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Abstract 

This paper presents the Block Processing Engine 
(BPE), an Application Specific Instruction-Set Processor 
(ASIP) explicitly designed for the implementation of multi-
standard wireless terminals. Thanks to a high level of 
parallelism and a consistent use of pipeline, the BPE 
architecture fully satisfies stringent real-time constraints 
imposed by emerging technologies. Its efficiency has been 
proven through the implementation, the physical synthesis 
for the CMOS 90nm STM technology and the FPGA 
prototyping on the ARM Versatile platform of a dual-
standard Frequency Domain Equalizer (FDE) supporting 
the 3GPP HSDPA and the IEEE 802.11a standards. 

1. Introduction 
Wireless communications are rapidly evolving toward a 

large variety of systems offering high data-rate multimedia 
services. Next generation terminals must be more and more 
powerful and still flexible enough to support rapid 
modifications of emerging standards or even multiple 
standards. Architectures devoted to base-band processing 
must endure high computational efforts while exhibiting 
the potential of switching between different algorithms or 
systems on-demand. In this context, traditional approaches 
such as ASIC and DSP reveal some limitations. Indeed 
ASIC design is highly efficient in terms of computational 
capacity, power consumption and real-time processing 
capabilities. However its lifetime is strongly shortened by 
the limited flexibility, and is definitely inadequate to stay 
on the track of a continuously changing market. Recent 
DSPs, although powerful and flexible, are still not capable 
of sustaining the data-rates imposed by most of the 
emerging systems, whose requirements are growing even 
faster than the DSPs technology itself [1][2]. Despite of its 
limitations, ASIC design is often considered as the only 
way to achieve high-throughputs. In this scenario, 
emerging Application-Specific Instruction-set Processors 
(ASIPs) seem an attractive way of satisfying real-time 
requirements while assuring a certain degree of flexibility. 
Exempt from supporting general-purpose applications, 

ASIPs make use of a reduced set of dedicated instructions 
with high level of parallelism, hence allowing efficiencies 
comparable to that of ASICs [2]. 

This paper presents the Block Processing Engine (BPE), 
a platform embedding a programmable processor capable 
of simultaneously addressing a set of customized hardware 
modules specifically suited for wireless processing. To 
prove the potential of the BPE, a dual-standard Frequency 
Domain Equalizer (FDE) supporting WCDMA/HSDPA 
and OFDM/802.11a has been implemented, synthesized 
and validated on FPGA. 

2. Architecture description 

2.1. General overview 

The main feature of the Block Processing Engine (BPE)  
is the support of an extended instruction-set acting on a 
collection of Dedicated Processing Units (D-PU).  

The BPE system architecture is shown in Figure 1.  
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Figure 1. Block Processing Engine architecture. 

The core function is a programmable controlling unit 
(µC) supporting Basic Instructions (B-instruction) mainly 
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devoted to the flow control, and Dedicated Instructions (D-
instruction) acting on the D-PU bank embedding a 
collection of D-PU performing intensive signal processing 
on complex streams of data. 

Starting from a program stored into the I-memory, the 
instructions are fetched, decoded, and properly allocated 
according to their type. More precisely, B-instructions are 
dispatched to the µC execution unit for local execution, 
while D-instructions are scheduled on the D-PU bank. 

To match the stringent real-time constraints imposed by 
emerging high-throughput systems, the µC unit has been 
conceived to support parallel and pipelined processing on 
complex arrays of data. The capability of treating arrays 
instead of scalars reduces the latency overhead due to the 
execution of multiple scalar operations on groups of data, 
but requires a memory sub-system consisting of a bank of 
concurrently accessible SRAM (D-memory bank). 

High levels of parallelism can be achieved supporting 
the concurrent execution of D-instruction bundles, while 
pipelined processing requires the capability of directly 
connecting a set of D-PUs to form a processing chain. To 
fully support parallel and pipelined processing, the BPE 
has been equipped with a routing mesh enabling all the 
point-to-point connections between the D-PUs as well as 
any possible connection between the D-PU bank and the 
D-memory bank. A schematic view of the routing mesh is 
depicted in Figure 2, where is visible the output routing 
unit supporting data buffering for D-PUs synchronization. 
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Figure 2. Routing mesh structure. 

