
A Hardware-Engine for Layer-2 classification in low-storage, ultra-
high bandwidth environments

V. Papaefstathiou, I. Papaefstathiou

 Foundation of Research & Technology Hellas (FORTH),
Institute of Computer Science (ICS),

Vassilika Vouton, GR71110, Heraklio, Crete, Greece
{papaef, ygp}@ics.forth.gr

Abstract: - Ethernet is the most common Layer-2

network protocol, and it is currently being deployed beyond
the tight borders of LANs. In order to accommodate the
needs of MANs and WANs, several QoS mechanisms
employed at the MAC sublayer of Ethernet have been
proposed. These QoS mechanisms require identification of
network flows and the classification of Ethernet packets
according to certain Ethernet header fields. In this paper,
we propose a classification engine employed at the MAC
sublayer which uses an innovative hashing scheme and
internal replacement of MAC Vendor IDs; the Hash Based
Classification Engine (HBCE) compacts the tables
containing the rules associated with certain MAC addresses
and supports extremely high speed decisions –at a rate of
more than 100Gb/sec-, while its memory needs are
significantly lower compared to those of the similar
schemes currently used. This engine has been implemented
in hardware utilizing less than 0.1mm² in a state of the art
CMOS technology. As a result HBCE is a very promising
candidate for the next-generation Ethernet equipments that
need to support classification at Data Link Layer at multi-
Gigabit per second network speeds, whereas due to its very
low memory requirements and low implementation
complexity, it can also be employed very efficiently in
lower-bandwidth wireless environments that utilize MAC
mechanisms.

1 Introduction
Ethernet is, by far, the most common Layer-2 network

protocol. Mainly due to its very good cost-performance
ratio, it is currently making a breakthrough in MAN and
WAN networks. The deployment of MAC-based Multi-
Gigabit wired or Lower-bandwidth wireless networks, and
their use beyond the tight borders of LANs, motivated the
development of QoS mechanisms in the MAC layer; such
examples are the VLAN scheme [1], or certain QoS
protocols for wireless environments [2]. Those mechanisms
require identification of network flows and classification of
Ethernet packets according to their MAC addresses, VLAN
IDs or port numbers. Moreover, in order to be able to
support fine-grained QoS they incorporate tens of thousands
of independent network flows identified by the MAC,
VLAN and/or Port fields. The length of the MAC addresses,
namely 48-bits, is what makes the classification task
difficult since exact matches in such a wide value is not a

trivial task. Since the main advantage of the Ethernet
networks, and the associated equipments, is their low cost,
the classification solutions that would be used within the
specified frameworks should be as cost efficient as possible.

The three header fields used in Ethernet switching are the
MAC address, the port of the switch and the Virtual LAN
(VLAN) tag; these elements are also used by the
mechanisms that provide QoS in Layer-2.

MAC Address: The MAC address is a 48-bit (6 bytes)
value that uniquely identifies a Network Interface Card
(NIC). The first 24-bits (3 bytes) of the address identify the
vendor of the card and the last 24-bits identify the card
itself.

Port: A number that uniquely identifies the physical
interface of the equipment (for example a 10-bit number for
a 1024-port system).

VLAN: VLAN tagging was introduced in IEEE 802.1q
[1] and defines how an Ethernet frame is tagged with a
VLAN ID. VLAN tagging provides a mechanism to handle
time-critical network traffic by setting transmission
priorities to outgoing frames according to IEEE 802.1p [3].
Moreover VLANs allow network stations to be assigned to
logical groups and communicate across multiple LANs as if
they were on a single LAN; Ethernet bridges and switches
should forward the VLAN-tagged frames only to ports that
serve the specified VLAN.

In this paper, we propose a classification engine utilized
at the MAC sub-layer which uses a new hashing scheme
and internal replacement of MAC Vendor IDs; the Hash
Based Classification Engine (HBCE) can reach
classification decisions at extremely high speeds while its
main advantage comes from the fact that it utilizes less than
two thirds of the memory needed by the existing solutions.
The efficiency of the proposed engine comes from the fact
that the hashing and the replacement schemes used, take
advantage of the individual characteristics of the MAC
addresses. This engine has been implemented in hardware
and while its implementation cost is minimal, it supports
network rates higher than 100 Gb/sec while incorporating
64K independent rules.

