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Abstract: - Ethernet is the most common Layer-2 

network protocol, and it is currently being deployed beyond 
the tight borders of LANs. In order to accommodate the 
needs of MANs and WANs, several QoS mechanisms 
employed at the MAC sublayer of Ethernet have been 
proposed.  These QoS mechanisms require identification of 
network flows and the classification of Ethernet packets 
according to certain Ethernet header fields. In this paper, 
we propose a classification engine employed at the MAC 
sublayer which uses an innovative hashing scheme and 
internal replacement of MAC Vendor IDs; the Hash Based 
Classification Engine (HBCE) compacts the tables 
containing the rules associated with certain MAC addresses 
and supports extremely high speed decisions –at a rate of 
more than 100Gb/sec-, while its memory needs are 
significantly lower compared to those of the similar 
schemes currently used. This engine has been implemented 
in hardware utilizing less than 0.1mm² in a state of the art 
CMOS technology.  As a result HBCE is a very promising 
candidate for the next-generation Ethernet equipments that 
need to support classification at Data Link Layer at multi-
Gigabit per second network speeds, whereas due to its very 
low memory requirements and low implementation 
complexity, it can also be employed very efficiently in 
lower-bandwidth wireless environments that utilize MAC 
mechanisms.  
 

1 Introduction  
Ethernet is, by far, the most common Layer-2 network 

protocol. Mainly due to its very good cost-performance 
ratio, it is currently making a breakthrough in MAN and 
WAN networks. The deployment of MAC-based Multi-
Gigabit wired or Lower-bandwidth wireless networks, and 
their use beyond the tight borders of LANs, motivated the 
development of QoS mechanisms in the MAC layer; such 
examples are the VLAN scheme [1], or certain QoS 
protocols for wireless environments [2]. Those mechanisms 
require identification of network flows and classification of 
Ethernet packets according to their MAC addresses, VLAN 
IDs or port numbers. Moreover, in order to be able to 
support fine-grained QoS they incorporate tens of thousands 
of independent network flows identified by the MAC, 
VLAN and/or Port fields. The length of the MAC addresses, 
namely 48-bits, is what makes the classification task 
difficult since exact matches in such a wide value is not a 

trivial task. Since the main advantage of the Ethernet 
networks, and the associated equipments, is their low cost, 
the classification solutions that would be used within the 
specified frameworks should be as cost efficient as possible. 

The three header fields used in Ethernet switching are the 
MAC address, the port of the switch and the Virtual LAN 
(VLAN) tag; these elements are also used by the 
mechanisms that provide QoS in Layer-2. 

MAC Address: The MAC address is a 48-bit (6 bytes) 
value that uniquely identifies a Network Interface Card 
(NIC). The first 24-bits (3 bytes) of the address identify the 
vendor of the card and the last 24-bits identify the card 
itself.  

Port: A number that uniquely identifies the physical 
interface of the equipment (for example a 10-bit number for 
a 1024-port system).  

VLAN: VLAN tagging was introduced in IEEE 802.1q 
[1] and defines how an Ethernet frame is tagged with a 
VLAN ID. VLAN tagging provides a mechanism to handle 
time-critical network traffic by setting transmission 
priorities to outgoing frames according to IEEE 802.1p [3]. 
Moreover VLANs allow network stations to be assigned to 
logical groups and communicate across multiple LANs as if 
they were on a single LAN; Ethernet bridges and switches 
should forward the VLAN-tagged frames only to ports that 
serve the specified VLAN. 

In this paper, we propose a classification engine utilized 
at the MAC sub-layer which uses a new hashing scheme 
and internal replacement of MAC Vendor IDs; the Hash 
Based Classification Engine (HBCE) can reach 
classification decisions at extremely high speeds while its 
main advantage comes from the fact  that it utilizes less than 
two thirds of the memory needed by the existing solutions. 
The efficiency of the proposed engine comes from the fact 
that the hashing and the replacement schemes used, take 
advantage of the individual characteristics of the MAC 
addresses. This engine has been implemented in hardware 
and while its implementation cost is minimal, it supports 
network rates higher than 100 Gb/sec while incorporating 
64K independent rules.  