To support the implementation of multi-mode or multi-
standard terminals, the µC embeds a context switching unit 
capable of saving the status of the program under 
execution and dynamically switching to another program 
stored into a different logical partition of the I-memory.  

The µC is programmed through the System Bus I/F by a 
host entity called Communication Master (CM). Drivers 
accessing the µC act mainly on the configuration registers 
space, and can be implemented either in C or using the CM 
native assembly language. Using the drivers, the CM can 
perform a set of requests such as loading/saving data 
from/to any data memory of the D-memory bank, loading 
programs into the I-memory, running the execution of a 

program. Moreover, the CM can access the µC registers of 
the data registers space to update program parameters at 
run-time, to retrieve feedback values from the D-PUs or to 
monitor the status of the D-PU bank during the execution 
of the program. 

2.2. D-PUs structure and D-instructions 

As stated, the µC is in charge of scheduling the D-PU 
bank activity on the basis of a program loaded by the CM 
into the I-memory. The D-PU bank must be intended as a 
collection of objects (with a given granularity) each 
embedding a set of functional units performing specific 
processing on complex data arrays. Since parallelism can 
be activated at D-PU level only, D-instructions addressing 
the functional units of the same D-PU can not be executed 
concurrently. They are considered by the µC as part of the 
D-PU instructions sub-set. It can be argued that the trade-
off between processing speed and flexibility strongly 
depends on the granularity of the D-PU set as well as on 
the adequate splitting of potentially concurrent functions 
within the D-PU bank. The granularity choice is crucial 
since it is responsible of the D-PUs re-use degree. 

The basic structure of a D-PU is depicted in Figure 3. 
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Figure 3. D-PU basic structure. 

Each functional unit within the D-PU is addressed by 
the following assembly-like instruction: 

PUN.OPC[.OPM] [BS] [DX[,DY,DZ]] DO  (1)

where PUN indicates the D-PU number, OPC indicates 
the operation code addressing a specific D-PU functional 
unit, OPM indicates the operation mode for the specific 
OPC, BS is the array (block) size, while DX, DY, DZ and 
D0 are the µC registers holding the information needed to 
retrieve the three input operands and the output operand 
respectively. Instruction operands can be either real or 
complex scalar (registers file) or array (D-memory bank).   

For instance, the D-instruction below uses the ALU to 
perform the complex multiplication (MUL) between an 
array of size B0 stored into the D-memory M0 and a scalar 
stored into the µC data register R1: 

ALU.MUL.RND B0 M0,R1 M1  



The output vector, rounded over 16-bit according to the 
specified OPM (RND) is stored into the memory M1.  

After the D-instruction execution, each D-PU updates 
the µC D-status registers (DS). Commonly these registers 
are used to count the overflow occurrences during array 
processing, and can be useful to detect for instance 
quantization problems within the processing chain. 

The mnemonic format (1) corresponds to a fixed-length 
32-bit operating code supporting up to 16 D-PU equipped 
with 8 functional units each having 4 operating modes. 

2.3. Pipelined processing using macros 

On top of classic concurrent processing, the BPE allows 
the interconnection of D-PU sub-sets implementing more 
complex functions, otherwise called macros. A macro is a 
way of pipelining the processing among the D-PU without 
having to perform intermediate accesses to the D-Memory 
bank. This has consistent advantages in terms of speed and 
power consumption. To associate a D-PU sub-set with a 
macro, each D-PU must be explicitly linked using a special 
µC register (LX). 

For instance, the following macro adds the complex 
value R0 to all the elements of the complex conjugate of 
the FFT of the array residing into the memory M0: 

M1 = ADD(CNJ(FFT(M0)),R0)  (2)

It can be implemented linking the D-PU as follows: 

FTU.FFT B0 M0 LX 
CLU.CNJ B0 LX LX 
ALU.ADD.SAT B0 LX,R0 M1 

(3)

Figure 4 shows the latency reduction when using the 
macro (3). 
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Figure 4. Normal (A) and linked (B) executions. 

It must be noted that since intermediate results of a 
macro are directly propagated from D-PU to D-PU, they 
will not be anymore available after the macro execution. 

2.4. Parallel processing 

To perform concurrent processing, the program flow is 
broken into bundles of instructions that are executed at 

once. Each bundle can be formed by either B-instruction 
only (B-bundle) or D-instruction only (D-bundle).  

