 9 is assumed
already available into the frequency domain (H), strictly
depends on the system. For OFDM systems the channel is
estimated correlating the frequency domain signal R with
the local replica of the frequency domain preamble. For
WCDMA, the channel is evaluated into the time-domain
using the available pilot channel and then transformed into
the frequency domain for subsequent FDE.

Although MMSE/FDE is common to both systems, it
will be shown that the actual implementation requires
different FFT sizes. In OFDM systems the FFT size
corresponds to the number of sub-carriers, and thus is fixed
by the standard (64-point for the IEEE 802.11a). For
CDMA, the FFT size can be considered as a performance
parameter depending on the channel delay spread. In fact,
the equalization of adjacent blocks requires applying
overlap-and-save in order to reduce the boundary errors
due to the absence of cyclic prefix [3][4]. Since the
overlap-and-save factor is fixed by the delay spread, the
percentage of useful symbols per block, and ultimately the
throughput, can be adjusted acting on the FFT size only. A
good trade-off between throughput and complexity is using
a 256-point FFT for an overlap-and-save factor of 16-
chip [7]. HSDPA multi-code de-spreading is then
performed by first descrambling the time-domain
equalized signal with the cell-specific code, and then
evaluating the NC-point Fast Hadamard Transform (FHT)
of the descrambled signal to simultaneously demodulate all
the codes associated with the spreading factor NC [7].

3.2. Equalizer implementation

The BPE implementation of the dual-mode equalizer
passes through the identification of the set of D-PU needed
to perform the processing of Figure 9. For an optimal
resources re-use, all the functional units within the D-PU
bank must be primarily divided into common functions and
specific functions. Typically, common functions with fine
granularity can be embedded into one or more ALU.

The key D-PU is the FTU (Fourier Transform Unit),
which must support dynamic size scaling and FFT/IFFT
switching on-demand. The FTU has been implemented as
a single Radix-4 butterfly, serially re-used to perform the
overall processing. To perform each butterfly calculation in
one clock cycle, the FTU has been equipped with two
ping-pong SRAM banks working alternately for even and
odd stages, while the coefficients ROM has been divided
into banks providing all the twiddle factors at once [7].

Moreover, the D-PU bank has been equipped with a
specific D-PU generating the UMTS scrambling code. The
Code Generation Unit (CGU) embeds a unique functional
unit supporting different OPM. The INI operation mode
initializes the generator storing a certain number of seeds
corresponding to different delays (within the code period)
into the generator internal memory, thus allowing fast

initialization when delayed replicas of the code have to be
generated. The RUN operation mode generates the binary
code on the basis of the code number and the delay value
provided as input operands. The PCK (pack) operating
modes still generates the code, but allows packing shifted
replicas of the code into 16-bit complex word to speed-up
the subsequent correlations. In fact, the CGU is designed to
work with the Correlators Bank Unit (CBU), which
embeds 16 accumulators providing up to 16 correlation
values for each clock cycle.

Multi-code HSDPA demodulation is performed using
the Hadamard Transform Unit (HTU) embedding the FHT,
whose implementation is based on classical Radix-2
algorithm.

The rest of the operations, such as MMSE calculation,
is performed using two ALUs supporting complex arrays
arithmetic. It is worth noting that the coexistence of two
ALUs is crucial to minimize the latency. In fact, since
parallelism is at D-PU level only, concurrency between
arithmetic operations or even the use of macros would not
be possible using a single ALU.

As stated, each D-PU corresponds to a D-instructions
subset contributing to the complete D-instructions set of
the BPE. Thus, the D-instructions set coming from the
already described D-PU bank has been used to write the
software efficiently implementing the dual-mode FDE.

To add flexibility and to allow quickly testing different
scenarios, the most relevant system parameters are mapped
into the µC data registers space, so that they can be
updated at run-time by the CM. These registers hold
dynamic parameters passed by upper layers or by different
functional blocks of the physical layer, but they can be
reserved also to support future modifications or evolution
of the standard. For instance the scrambling code number,
the noise variance, the number of DATA fields in a WLAN
frame, but also the HSDPA spreading factor, the WLAN
pilot carriers number and even the FFT size have been
considered as parameters passed to the program at
execution time.

3.3. Performance evaluation

The RTL implementation of the HSDPA/WLAN
equalizer has been validated against test vectors generated
from a bit-true SystemC reference model. Anticipating the
integration of the WLAN support into UMTS/HSDPA
mobile terminals, the equalizer has been tested using the
ITU Pedestrian B multi-path channel model, as specified
by the 3GPP performance requirements for HSDPA [8].

Figure 10 shows the BER curves of the dual-mode FDE
when using un-coded QPSK modulation for both WLAN
and HSDPA. The WLAN frame holds 23 DATA fields,
while the HSDPA uses a spreading factor of NC = 16.