2 Related Work 
L2 classification requires the fields mentioned in the last 

section to be examined and the appropriate action to be 
performed. Therefore, the network equipments need to store 
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some information and consult them for their decisions. The 
information regarding the MAC addresses, the VLANs and 
the Ports are stored in internal data structures and for each 
packet a search is conducted using the packet header fields. 

Switches and bridges have very often integrated hardware 
modules handling such classification tasks; they place the 
various tables, holding the data structures,  in internal or 
external memories and all operations access those tables in 
order to examine whether an exact match exists or not. 
Today’s switches support up to 32K-64K MAC-address 
rules [4] and 4096 VLANs, hence the size of memories is 
relatively small. 

The nature of L2 classification requires exact matches and 
many implementations use CAMs that provide single access 
matching [5]. CAM solutions, although simple, they are 
expensive and consume large amounts of power. Trie based 
solutions [6] have poor performance since they cannot 
handle efficiently long matching strings such as the MAC 
address. Moreover, trie based solutions may require several 
memory accesses and massive storage for the associated 
pointers.  

Another popular solution is hashing of the MAC address 
bits [7] and storing the data in SRAM based lookup tables. 
The 48-bits are hashed using a specific hashing function and 
an index for the lookup table is generated. Possible 
collisions due to hashing are usually resolved with linked 
lists of entries. Hashing 48-bits into a small, say 16-bit, 
value requires a good function that generates differentiated 
values usually by taking into account all the information 
bits. Many solutions use the CRC polynomials for hashing 
since they have been proved very efficient [8] however 
others, mainly due to cost reasons, use direct mapping by 
the least significant bits of the MAC address [9]. 

3 Hash Based Classification Engine 
Our solution for L2 classification is based on hashing, 

like the majority of similar products, but we propose a 
scheme that exactly matches the special characteristics of 
the MAC addresses. Moreover, our Hash Based 
Classification Engine (HBCE) employs internal MAC 
Vendor replacement. HBCE is designed to support tens-of-
thousands of MAC-address rules and a couple of thousands 
of VLANs and port-based rules. Every rule in HBCE is 
associated to a number called FlowID (which can, for 
example, be a pointer to another memory which holds the 
associated information for this rule or simply a number 
identifying the output port of the device).  We decided to 
use 15-bit FlowIDs, translating to 32K unique and 
independent network flows, which have been proved to be 
enough for most Ethernet equipments.   

The most important part of our scheme is the lookup 
scheme for the MAC-address rules. The length of the MAC 
address, is what makes this part the most critical in terms of 
both speed and storage. VLANs and ports are relatively 
small and can be directly mapped into tables, as it is 
described in the next sections. 

3.1 MAC Address Hashing 
We developed a hashing function to map the MAC-

address rules into a table that will hold the FlowID of the 

associated rule. Those rules are stored in a 64K table called 
MAC_TBL and the indexes to it are generated by our 
hashing function applied to the MAC address bits. The 
collisions due to hashing are handled by pointers to variable 
size blocks. Handling variable size blocks requires a 
dynamic memory management scheme which is described 
in the next sections. The number of entries in each variable 
size block is defined by the number of rules that collide 
within a specific entry of the MAC_TBL. 