Since there is no parallelism within the B-instructions 
set, a B-bundle merely indicates the chance of pipelining 
the execution of a group of B-instruction when there is no 
direct dependency among them, as depicted in Figure 5.  

DECODEFETCH EXECUTE

DECODEFETCH EXECUTE

DECODEFETCH EXECUTE

DECODEFETCH EXECUTE

(B)

(A)

 

Figure 5. Normal (A) and B-bundle (B) execution. 

Unlike the B-bundle, the D-bundle fully exploits the 
parallelism within the D-PU bank. All the D-instruction 
within a D-bundle are executed concurrently. Moreover, 
the µC scheduling and configuration unit support macros 
within the D-bundle, thus allowing both parallel and 
pipelined processing within the same D-bundle. 

The following example shows a D-bundle embedding 
the macro (3): 

CGU.SCR.INI B0 D1,D2 ; 
FTU.FFT B0 M0 LX 
CLU.CNJ B0 LX LX 
ALU.ADD.SAT B0 LX,E1 M1 ; 
HTU.FHT B1 M2 M3 

(4)

It can be noted that concurrency is explicitly indicated 
using the semicolon operator, as for VLIW processors [1]. 

Figure 6 shows the execution of the D-bundle (4), 
where are clearly visible the D-PU configuration (CFG) 
and the execution (EXE) phases. 
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Figure 6. D-bundle configuration and execution. 

During the configuration phase, the µC sets the routing 
mesh, provides activation signals to the involved D-PUs 
and schedules all the D-memory bank accesses. Execution 
phase is then activated simultaneously on all the D-PUs 
within the D-bundle. 



2.5. Considerations on complexity and speed 

Compared to an ASIC implementation, the BPE suffers 
the major drawback of inherently introducing an overhead 
in terms of both complexity and speed. The impact of the 
additional logic, especially the µC and the routing mesh, 
on the overall design needs to be carefully investigated. It 
can be shown that the µC complexity depends linearly on 
the number of D-PUs that have to be simultaneously 
activated (i.e. the D-bundle size), while the dependency of 
the routing mesh from the D-PU bank size is quadratic. 

D-PU 
BANK

 µC ROUTING
MESH

D-MEMORY
I-MEMORY

LOGIC
AREA

200

400

600

800

KGatesmm2

0.6

1.2

1.8

2.4

10003.0

CHIP
AREA  

Figure 7. Complexity as a function of D-PU bank size. 

Physical synthesis for the 90nm CMOS STM low-
power technology (1.20V) has been performed using 
Synopsys Physical compiler. Results of Figure 7 refer to an 
implementation embedding a D-Memory bank of 4 SRAM 
of 4K×32 bit each, a I-memory of 4K×32 bit, and a D-PU 
bank composed by an increasing number of dummy D-PU 
(small ALU composed by a complex multiplier and an 
adder) ranging from 4 to 16 (maximum number of D-PU 
allowed by the 32-bit D-instruction operation code). The 
logic area includes the logical cells only, while the chip 
area takes into account the layout constraints and the net 
routing. Gate equivalent complexity can be roughly 
evaluated using a density of 330 KGates/mm2 for the core 
logic and a density of about 1.6 mm2/Mbits for the SRAM. 
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Figure 8. µC speed as a function of the D-PU number. 

In terms of processing speed, and finally of achievable 
throughput, the µC core frequency is fundamental, and 
must be sufficiently high to avoid introducing a bottleneck 
when embedding fast D-PUs. Synthesis results of Figure 8 
show a smooth dependency of the µC frequency from the 
number of D-PU, and a still reasonable worst value. 

3. Dual-standard HSDPA/WLAN equalizer 

3.1. System description 

As a case study, the BPE has been used to implement a 
re-configurable equalizer supporting OFDM and CDMA, 
and more specifically capable of demodulating WLAN 
802.11a as well as multi-code UMTS/HSDPA signals. In 
order to fully exploit the re-usability aspects of the BPE, 
the equalization has been performed into the frequency 
domain. While frequency domain equalization (FDE) is 
commonly employed for multi-carrier systems, its use on 
single-carrier systems has been investigated only in the last 
few years [3][4]. Recent studies have demonstrated that 
FDE for WCDMA is not only feasible, but even less 
complex than the time-domain approach [5][6][7]. 
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Figure 9. Frequency Domain Equalizer (FDE). 

