
Software-friendly HW/SW Co-Simulation: An Industrial Case Study

Juanjo Noguera, Luis Baldez, Narcis Simon, Lluis Abello
Large-Format Technology Lab, Inkjet Commercial Division, Hewlett-Packard

Sant Cugat del Valles, Barcelona (Spain)
e-mail: {juan-jose.noguera, luis.baldez, narcis.simon, lluis.abello}@hp.com

Abstract
This paper proposes a novel HW/SW co-simulation ap-
proach that minimizes the impact on software designers.
We propose a SystemC-based system that enables the
software team to test their software with their own tools
and environment using an accurate simulated ASIC (Ap-
plication Specific Integrated Circuit) model.
The solution presented here enables a smooth and early
ASIC and SW integration, which reduces the project de-
velopment time and improves the ASIC design quality (i.e.,
SW engineers can help in the ASIC verification and ASIC
engineers can help in the SW development). In this solu-
tion, the real and full software (i.e., multi-threaded appli-
cation) runs in its native environment with minimal
changes and interfaces with a simulated ASIC model us-
ing sockets. We have tested this approach on a pilot-
project, which has demonstrated the feasibility of this co-
development methodology.

1. Introduction and Motivation
The HW/SW co-simulation concept has been widely ad-
dressed by the academia community [8][9][10]. Moreover,
several EDA vendors are offering tools that address this
topic [1][2]. From its early stages, the idea of HW/SW co-
simulation promised two key benefits:

(a) Shorten the project design time (i.e., time-to-
market), thanks to the concurrent development
and early integration of hardware and software.

(b) Improved design quality and reduction of devel-
opment costs, thanks to the increased number of
test-cases, which reduce costly ASIC re-spins.

Nowadays, it is becoming increasingly evident that these
two points will be two major issues for the industry in the
development of future System-on-Chip (i.e., SoC) plat-
forms. More in detail, as deep sub-micron technologies
become mainstream, it is foreseen that: (a) the software
development effort will overtake the hardware develop-
ment effort [4]; and (b) ASIC masks (i.e., NRE) costs will
continue to growth [5].

Thus, if we consider: (1) the benefits of HW/SW co-
simulation; and (2) the development issues of future SoC
platforms; then it is obvious that HW/SW co-simulation is
a major tool to address these issues. However, the theo-
retical benefits of HW/SW co-simulation are hidden by
practical issues that the industry is facing.
In this sense, the objective of this paper is to explain sev-
eral key learnings from an industrial HW/SW co-
simulation case study. This paper introduces the practical
issues that are faced by the industry and that are prevent-
ing the adoption of HW/SW co-simulation in the devel-
opment methodologies.
In our opinion, the main practical issue that should be
solved in order to enable the widespread use of HW/SW
co-simulation in the industry is to convince the software
development team to use the HW/SW co-simulation tech-
nique. This is, in theory, a simple statement, but it is a
major issue in the industry, where software team is always
under high-pressure to meet the project schedule. It is
extremely hard to convince software designers to change
their own development environment and set of tools. In
other words, the software team must buy-in the concept of
HW/SW co-simulation. If the software team decides not to
use this co-development approach, then the HW/SW co-
simulation loses one of its key benefits (i.e., shorter pro-
ject design times).
The software team must see a clear benefit in HW/SW co-
simulation and have a low-overhead “transition” time. In
this paper, we focus on how we solved this issue and we
also explain the implementation of a possible solution.
The rest of the paper is organized in six sections. Section 2
gives an overview of our target hardware and software
platforms. Section 3 gives a high-level introduction to the
proposed solution, while section 4 explains the detailed
implementation. Section 5 shows the application of the
proposed solution to an image processing case study.
Finally, section 6 compares our solution to previous work
and section 7 describes the conclusions of this work.