Our hashing scheme applies an XOR function to all 48-
bits of the MAC address and the 16-bit MAC_TBL address 
is produced as follows: 

MAC_TBLindex =  
{MAC[47:40] xor MAC[31:24] xor MAC[15:8], 
 MAC[39:32] xor MAC[23:16] xor MAC[7:0]} 

To identify a certain MAC-address rule within a 
particular table entry we also need to save some additional 
information so as to be able to distinguish those that collide. 
Fortunately, we don’t need to save all 48-bits and we take 
advantage of the fact that the XOR function can be 
“inversed”. Therefore a certain MAC-value associated with 
address A of MAC_TBL can be reproduced by the 16-bits 
of A and the last 32-bits (Hval) of the MAC address as 
follows: 

MAC[47:40] =  
  A[15:8] xor Hval[31:24] xor Hval[15:8] 
MAC[39:32] =  
  A[7:0] xor Hval[23:16] xor Hval[7:0] 
MAC[31:0]  = Hval(31:0) 

So by using Hval we can uniquely identify each MAC-
address rule. If we use CRC-16 to produce the 16-bit 
indexes, like the popular schemes described in the related 
work section, then we would have to store the complete 48-
bits of the MAC address since there is no inverse CRC 
function. Moreover, CRC polynomials don’t have one-to-
one correspondence between input and generated values. 
The speed and storage performance of our hashing function 
is discussed in section 4. 

3.2 MAC Vendor Replacement 
The official IEEE OUI [11] has published all the assigned 

24-bit MAC vendor IDs and the associated company names. 
Based on them we have observed that the 24-bit vendor 
address space of the MAC addresses is not fully occupied. 
In fact, fewer than 8000 vendors are active instead of the 224 
possible. Therefore we can replace the 24-bit vendor ID 
with a 13-bit internally assigned vendor ID. The last 24-bits 
of the MAC address that uniquely identify a device, of a 
certain vendor, remain unchanged. This replacement 
reduces the storage requirements for each MAC-address 
rule, at the cost obviously of the replacement operation. 
Consequently, every incoming MAC-address rule need to 
be translated before the actual processing begins.  

We can now consider that each MAC-address rule 
handled by our system is 37-bits long. Naturally, this 
replacement means that we keep a small table with 8192 
entries called VID_RPL that matches the existing 24-bit 
Vendor ID values with the internally assigned 13-bit 



Vendor ID values. This table can be easily constructed since 
all Vendor IDs are sequentially assigned by IEEE and a few 
‘holes’ that exist in the address space can be handled by a 
24-to-13 decoder. Although this table is constant and thus 
can be kept in a ROM, we can also use a method that learns 
the connected MAC addresses and assigns incrementally an 
internal Vendor ID.  

After this replacement we define a new hashing function 
on the 37-bits of the MAC address. Now, the 16-bit indexes 
in MAC_TBL are generated as follows: 
MAC_TBLindex = { MAC[31:24] xor MAC[15:8] , 

       MAC[23:16] xor MAC[7:0] } 
 
Notice that we don’t use the 6 MSB of the replaced 

Vendor ID in order to have a byte balanced hashing 
function. The new Hval is now 21-bits and is defined as 
follows: 
Hval = { MAC[36:24] ,  MAC[7:0] } 
 
Now, a MAC-address associated with address A of 

MAC_TBL can be reproduced by the 16-bits of the address 
and Hval as follows: 
MAC[36:24]  =  Hval[20:8] 
MAC[23:16]  =  A[15:8] xor Hval[7:0] 
MAC[15:8]   =  A[15:8] xor Hval[15:8] 
MAC[7:0]    =  Hval(7:0) 

3.3 MAC_TBL and Data Structures 
The MAC_TBL has 64K entries. The indexes to the 

MAC_TBL are generated by our hashing function and 
therefore collisions may occur. In order to resolve these 
collisions efficiently, we define a complex data structure 
associated with each entry of the MAC_TBL. In general, we 
have to fully identify a MAC address associated with a 
certain entry of the table (by using the Hval field as 
described in the last section) while we would also like to be 
able to retrieve the corresponding 15-bit Flow ID. In the 
case where only one MAC-address rule is saved in a table 
entry we can save the FlowID in the 15 MSB of the word 
and Hval in the 21 LSB. If we use on-chip memories the 
word size is probably not a problem but in case of off-chip 
memories this is a critical aspect. Fortunately, the majority 
of the existing SRAM modules support 36-bits words and 
thus the Hval and the FlowID can both be fitted in exactly 
one memory word and without any memory overhead (i.e. 
empty space). 