The block diagram of Figure 9 gives a clear picture of 
what can be re-used within the dual-mode HSDPA/WLAN 
equalizer. The pure MMSE/FDE equalization is common 
to both systems, while the WCDMA/HSDPA multi-code 
demodulation needs some additional units strictly related 
to CDMA systems, such as the scrambling code and the 
de-spreader (here implemented through Walsh-Hadamard 
transform to support multi-code despreading). 

The MMSE/FDE is performed using the following 
element-wise equation: 

i22
i

*
i

i R
H

H
B ⋅

σ+
= , (5)

where R, H and B are the Fourier transforms of the 
received signal, the channel impulse response and the 
estimated transmitted signal respectively, while  σ2 
represents the noise variance. 



The channel response h, which in Figure 9 is assumed 
already available into the frequency domain (H), strictly 
depends on the system. For OFDM systems the channel is 
estimated correlating the frequency domain signal R with 
the local replica of the frequency domain preamble. For 
WCDMA, the channel is evaluated into the time-domain 
using the available pilot channel and then transformed into 
the frequency domain for subsequent FDE. 

Although MMSE/FDE is common to both systems, it 
will be shown that the actual implementation requires 
different FFT sizes. In OFDM systems the FFT size 
corresponds to the number of sub-carriers, and thus is fixed 
by the standard (64-point for the IEEE 802.11a).  For 
CDMA, the FFT size can be considered as a performance 
parameter depending on the channel delay spread. In fact, 
the equalization of adjacent blocks requires applying 
overlap-and-save in order to reduce the boundary errors 
due to the absence of cyclic prefix [3][4]. Since the 
overlap-and-save factor is fixed by the delay spread, the 
percentage of useful symbols per block, and ultimately the 
throughput, can be adjusted acting on the FFT size only. A 
good trade-off between throughput and complexity is using 
a 256-point FFT for an overlap-and-save factor of 16-
chip [7]. HSDPA multi-code de-spreading is then 
performed by first descrambling the time-domain 
equalized signal with the cell-specific code, and then 
evaluating the NC-point Fast Hadamard Transform (FHT) 
of the descrambled signal to simultaneously demodulate all 
the codes associated with the spreading factor NC [7]. 

3.2. Equalizer implementation 

The BPE implementation of the dual-mode equalizer 
passes through the identification of the set of D-PU needed 
to perform the processing of Figure 9. For an optimal 
resources re-use, all the functional units within the D-PU 
bank must be primarily divided into common functions and 
specific functions. Typically, common functions with fine 
granularity can be embedded into one or more ALU. 

The key D-PU is the FTU (Fourier Transform Unit), 
which must support dynamic size scaling and FFT/IFFT 
switching on-demand. The FTU has been implemented as 
a single Radix-4 butterfly, serially re-used to perform the 
overall processing. To perform each butterfly calculation in 
one clock cycle, the FTU has been equipped with two 
ping-pong SRAM banks working alternately for even and 
odd stages, while the coefficients ROM has been divided 
into banks providing all the twiddle factors at once [7]. 

Moreover, the D-PU bank has been equipped with a 
specific D-PU generating the UMTS scrambling code. The 
Code Generation Unit (CGU) embeds a unique functional 
unit supporting different OPM. The INI operation mode 
initializes the generator storing a certain number of seeds 
corresponding to different delays (within the code period) 
into the generator internal memory, thus allowing fast 

initialization when delayed replicas of the code have to be 
generated. The RUN operation mode generates the binary 
code on the basis of the code number and the delay value 
provided as input operands. The PCK (pack) operating 
modes still generates the code, but allows packing shifted 
replicas of the code into 16-bit complex word to speed-up 
the subsequent correlations. In fact, the CGU is designed to 
work with the Correlators Bank Unit (CBU), which 
embeds 16 accumulators providing up to 16 correlation 
values for each clock cycle.  

Multi-code HSDPA demodulation is performed using 
the Hadamard Transform Unit (HTU) embedding the FHT, 
whose implementation is based on classical Radix-2 
algorithm. 