2 Related Work
L2 classification requires the fields mentioned in the last

section to be examined and the appropriate action to be
performed. Therefore, the network equipments need to store

3-9810801-0-6/DATE06 © 2006 EDAA

some information and consult them for their decisions. The
information regarding the MAC addresses, the VLANs and
the Ports are stored in internal data structures and for each
packet a search is conducted using the packet header fields.

Switches and bridges have very often integrated hardware
modules handling such classification tasks; they place the
various tables, holding the data structures, in internal or
external memories and all operations access those tables in
order to examine whether an exact match exists or not.
Today’s switches support up to 32K-64K MAC-address
rules [4] and 4096 VLANs, hence the size of memories is
relatively small.

The nature of L2 classification requires exact matches and
many implementations use CAMs that provide single access
matching [5]. CAM solutions, although simple, they are
expensive and consume large amounts of power. Trie based
solutions [6] have poor performance since they cannot
handle efficiently long matching strings such as the MAC
address. Moreover, trie based solutions may require several
memory accesses and massive storage for the associated
pointers.

Another popular solution is hashing of the MAC address
bits [7] and storing the data in SRAM based lookup tables.
The 48-bits are hashed using a specific hashing function and
an index for the lookup table is generated. Possible
collisions due to hashing are usually resolved with linked
lists of entries. Hashing 48-bits into a small, say 16-bit,
value requires a good function that generates differentiated
values usually by taking into account all the information
bits. Many solutions use the CRC polynomials for hashing
since they have been proved very efficient [8] however
others, mainly due to cost reasons, use direct mapping by
the least significant bits of the MAC address [9].

3 Hash Based Classification Engine
Our solution for L2 classification is based on hashing,

like the majority of similar products, but we propose a
scheme that exactly matches the special characteristics of
the MAC addresses. Moreover, our Hash Based
Classification Engine (HBCE) employs internal MAC
Vendor replacement. HBCE is designed to support tens-of-
thousands of MAC-address rules and a couple of thousands
of VLANs and port-based rules. Every rule in HBCE is
associated to a number called FlowID (which can, for
example, be a pointer to another memory which holds the
associated information for this rule or simply a number
identifying the output port of the device). We decided to
use 15-bit FlowIDs, translating to 32K unique and
independent network flows, which have been proved to be
enough for most Ethernet equipments.

The most important part of our scheme is the lookup
scheme for the MAC-address rules. The length of the MAC
address, is what makes this part the most critical in terms of
both speed and storage. VLANs and ports are relatively
small and can be directly mapped into tables, as it is
described in the next sections.

3.1 MAC Address Hashing
We developed a hashing function to map the MAC-

address rules into a table that will hold the FlowID of the

associated rule. Those rules are stored in a 64K table called
MAC_TBL and the indexes to it are generated by our
hashing function applied to the MAC address bits. The
collisions due to hashing are handled by pointers to variable
size blocks. Handling variable size blocks requires a
dynamic memory management scheme which is described
in the next sections. The number of entries in each variable
size block is defined by the number of rules that collide
within a specific entry of the MAC_TBL.

Our hashing scheme applies an XOR function to all 48-
bits of the MAC address and the 16-bit MAC_TBL address
is produced as follows:

MAC_TBLindex =
{MAC[47:40] xor MAC[31:24] xor MAC[15:8],
 MAC[39:32] xor MAC[23:16] xor MAC[7:0]}

To identify a certain MAC-address rule within a
particular table entry we also need to save some additional
information so as to be able to distinguish those that collide.
Fortunately, we don’t need to save all 48-bits and we take
advantage of the fact that the XOR function can be
“inversed”. Therefore a certain MAC-value associated with
address A of MAC_TBL can be reproduced by the 16-bits
of A and the last 32-bits (Hval) of the MAC address as
follows:

MAC[47:40] =
 A[15:8] xor Hval[31:24] xor Hval[15:8]
MAC[39:32] =
 A[7:0] xor Hval[23:16] xor Hval[7:0]
MAC[31:0] = Hval(31:0)

So by using Hval we can uniquely identify each MAC-
address rule. If we use CRC-16 to produce the 16-bit
indexes, like the popular schemes described in the related
work section, then we would have to store the complete 48-
bits of the MAC address since there is no inverse CRC
function. Moreover, CRC polynomials don’t have one-to-
one correspondence between input and generated values.
The speed and storage performance of our hashing function
is discussed in section 4.

3.2 MAC Vendor Replacement
The official IEEE OUI [11] has published all the assigned

24-bit MAC vendor IDs and the associated company names.
Based on them we have observed that the 24-bit vendor
address space of the MAC addresses is not fully occupied.
In fact, fewer than 8000 vendors are active instead of the 224
possible. Therefore we can replace the 24-bit vendor ID
with a 13-bit internally assigned vendor ID. The last 24-bits
of the MAC address that uniquely identify a device, of a
certain vendor, remain unchanged. This replacement
reduces the storage requirements for each MAC-address
rule, at the cost obviously of the replacement operation.
Consequently, every incoming MAC-address rule need to
be translated before the actual processing begins.

We can now consider that each MAC-address rule
handled by our system is 37-bits long. Naturally, this
replacement means that we keep a small table with 8192
entries called VID_RPL that matches the existing 24-bit
Vendor ID values with the internally assigned 13-bit

Vendor ID values. This table can be easily constructed since
all Vendor IDs are sequentially assigned by IEEE and a few
‘holes’ that exist in the address space can be handled by a
24-to-13 decoder. Although this table is constant and thus
can be kept in a ROM, we can also use a method that learns
the connected MAC addresses and assigns incrementally an
internal Vendor ID.

After this replacement we define a new hashing function
on the 37-bits of the MAC address. Now, the 16-bit indexes
in MAC_TBL are generated as follows:
MAC_TBLindex = { MAC[31:24] xor MAC[15:8] ,

 MAC[23:16] xor MAC[7:0] }

Notice that we don’t use the 6 MSB of the replaced

Vendor ID in order to have a byte balanced hashing
function. The new Hval is now 21-bits and is defined as
follows:
Hval = { MAC[36:24] , MAC[7:0] }

Now, a MAC-address associated with address A of

MAC_TBL can be reproduced by the 16-bits of the address
and Hval as follows:
MAC[36:24] = Hval[20:8]
MAC[23:16] = A[15:8] xor Hval[7:0]
MAC[15:8] = A[15:8] xor Hval[15:8]
MAC[7:0] = Hval(7:0)

3.3 MAC_TBL and Data Structures
The MAC_TBL has 64K entries. The indexes to the

MAC_TBL are generated by our hashing function and
therefore collisions may occur. In order to resolve these
collisions efficiently, we define a complex data structure
associated with each entry of the MAC_TBL. In general, we
have to fully identify a MAC address associated with a
certain entry of the table (by using the Hval field as
described in the last section) while we would also like to be
able to retrieve the corresponding 15-bit Flow ID. In the
case where only one MAC-address rule is saved in a table
entry we can save the FlowID in the 15 MSB of the word
and Hval in the 21 LSB. If we use on-chip memories the
word size is probably not a problem but in case of off-chip
memories this is a critical aspect. Fortunately, the majority
of the existing SRAM modules support 36-bits words and
thus the Hval and the FlowID can both be fitted in exactly
one memory word and without any memory overhead (i.e.
empty space).

In another case, a table entry might be empty which
means that it is not mapped to any MAC-address rule; we
reserve the Flow ID number 0 for this purpose. Moreover, a
table entry may be mapped to many MAC-address rules. In
this case, where collisions occur, we have to store a pointer
to the variable size block and the number of rules that
collide. The number of colliding rules also indicates the size
of the block. For the collisions’ case we have reserved the
Flow ID number 1. When a collision occurs, the least
significant 17-bits of the word hold the pointer to the
variable size external block and the remaining 4-bits are
used to keep the number of MAC-address rules mapped to
this particular table entry. 4-bits are enough for the
maximum number of collisions of our system as explained

below. The format of the memory words in each case is
shown in Figure 3-1.