In another case, a table entry might be empty which 
means that it is not mapped to any MAC-address rule; we 
reserve the Flow ID number 0 for this purpose. Moreover, a 
table entry may be mapped to many MAC-address rules. In 
this case, where collisions occur, we have to store a pointer 
to the variable size block and the number of rules that 
collide. The number of colliding rules also indicates the size 
of the block. For the collisions’ case we have reserved the 
Flow ID number 1. When a collision occurs, the least 
significant 17-bits of the word hold the pointer to the 
variable size external block and the remaining 4-bits are 
used to keep the number of MAC-address rules mapped to 
this particular table entry. 4-bits are enough for the 
maximum number of collisions of our system as explained 

below. The format of the memory words in each case is 
shown in Figure 3-1. 

 
Figure 3-1 MAC_TBL entries format and memory organization 

The variable size blocks also use 36-bit memory words 
while the different formats of their entries are identical to 
those depicted in Figure 3-1. An example that shows the 
complete data structure for an indicative set of  MAC- 
address rules is depicted in Error! Reference source not 
found.. 

 

 
Figure 3-2 Data structure example with linked blocks 

3.4 VLAN and Port Tables 
Handling the VLAN tag and the Port field is simple and 

requires the storage of the 15-bit Flow ID associated with a 
certain value of each of those fields. The VLAN tag is 
defined as a 12-bit identifier and it is mapped in a 2K-entry 
directly mapped table called VLAN_TBL which hosts 2 
FlowIDs per word. Similarly, the port field is a 10-bit 
identifier and is mapped in a 512 entry table called 
PORT_TBL, holding again 2 FlowIDs per entry. 

4 Hardware Implementation 
We designed and implemented a pipelined hardware 

realization of our scheme in order to support very high 
speed classification decisions and integrate it in a real 
network environment. Figure 4-1 illustrates the internal 
organization of HBCE. The operations of the system are 
handled by a Main Control Block (HBCE_MCB) which 
receives commands from an external processor interface 
(PINF). Upon a reception of a command HBCE_MCB 
instructs the MAC_VID block to execute the vendor ID 
replacement. Then, in case the requested operation is based 



on the MAC address, the modified MAC address is 
forwarded to MAC_HSH which is responsible for the 
hashing. When the hashing results are ready the dedicated 
blocks perform the appropriate actions so as to insert 
(HBCE_INS), lookup (HBCE_LUP) or delete 
(HBCE_DEL) a certain rule in/from the data structure. For 
VLAN or Port-based rules, the corresponding fields are sent 
directly from HBCE_MCB to those blocks. All those 
operation-blocks communicate with the external memory 
through the memory handler (MEM_HDLR) and the 
memory controller (MEM_CTRL). The MEM_HDLR 
implements the dynamic memory management scheme 
described in section 4.4 by employing several free-lists 
while the MEM_CTRL is the actual low level memory 
interface. When the final FlowID is identified, it is returned 
through the memory interface to the initiator of the 
command. Since the lookup operation is certainly the most 
critical and most frequent one, the whole design has been 
organized so as to allow for a new lookup command to be 
serviced at every clock cycle (in the average case). 

 
Figure 4-1 HBCE Block Diagram 

4.1 Memory Organization and Tables 
The current HBCE implementation is based on sequential 

accesses to both the external MAC_TBL and to the 
dynamically allocated collision nodes. Moreover, in the 
same external memory we have stored the VLAN table 
(VLAN_TBL), the Port table (PORT_TBL) and the free-
lists used by the Dynamic Memory Management scheme. 
The memory used is 36-bits and we have used at most 128K 
words which have been found sufficient based on the 
simulations presented in [10]. The organization of this 
external memory is shown in Figure 3-1. The 62976 “free” 
memory words are used by the memory handler 
(MEM_HDLR) to provide dynamic allocation and 
deallocation of memory blocks. 