The rest of the operations, such as MMSE calculation, 
is performed using two ALUs supporting complex arrays 
arithmetic. It is worth noting that the coexistence of two 
ALUs is crucial to minimize the latency. In fact, since 
parallelism is at D-PU level only, concurrency between 
arithmetic operations or even the use of macros would not 
be possible using a single ALU. 

As stated, each D-PU corresponds to a D-instructions 
subset contributing to the complete D-instructions set of 
the BPE. Thus, the D-instructions set coming from the 
already described D-PU bank has been used to write the 
software efficiently implementing the dual-mode FDE.  

To add flexibility and to allow quickly testing different 
scenarios, the most relevant system parameters are mapped 
into the µC data registers space, so that they can be 
updated at run-time by the CM. These registers hold 
dynamic parameters passed by upper layers or by different 
functional blocks of the physical layer, but they can be 
reserved also to support future modifications or evolution 
of the standard. For instance the scrambling code number, 
the noise variance, the number of DATA fields in a WLAN 
frame, but also the HSDPA spreading factor, the WLAN 
pilot carriers number and even the FFT size have been 
considered as parameters passed to the program at 
execution time. 

3.3. Performance evaluation 

The RTL implementation of the HSDPA/WLAN 
equalizer has been validated against test vectors generated 
from a bit-true SystemC reference model. Anticipating the 
integration of the WLAN support into UMTS/HSDPA 
mobile terminals, the equalizer has been tested using the 
ITU Pedestrian B multi-path channel model, as specified 
by the 3GPP performance requirements for HSDPA [8]. 

Figure 10 shows the BER curves of the dual-mode FDE 
when using un-coded QPSK modulation for both WLAN 
and HSDPA. The WLAN frame holds 23 DATA fields, 
while the HSDPA uses a spreading factor of NC = 16. 
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Figure 10. Performance of the dual-mode equalizer. 

3.4. Real-time processing 

As discussed, real-time processing capabilities depend 
on the way the D-instructions are scheduled on the D-PU 
bank, i.e. on the software implementation. The timing 
diagram of Figure 11 shows the D-PUs activity during the 
equalization of a WLAN frame. The large use of macros is 
fully justified by the pipelined nature of the base-band 
processing. As expected, most of the processing latency is 
due to the FFT calculation. Since each D-PU within a 
macro is allocated during the configuration phase, the FFT 
forces the ALU to stall until the output is available. The 
overall latency is reduced by the joint use of two ALU, 
properly linked in a macro to perform channel estimation 
averaging and MMSE coefficients calculation. 
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Figure 11. D-PUs scheduling for WLAN equalization. 

The latency to demodulate a QPSK HSDPA un-coded 
slot, made of channel estimate, FDE, descrambling and 
multi-code de-spreading is about 36K clock cycles. When 
using a clock speed of 200MHz, the entire demodulation 
lasts for about 180µs (i.e. about 27% of the entire slot 
duration). Similarly, the latency of an un-coded QPSK 
IEEE 802.11a frame with 23 DATA fields takes about 5K 
cycles, corresponding to 25µs (about 30% of the frame 
duration). These results confirm the expectation of real-
time running both systems. 

3.5. FPGA prototyping  

The overall ASIP design comprehensive of the D-PU 
bank for UMTS/WLAN FDE has been mapped on FPGA 
for fast prototyping. The system-on-chip environment 
employing the BPE as slave peripheral has been emulated 
on the ARMTM Versatile platform providing the Xilinx 
XC2V8000 FPGA on which the BPE has been uploaded. 
The on-board ARM9-based development chip has been 
used as CM running the C-language drivers for BPE 
interfacing using the AMBA/AHB bus protocol.  

4. Conclusions 
It has been presented the Block Processing Engine 

(BPE), a programmable architecture embedding dedicated 
instructions acting on a set of processing units specifically 
suited for intensive base-band processing. To prove its 
efficiency, the BPE has been employed to implement a 
dual-mode HSDPA/WLAN frequency-domain equalizer. 
Synthesis results and latency evaluation have confirmed 
the expectation of real-time running both systems. The 
high degree of flexibility and the consistent use of parallel 
and pipelined processing makes the BPE an attractive 
solution for the implementation of high-throughput next 
generation multi-standard wireless terminals. 
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