Figure 3-1 MAC_TBL entries format and memory organization

The variable size blocks also use 36-bit memory words
while the different formats of their entries are identical to
those depicted in Figure 3-1. An example that shows the
complete data structure for an indicative set of MAC-
address rules is depicted in Error! Reference source not
found..

Figure 3-2 Data structure example with linked blocks

3.4 VLAN and Port Tables
Handling the VLAN tag and the Port field is simple and

requires the storage of the 15-bit Flow ID associated with a
certain value of each of those fields. The VLAN tag is
defined as a 12-bit identifier and it is mapped in a 2K-entry
directly mapped table called VLAN_TBL which hosts 2
FlowIDs per word. Similarly, the port field is a 10-bit
identifier and is mapped in a 512 entry table called
PORT_TBL, holding again 2 FlowIDs per entry.

4 Hardware Implementation
We designed and implemented a pipelined hardware

realization of our scheme in order to support very high
speed classification decisions and integrate it in a real
network environment. Figure 4-1 illustrates the internal
organization of HBCE. The operations of the system are
handled by a Main Control Block (HBCE_MCB) which
receives commands from an external processor interface
(PINF). Upon a reception of a command HBCE_MCB
instructs the MAC_VID block to execute the vendor ID
replacement. Then, in case the requested operation is based

on the MAC address, the modified MAC address is
forwarded to MAC_HSH which is responsible for the
hashing. When the hashing results are ready the dedicated
blocks perform the appropriate actions so as to insert
(HBCE_INS), lookup (HBCE_LUP) or delete
(HBCE_DEL) a certain rule in/from the data structure. For
VLAN or Port-based rules, the corresponding fields are sent
directly from HBCE_MCB to those blocks. All those
operation-blocks communicate with the external memory
through the memory handler (MEM_HDLR) and the
memory controller (MEM_CTRL). The MEM_HDLR
implements the dynamic memory management scheme
described in section 4.4 by employing several free-lists
while the MEM_CTRL is the actual low level memory
interface. When the final FlowID is identified, it is returned
through the memory interface to the initiator of the
command. Since the lookup operation is certainly the most
critical and most frequent one, the whole design has been
organized so as to allow for a new lookup command to be
serviced at every clock cycle (in the average case).

Figure 4-1 HBCE Block Diagram

4.1 Memory Organization and Tables
The current HBCE implementation is based on sequential

accesses to both the external MAC_TBL and to the
dynamically allocated collision nodes. Moreover, in the
same external memory we have stored the VLAN table
(VLAN_TBL), the Port table (PORT_TBL) and the free-
lists used by the Dynamic Memory Management scheme.
The memory used is 36-bits and we have used at most 128K
words which have been found sufficient based on the
simulations presented in [10]. The organization of this
external memory is shown in Figure 3-1. The 62976 “free”
memory words are used by the memory handler
(MEM_HDLR) to provide dynamic allocation and
deallocation of memory blocks.

4.2 Handling Dynamic Memory
The most interesting block is the MEM_HDLR which

implements our dynamic memory management scheme and
supports variable size blocks. It supports requests for
allocation and deallocation of variable size blocks and
forwards the appropriate commands to MEM_CTRL.

Requests for single reads or writes to the memory are
immediately forwarded to MEM_CTRL.

For our dynamic operations we use the pool of the free
61K adjacent memory words mentioned above. To support
our dynamic management scheme we use a head pointer to
the pool of the available memory words, a tail pointer to the
last address of this pool and a current pointer to keep the
state of the already used memory words. During an
allocation operation we increment the current pointer. The
deallocated blocks are placed into free-lists where each free-
list holds all the deallocated blocks of a certain size. For
every free-list we keep a head, tail pointer and a counter to
keep the number of empty linked blocks. Linking between
multiple blocks is implemented by writing the address of
the next block in the previous block [12]. Based on the
simulation results of the next section, we have decided not
to support unlimited free-lists for blocks of different sizes
but instead directly support blocks of 2 and 4 words that
proved to provide very good results in all the scenarios
examined.