4.2 Handling Dynamic Memory 
The most interesting block is the MEM_HDLR which 

implements our dynamic memory management scheme and 
supports variable size blocks. It supports requests for 
allocation and deallocation of variable size blocks and 
forwards the appropriate commands to MEM_CTRL. 

Requests for single reads or writes to the memory are 
immediately forwarded to MEM_CTRL. 

For our dynamic operations we use the pool of the free 
61K adjacent memory words mentioned above. To support 
our dynamic management scheme we use a head pointer to 
the pool of the available memory words, a tail pointer to the 
last address of this pool and a current pointer to keep the 
state of the already used memory words. During an 
allocation operation we increment the current pointer. The 
deallocated blocks are placed into free-lists where each free-
list holds all the deallocated blocks of a certain size. For 
every free-list we keep a head, tail pointer and a counter to 
keep the number of empty linked blocks. Linking between 
multiple blocks is implemented by writing the address of 
the next block in the previous block [12]. Based on the 
simulation results of the next section, we have decided not 
to support unlimited free-lists for blocks of different sizes 
but instead directly support blocks of 2 and 4 words that 
proved to provide very good results in all the scenarios 
examined. 

 
Figure 4-2 Snapshot of dynamic memory management mechanism 

In case we need larger blocks, we can link internally 2 or 
4-word blocks by using the “collision format” of Figure 3-1. 
Obviously, the main disadvantages of this implementation 
are that (a) if we need block sizes not multiples of 2 or 4 we 
have to pay a small fragmentation cost and (b) the memory 
overhead for the pointers needed to link a number of blocks 
together. Figure 3-2 depicts how multiple blocks can be linked 
together.  

During requests for allocation of a block we first check if 
we have available blocks of the specified size in the 
corresponding free-list and if not then we take a block from 
the memory pool. Upon deallocation, we add the 
deallocated block in the tail of the corresponding free-list 
and increment the appropriate counter. Figure 4-2 illustrates 
the mechanism incorporating both the memory pool and the 
free-lists. 

5 Performance and Hardware Cost 
In this section we calculate and analyze the storage needs 

of HBCE and compare it with the traditional CRC-16 and 
direct mapped solutions, when used both synthetic and real 
world benchmarks. Moreover, we present the performance 
achieved by our hardware implementation, together with its 



complexity. The indexing of MAC_TBL in our scheme is 
performed by the hashing function presented in subsection 
3.2. As demonstrated in [10] this is indeed a very effective 
hash function that has similar performance to CRC-16, 
while it is more efficient than direct mapping; this is 
because the XOR function used by both CRC-16 and HBCE 
provides better collisions results since it generates more 
uniformly distributed indexes.  The main advantage of 
HBCE, when compared with CRC, is that it requires only a 
small portion of the original MAC address to be stored in 
the corresponding table entry instead of the total 48-bits 
required by CRC. It is also simpler and less expensive to 
implement the HBCE hash function in hardware, than the 
corresponding CRC one.  

5.1 Storage Requirements 
In this subsection we demonstrate the total storage 

requirements of HBCE, for the large synthetic databases. 
The triggered collisions are handled by the dynamic 
memory management system described in subsection 4.4 
and thus apart from the static tables used we have to 
calculate the number of 2-word and 4-word blocks required. 
The sizes of the static tables in HBCE are demonstrated in 
Table 5-1. 

Table Entries Total Bytes 
MAC_TBL 65536 294912 
VLAN_TBL 2048 9216 
PORT_TBL 512 2304 
VID_RPL 8192 36864 
Total 76288 343296 (338 Kb) 

Table 5-1 HBCE static tables memory 

In Table 5-2 we present the final storage requirements of 
HBCE for each database including all the collision blocks. 
We also present the storage requirements if CRC-16 was the 
hashing function for the same databases. Note that in the 
cases of CRC without replacement and in that of CRC with 
replacement (CRC-RPL) we need two 36-bit memory words 
for each rule because we need to keep the 48 or 37-bit 
internal MAC address and the corresponding 15-bit FlowID. 
Note also, that in the case of CRC without vendor 
replacement we do not need the VID_RPL table. 