10-2

SNR (dB)

B
E

R
 (d

B
)

10-1

10-0

10-3

4 8 12 16 20

WLAN 802.11a
UMTS HSDPA

Figure 10. Performance of the dual-mode equalizer.

3.4. Real-time processing

As discussed, real-time processing capabilities depend
on the way the D-instructions are scheduled on the D-PU
bank, i.e. on the software implementation. The timing
diagram of Figure 11 shows the D-PUs activity during the
equalization of a WLAN frame. The large use of macros is
fully justified by the pipelined nature of the base-band
processing. As expected, most of the processing latency is
due to the FFT calculation. Since each D-PU within a
macro is allocated during the configuration phase, the FFT
forces the ALU to stall until the output is available. The
overall latency is reduced by the joint use of two ALU,
properly linked in a macro to perform channel estimation
averaging and MMSE coefficients calculation.

ALU

FFT

ALU

CHANNEL
ESTIMATION

MMSE
COEFFICIENTS

SIGNAL AND DATA FIELDS
EQUALIZATION

Figure 11. D-PUs scheduling for WLAN equalization.

The latency to demodulate a QPSK HSDPA un-coded
slot, made of channel estimate, FDE, descrambling and
multi-code de-spreading is about 36K clock cycles. When
using a clock speed of 200MHz, the entire demodulation
lasts for about 180µs (i.e. about 27% of the entire slot
duration). Similarly, the latency of an un-coded QPSK
IEEE 802.11a frame with 23 DATA fields takes about 5K
cycles, corresponding to 25µs (about 30% of the frame
duration). These results confirm the expectation of real-
time running both systems.

3.5. FPGA prototyping

The overall ASIP design comprehensive of the D-PU
bank for UMTS/WLAN FDE has been mapped on FPGA
for fast prototyping. The system-on-chip environment
employing the BPE as slave peripheral has been emulated
on the ARMTM Versatile platform providing the Xilinx
XC2V8000 FPGA on which the BPE has been uploaded.
The on-board ARM9-based development chip has been
used as CM running the C-language drivers for BPE
interfacing using the AMBA/AHB bus protocol.

4. Conclusions
It has been presented the Block Processing Engine

(BPE), a programmable architecture embedding dedicated
instructions acting on a set of processing units specifically
suited for intensive base-band processing. To prove its
efficiency, the BPE has been employed to implement a
dual-mode HSDPA/WLAN frequency-domain equalizer.
Synthesis results and latency evaluation have confirmed
the expectation of real-time running both systems. The
high degree of flexibility and the consistent use of parallel
and pipelined processing makes the BPE an attractive
solution for the implementation of high-throughput next
generation multi-standard wireless terminals.

References

[1] J. Eyre, J. Bier, “The Evolution of DSP Processors”, IEEE
Signal Processing Magazine, Mar. 2000.

[2] J. R. Cavallaro, P. Radosavljevic, “ASIP Architecture for
Future Wireless Systems: Flexibility and Customization”,
11th Wireless World Research Forum, Oslo, Jun. 2004.

[3] D.D. Falconer, S.L. Ariyavisitakul, A.B. Seeyar, B. Edison,
“Frequency Domain Equalization for Single-Carrier
Broadband Wireless Systems”, IEEE Comm. Magazine,
vol. 40(4), pp. 58-66, Apr. 2002.

[4] D.D. Falconer, S.L. Ariyavisitakul, “Broadband wireless
using single carrier and frequency domain equalization”,
IEEE 5th Symposium on Wireless Personal Multimedia
Comm., vol. 1, pp. 27-36, Oct. 2002.

[5] I. Martoyo, T. Weiss, F. Capar, F.K. Jondral, “Low
Complexity CDMA downlink receiver based on frequency
domain equalization”, IEEE 58th Vehicular Technology
Conference, vol. 2(6-9), pp. 987-991, Oct. 2003.

[6] J. Pan, P. De, A. Zeira, “Low Complexity Data Detection
using Fast Fourier Transform Decomposition of Channel
Correlation Matrix”, IEEE Global Telecom. Conference,
vol. 2, pp. 1322-1326, Nov. 2001.

[7] D. Lo Iacono, E. Messina, C. Volpe, A. Spalvieri, "Serial
Block Processing for Multi-Code WCDMA Frequency
Domain Equalization”, IEEE Wireless Communications
and Networking Conference, New Orleans, Mar. 2005.

[8] 3GPP TS 25.101, “User Equipment (UE) Radio
Transmission and Reception (FDD)”, Technical
Specification Group RAN, 3GPP.

[9] IEEE Std 802.11a-1999 – Part11 “W-LAN MAC and PHY
layer specifications, IEEE.

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