Figure 4-2 Snapshot of dynamic memory management mechanism

In case we need larger blocks, we can link internally 2 or
4-word blocks by using the “collision format” of Figure 3-1.
Obviously, the main disadvantages of this implementation
are that (a) if we need block sizes not multiples of 2 or 4 we
have to pay a small fragmentation cost and (b) the memory
overhead for the pointers needed to link a number of blocks
together. Figure 3-2 depicts how multiple blocks can be linked
together.

During requests for allocation of a block we first check if
we have available blocks of the specified size in the
corresponding free-list and if not then we take a block from
the memory pool. Upon deallocation, we add the
deallocated block in the tail of the corresponding free-list
and increment the appropriate counter. Figure 4-2 illustrates
the mechanism incorporating both the memory pool and the
free-lists.

5 Performance and Hardware Cost
In this section we calculate and analyze the storage needs

of HBCE and compare it with the traditional CRC-16 and
direct mapped solutions, when used both synthetic and real
world benchmarks. Moreover, we present the performance
achieved by our hardware implementation, together with its

complexity. The indexing of MAC_TBL in our scheme is
performed by the hashing function presented in subsection
3.2. As demonstrated in [10] this is indeed a very effective
hash function that has similar performance to CRC-16,
while it is more efficient than direct mapping; this is
because the XOR function used by both CRC-16 and HBCE
provides better collisions results since it generates more
uniformly distributed indexes. The main advantage of
HBCE, when compared with CRC, is that it requires only a
small portion of the original MAC address to be stored in
the corresponding table entry instead of the total 48-bits
required by CRC. It is also simpler and less expensive to
implement the HBCE hash function in hardware, than the
corresponding CRC one.

5.1 Storage Requirements
In this subsection we demonstrate the total storage

requirements of HBCE, for the large synthetic databases.
The triggered collisions are handled by the dynamic
memory management system described in subsection 4.4
and thus apart from the static tables used we have to
calculate the number of 2-word and 4-word blocks required.
The sizes of the static tables in HBCE are demonstrated in
Table 5-1.

Table Entries Total Bytes
MAC_TBL 65536 294912
VLAN_TBL 2048 9216
PORT_TBL 512 2304
VID_RPL 8192 36864
Total 76288 343296 (338 Kb)

Table 5-1 HBCE static tables memory

In Table 5-2 we present the final storage requirements of
HBCE for each database including all the collision blocks.
We also present the storage requirements if CRC-16 was the
hashing function for the same databases. Note that in the
cases of CRC without replacement and in that of CRC with
replacement (CRC-RPL) we need two 36-bit memory words
for each rule because we need to keep the 48 or 37-bit
internal MAC address and the corresponding 15-bit FlowID.
Note also, that in the case of CRC without vendor
replacement we do not need the VID_RPL table.

We can see that half megabyte is enough for HBCE to
store 64K MAC-address rules. Moreover, we need 32% -
41% less memory than the equivalent CRC-16 approach.
Note also that in our hardware implementation we have
initially assigned 61K adjacent memory words for the
variable size blocks handled by our dynamic memory
management system. However, as those results
demonstrate, only 70% of this space is actually used. This
means that it is possible for our hardware implementation to
support more than 64K MAC-address rules utilizing a total
of 128K memory words; increasing the number of rules
supported will, also, increase the average number of
collisions.

DB Size
(Active Vendors)

CRC - RPL Total
(Kbytes)

CRC Total
(Kbytes)

HBCE Total
(Kbytes)

32K (256) 626 590 396
32K (1500) 626 590 395
32K (4000) 626 590 396
48K (256) 780 744 458
48K (1500) 779 743 458

48K (4000) 779 743 458
64K (256) 939 903 532
64K (1500) 940 904 532
64K (4000) 938 902 533

Table 5-2 HBCE final storage requirements

5.2 Implementation & Performance
In this subsection we provide an analysis of the latencies

of each block, the implementation cost of the reference
design and its performance.