We can see that half megabyte is enough for HBCE to 
store 64K MAC-address rules. Moreover, we need 32% - 
41% less memory than the equivalent CRC-16 approach. 
Note also that in our hardware implementation we have  
initially assigned 61K adjacent memory words for the 
variable size blocks handled by our dynamic memory 
management system. However, as those results 
demonstrate, only 70% of this space is actually used. This 
means that it is possible for our hardware implementation to 
support more than 64K MAC-address rules utilizing a total 
of 128K memory words; increasing the number of rules 
supported will, also, increase the average number of 
collisions. 

DB Size 
(Active Vendors) 

CRC - RPL Total 
(Kbytes) 

CRC Total 
(Kbytes) 

HBCE Total 
(Kbytes) 

32K (256) 626 590 396 
32K (1500) 626 590 395 
32K (4000) 626 590 396 
48K (256) 780 744 458 
48K (1500) 779 743 458 

48K (4000) 779 743 458 
64K (256) 939 903 532 
64K (1500) 940 904 532 
64K (4000) 938 902 533 

Table 5-2 HBCE final storage requirements 

5.2 Implementation & Performance 
In this subsection we provide an analysis of the latencies 

of each block, the implementation cost of the reference 
design and its performance.  

5.2.1 Latency Analysis 
We calculate the minimum and the maximum number of 

clock cycles required by each hardware block in order to 
complete its operation. Many of the blocks have variable 
latencies which depend on the access patterns and the data 
stored in the data structures. Lookups are by far the most 
frequent and critical operations, and therefore, the device 
has been implemented in such a way that (in the average 
case) a lookup can be initiated at every clock cycle. 
However, even for lookups, in the cases of collisions in the 
MAC_TBL, the pipeline should stall, since more than one 
access to the external memory are needed. In Table 5-3 we 
present the latency for each HBCE block.  

Block Name Min Latency 
(clock cycles) 

Max Latency 
(clock cycles) 

HBCE_MCB 1 1 
HBCE_INS 2 13 
HBCE_LUP 1 10 
HBCE_DEL 2 11 
MAC_VID 1 1 
MAC_HSH 1 1 
MEM_HDLR 0 1 
MEM_CTRL 1 1 

Table 5-3 HBCE Blocks Latencies 

All the blocks except of the ones performing the actual 
insert, lookup and delete, have single cycle latency in all 
cases. According to the number of observed collisions 
presented in subsection 5.1, the calculated latency for the 
very important lookup operation, is 4.98 clock cycles on 
average; the worst case latency is 13 clock cycles. 

5.2.2 Hardware Cost Analysis 
We have used VHDL to model the design and we have 

synthesized it using the Synopsys Design Compiler which is 
the most widely used synthesis tool. The underlying 
technology was UMC’s 0.13µm CMOS one. Moreover, we 
used the Xilinx ISE tool to implement and port the design in 
an FPGA, as well, so as to measure its complexity in a low-
cost environment. 

Block Area 
(mm2) 

Equivalent  
NAND Gates 

Combinatorial 0,044 8482 
Non-Combinatorial 0,054 10362 
Total 0,098 18844 

Table 5-4 Area estimations of HBCE 

According to the synthesis tool the maximum working 
frequency of our design is 500Mhz. The silicon area 
covered by our design and the equivalent gate count is 
presented in Table 5-4.  

FPGA’s ISE tool reported that the maximum working 
frequency of the prototype design is 100 MHz in a state-of-
the-art FPGA. Moreover, after certain optimizations for 



removing redundant or replicated logic, the resources 
needed for the implementation of our design are those 
shown in Table 5-5. Those results have also been validated 
on real hardware since the design has been ported to a 
development board containing such an FPGA. 