5.2.1 Latency Analysis
We calculate the minimum and the maximum number of

clock cycles required by each hardware block in order to
complete its operation. Many of the blocks have variable
latencies which depend on the access patterns and the data
stored in the data structures. Lookups are by far the most
frequent and critical operations, and therefore, the device
has been implemented in such a way that (in the average
case) a lookup can be initiated at every clock cycle.
However, even for lookups, in the cases of collisions in the
MAC_TBL, the pipeline should stall, since more than one
access to the external memory are needed. In Table 5-3 we
present the latency for each HBCE block.

Block Name Min Latency
(clock cycles)

Max Latency
(clock cycles)

HBCE_MCB 1 1
HBCE_INS 2 13
HBCE_LUP 1 10
HBCE_DEL 2 11
MAC_VID 1 1
MAC_HSH 1 1
MEM_HDLR 0 1
MEM_CTRL 1 1

Table 5-3 HBCE Blocks Latencies

All the blocks except of the ones performing the actual
insert, lookup and delete, have single cycle latency in all
cases. According to the number of observed collisions
presented in subsection 5.1, the calculated latency for the
very important lookup operation, is 4.98 clock cycles on
average; the worst case latency is 13 clock cycles.

5.2.2 Hardware Cost Analysis
We have used VHDL to model the design and we have

synthesized it using the Synopsys Design Compiler which is
the most widely used synthesis tool. The underlying
technology was UMC’s 0.13µm CMOS one. Moreover, we
used the Xilinx ISE tool to implement and port the design in
an FPGA, as well, so as to measure its complexity in a low-
cost environment.

Block Area
(mm2)

Equivalent
NAND Gates

Combinatorial 0,044 8482
Non-Combinatorial 0,054 10362
Total 0,098 18844

Table 5-4 Area estimations of HBCE

According to the synthesis tool the maximum working
frequency of our design is 500Mhz. The silicon area
covered by our design and the equivalent gate count is
presented in Table 5-4.

FPGA’s ISE tool reported that the maximum working
frequency of the prototype design is 100 MHz in a state-of-
the-art FPGA. Moreover, after certain optimizations for

removing redundant or replicated logic, the resources
needed for the implementation of our design are those
shown in Table 5-5. Those results have also been validated
on real hardware since the design has been ported to a
development board containing such an FPGA.

Resource Resource count
Used 4 input LUTs 2371
Slice Flip Flops 1060
Table 5-5 FPGA resource allocation

5.2.3 Performance
The whole design is fully pipelined and thus the lookup

performance of HBCE is based on the pipeline stalls which
directly depend on the total number of memory accesses
required to find a match in the tables (since we have just
one memory). Both VLAN_TBL and PORT_TBL are
directly mapped and therefore the associated FlowID can be
found with a single access to the appropriate table. The
MAC_TBL is the most critical table for the performance of
HBCE, since collisions may occur and then we have to
lookup sequentially all the colliding rules, triggering stalls
in the pipeline. For every incoming MAC address the
original vendor ID is replaced, in the first stage of the
pipeline, with our internally assigned one. The VID_TBL is
stored internally since it is quite small and therefore no
external memory accesses are required in this first stage.
The number of accesses/cycles required to resolve a MAC-
address rule depends on the number of collisions that are
associated with the corresponding entry in the MAC_TBL.
According to the results presented in subsection 5.1, in the
worst case there are 8 collisions when 64K rules are
supported, while in the average case the number of
collisions shrinks to 1.98. In Table 5-6 we present the
summary of worst and average case pipeline stalls for each
of our scenarios.

Active MAC
Addresses

HBCE
Average Case

HBCE
Worst Case

32K 0.49 5
48K 0.73 6
64K 0.98 7

Table 5-6 HBCE total number of pipeline stalls

To calculate the network performance we have used two
different memory modules : 200Mhz and 400Mhz
synchronous SRAMs.

SRAM 200Mhz SRAM 400Mhz Active
MAC

Addresses
Average
(Gbps)

Worst Case
(Gbps)

Average
(Gbps)

Worst Case
(Gbps)

32K 68,7 17,1 137,5 34,2
48K 59,2 14,6 118,4 29,2
64K 51,7 12,8 103,5 25,6

Table 5-7 HBCE network performance

Since classification is performed for every incoming
network packet, we calculate the throughput of our system
based on the most conservative (worst-case) approach, by
assuming that HBCE handles only minimum sized Ethernet
packets (64 bytes). The summary of the supported link
speeds is presented in Table 5-7 where the average
throughput is based on the average pipeline stalls and the
worst-case on the worst case stalls. This worst case is
triggered when the lookups that should be performed,
always encounter the maximum number of collisions.

The network performance presented in Table 5-7 allows
HBCE to be used in a high speed Ethernet device that can
support a large number of multi-gigabit ports. Those results
demonstrate that our scheme can be used, for example, in a
switch/concentrator supporting more than 100Gb/sec of
aggregate throughput and 64K distinct classification rules.

6 Conclusions
The vast deployment of Multi-Gigabit Ethernet networks,
and their use beyond the tight borders of LANs, motivated
the development of QoS mechanisms in the MAC layer.
Those schemes require classification of the Ethernet packets
according to their MAC addresses, VLAN IDs or MAC port
numbers. The proposed QoS mechanisms support many
thousands of independent network flows; they handle
separately and differently each of those flows. In order to
address those needs, we have designed and implemented the
Hash Based Classification Engine (HBCE) a classification
module which uses an innovative hashing scheme and
internal replacement of MAC Vendor IDs. HBCE can reach
classification decisions at extremely high speeds, using
significantly less memory than the existing solutions. The
implementation of HBCE utilizes less than 0.1mm² of
silicon area in a state-of-the-art CMOS technology, whereas
it can support network rates higher than 100 Gb/sec,
occupying less than half a Megabyte of Memory, and
handling 64K distinct network rules.

References
[1] IEEE 802.1q Standard, “Virtual Bridged Local Area

Networks”,
[2] Giovanni Pau et.al , “A Cross-Layer Framework for Wireless

LAN QoS Support”, IEEE ITRE, August 11-13, 2003,
Newark, New Jersey, USA

[3] IEEE 802.1p Standard, “LAN Layer 2 QoS/CoS Protocol for
Traffic Prioritization”.

[4] Enterprise Rack Mount Switches,
http://www.ncasia.com/rfq/24port_0303.cfm?rfq=Enterprise_
24-port_rack-mount_switch

[5] R. A. Kempke and A. J. McAuley, “Ternary CAM Memory
Architecture and Methodology.” United States Patent
5,841,874, November 1998. Motorola, Inc.

[6] P. Gupta and N. McKeown, "Algorithms for Packet
Classification", IEEE Network, March/April 2001, vol. 15,
no. 2, pp 24-32.

[7] N. McKeown, B. Prabhakar, “Lectures on Packet Switch
Architectures II – Address Lookup and Classification”,
Stanford University

[8] R. Jain, "A Comparison of Hashing Schemes for Address
Lookup in Computer Networks", IEEE Transactions on
Communications, Vol. 40, No. 3, October 1992, pp. 1570-
1573

[9] VIA Networking Atlantic™ VT6510A Switch Controller
[10] I. Papaefstathiou and V. Papaefstathiou, “A Memory-

Efficient, 100Gb/sec MAC Classification Engine”, 30th IEEE
LCN 2005, November 2005, Sydney, Australia

[11] IEEE OUI and Company_id Assignments,
http://standards.ieee.org/regauth/oui/index.shtml

[12] A. Nikologiannis, M. Katevenis: "Efficient Per-Flow
Queueing in DRAM at OC-192 Line Rate using Out-of-Order
Execution Techniques", IEEE Int. Conf. on Communications
(ICC'2001), June 2001, Helsinki, Finland, pp. 2048-2052

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