Resource Resource count 
Used 4 input LUTs 2371 
Slice Flip Flops 1060 
Table 5-5  FPGA resource allocation 

5.2.3 Performance 
The whole design is fully pipelined and thus the lookup 

performance of HBCE is based on the pipeline stalls which 
directly depend on the total number of memory accesses 
required to find a match in the tables (since we have just 
one memory). Both VLAN_TBL and PORT_TBL are 
directly mapped and therefore the associated FlowID can be 
found with a single access to the appropriate table. The 
MAC_TBL is the most critical table for the performance of 
HBCE, since collisions may occur and then we have to 
lookup sequentially all the colliding rules, triggering stalls 
in the pipeline. For every incoming MAC address the 
original vendor ID is replaced, in the first stage of the 
pipeline, with our internally assigned one. The VID_TBL is 
stored internally since it is quite small and therefore no 
external memory accesses are required in this first stage.  
The number of accesses/cycles required to resolve a MAC-
address rule depends on the number of collisions that are 
associated with the corresponding entry in the MAC_TBL. 
According to the results presented in subsection 5.1, in the 
worst case there are 8 collisions when 64K rules are 
supported, while in the average case the number of 
collisions shrinks to 1.98. In Table 5-6 we present the 
summary of worst and average case pipeline stalls for each 
of our scenarios. 

Active MAC 
Addresses 

HBCE 
Average Case 

HBCE 
Worst Case 

32K 0.49 5 
48K 0.73 6 
64K 0.98 7 

Table 5-6 HBCE total number of pipeline stalls 

To calculate the network performance we have used two 
different memory modules : 200Mhz and 400Mhz 
synchronous SRAMs. 

SRAM 200Mhz SRAM 400Mhz Active 
MAC 

Addresses 
Average 
(Gbps) 

Worst Case 
(Gbps) 

Average 
(Gbps) 

Worst Case 
(Gbps) 

32K 68,7 17,1 137,5 34,2 
48K 59,2 14,6 118,4 29,2 
64K 51,7 12,8 103,5 25,6 

Table 5-7 HBCE network performance 

Since classification is performed for every incoming 
network packet, we calculate the throughput of our system 
based on the most conservative (worst-case) approach, by 
assuming that HBCE handles only minimum sized Ethernet 
packets (64 bytes). The summary of the supported link 
speeds is presented in Table 5-7 where the average 
throughput is based on the average pipeline stalls and the 
worst-case on the worst case stalls. This worst case is 
triggered when the lookups that should be performed, 
always encounter the maximum number of collisions. 

The network performance presented in Table 5-7 allows 
HBCE to be used in a high speed Ethernet device that can 
support a large number of multi-gigabit ports. Those results 
demonstrate that our scheme can be used, for example, in a 
switch/concentrator supporting more than 100Gb/sec of 
aggregate throughput and 64K distinct classification rules.  

 
6 Conclusions 
The vast deployment of Multi-Gigabit Ethernet networks, 
and their use beyond the tight borders of LANs, motivated 
the development of QoS mechanisms in the MAC layer. 
Those schemes require classification of the Ethernet packets 
according to their MAC addresses, VLAN IDs or MAC port 
numbers. The proposed QoS mechanisms support many 
thousands of independent network flows; they handle 
separately and differently each of those flows. In order to 
address those needs, we have designed and implemented the 
Hash Based Classification Engine (HBCE) a classification 
module which uses an innovative hashing scheme and 
internal replacement of MAC Vendor IDs. HBCE can reach 
classification decisions at extremely high speeds, using 
significantly less memory than the existing solutions. The 
implementation of HBCE utilizes less than 0.1mm² of 
silicon area in a state-of-the-art CMOS technology, whereas 
it can support network rates higher than 100 Gb/sec, 
occupying less than half a Megabyte of Memory, and 
handling 64K distinct network rules.  
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