3-9810801-0-6/DATE06 © 2006 EDAA

2. Target Hardware/Software Overview

2.1 Hardware Architecture
The typical HW architecture of our systems is shown in
Fig. 1. As we can see in this picture, we have several
components all connected using the off-chip system bus.
Among these components connected to the bus, we have:
(a) an external CPU that is used to control the complete
system; (b) external DRAM memory resources (i.e., main
memory), which are used as shared memory to transfer
blocks of data from software to hardware; and (c) the
ASIC that implements the required image processing
algorithms. As we can observe, the ASIC might have its
own external DRAM memory. In addition, in Fig. 1, we
give a high-level overview of the ASIC architecture,
which includes two on-chip busses: the register bus and
the DRAM memory bus.
We have a module that is used to interact with the external
system bus, and from this block we can access both on-
chip buses. We also have the DMA block that is used to
transfer data from the main memory to the ASIC off-chip
memory or vice-versa. Finally, we can observe the image
processing blocks (i.e., in this example, we show two of
these modules). These blocks read the data from external
memory, perform the given computation, and finally write
the processed data back in external memory. Each one of
these modules generates an independent interrupt signal
when it has finished the computation of a given block of
data.

2.2 Software Application
The SW application runs on the external CPU, which
controls the ASIC using the system bus. On top of this
external CPU we run an embedded operating system (OS).
Typically, we use embedded Linux.
There are parts of the SW application that run inside the
OS kernel, and the greater part of the software code runs
in user mode. The part that runs in kernel mode is repre-
sented by the ASIC driver, which implements three main
functionalities: (a) provide access to the ASIC registers
(e.g., using for example, a memory mapped strategy); (b)
implement the software to control the DMA module inside
the ASIC; and (c) implement the Interrupt Service Routine
(i.e., ISR).
The SW application is a multi-threaded application. The
main functionality of these threads is: (a) to write several
configuration registers in the corresponding ASIC module
(e.g., write the pointers from the ASIC memory where the
module should read the input data to process); (b) enable
the execution of the block; and (c) wait for the interrup-
tion from the corresponding module, indicating that the
module has finished the execution of the data block. This
user-level software code is written in C++, and it uses the
STL library extensively.

2.3 Problem Statement and Requirements
Given these HW and SW descriptions, the objective of the
project is to implement a co-simulation environment that:

• Minimizes the impact on the SW development –
we want a non-intrusive approach into the SW
development methods and tools.

• Completely re-uses all the SW code running at
user-level and gives a high-level leverage for the
SW code that runs in kernel mode.

• Gives and acceptable simulation performance to
the software designers.

In other words, we want to provide the SW designers a
HW/SW co-simulation environment that enables a smooth
integration between their current approach and this new
co-development solution.

3. Overall HW/SW Co-Simulation Approach
One of the main objectives in our co-simulation approach
is to minimize the impact in SW development workflow.
The key to accomplish this is to use different machines
avoiding big environment changes. SW is developed and
tested in its target environment as if the HW were avail-
able in the machine. The HW then is simulated in a differ-
ent machine prepared for it, with no dependencies to the
SW machine. The only requirement is having a socket
library available at both machines.
In Fig. 2.a the different components of the final system
from SW perspective are shown. All SW communicates to

CPU Main
Memory

ASICASIC
Memory

Other

System Bus

System Bus
Interface

DMA

Register Bus

DRAM Bus

Pipeline
Block 0

Pipeline
Block N

DRAM Memory
Controller

Interrupt
Controller

INTERRUPT

Fig. 1. Hardware Architecture

the ASIC through IAsic objects that will provide the func-
tionality to communicate with the Linux hardware driver
who will finally communicate with the ASIC through the
system bus (e.g. PCI). This class definition provides multi-
thread safe interface to common services offered by
ASICs, like register programming, DMAs, ASIC-specific
interrupt servicing, etc. while removing the initialization
complexity and low level programming of the ASIC. This
class is the only one interfacing with the low level Linux
driver to perform the required functionality. An excerpt of
IAsic class is showed here:

class IAsic {

 virtual result writeRegister(uint32_t address, uint32_t nreg,
uint32_t *value, uint32_t clientId = 0) = 0;

 virtual result readRegister(uint32_t address, uint32_t nreg,
uint32_t *value, uint32_t clientId) = 0;

 virtual result writeMemory(uint32_t *address, uint32_t nreg,
uint32_t *value, uint32_t clientId) = 0;

 virtual result readMemory(uint32_t *address, uint32_t nreg,
uint32_t *value, uint32_t clientId) = 0;

 virtual result waitInterrupt(uint32_t interruptId, DTime
timeout, uint32_t clientId = 0) = 0;

};

In our co-simulation approach, this IAsic interface isolates
the SW that will be reused from the one that will be lever-
aged and modified to communicate with the ASIC simula-
tion machine. At the end, SW sees two different imple-
mentations of IAsic class, one that interfaces with the real
HW and the other one that interfaces with a simulation of
the HW.
Berkeley socket I/O library allows processes from differ-
ent machines connected through TCP/IP to communicate.

This library is perfect for the purposes of communicating
our SW with the HW simulation process with minimum
impact in SW or ASIC design workflows.
Current implementation of the connection involves the use
of two socket channels. One communicates the read/write
to registers and memory commands to the simulation. The
other communicates interrupts from HW to SW. Both
communication channels need to be decoupled in order to
avoid dead-locks in the resource usage.

4. Detailed Implementation

4.1 Architecture Overview
The proposed architecture is split in two parts, one for the
machine running real software and another running simu-
lated hardware. These two processes are kept independent
of each other by the Berkeley socket I/O library.
The HW machine behaves as a server. It monitors the
socket port continuously waiting for hardware access
requests, such as registers or memory. In parallel, it keeps
track of special hardware signals (for example, interrupts)
and sends a message whenever a particular signal changes
its logic state. The SW machine behaves as a client. It
receives HW access requests from the SW application and
forwards them to the server. In addition, it monitors inter-
rupt messages to trigger the corresponding interrupt ser-
vice routine.

4.2 The IHal Interface
The IHal interface (Hal stands for Hardware Abstraction
Layer), which is a pure virtual C++ class, was created to
provide a unified view of the simulated ASIC and its sur-
rounding test-bench. It resembles the low level device I/O
calls available at the Linux kernel to access HW. For ex-
ample, we have that the IHal implements the writeRegis-
ter32, readRegister32 and setCallback methods, which
represent the user-level equivalent functions provided by
the OS kernel. The setCallback function links an event
with the execution of a function. In our case, it links the
interrupt signal with the interrupt service routine.

class IHal {

 virtual result writeRegister32(uint32_t address, uint32_t
*value, uint32_t asicId) = 0;

 virtual result readRegister32(uint32_t address, uint32_t
*value, uint32_t asicId) = 0;

 virtual result writeMemory(uint8_t *source, uint32_t destina-
tion, uint32_t numBytes, uint32_t asicId) = 0;

 virtual result readMemory(uint32_t source, uint8_t
*destination, uint32_t numBytes, uint32_t asicId) = 0;

 virtual result setCallback(uint32_t aEventId, void
(*handler)()) = 0;

};

In addition, we observe that the IHal interface has two
methods to access the external memory of the ASIC.
These two methods are used to directly copy from main
memory to the ASIC memory a given block of data, with-

SOFTWARE

class AsicReal
: IAsic

Linux Driver

HW/ASIC

SOFTWARE

class AsicSim
: IAsic

Driver modified

Socket I/F

Socket I/F

HW/ASIC
RTL Simulation

(a) (b)

Fig. 2. (a) SW integration with final HW; (b) SW with

HW simulation during development

out using the DMA module inside the ASIC. In other
words, these methods are used to improve the simulation
performance (i.e., we call them back-door memory ac-
cess). Thus, the writeMemory and readMemory methods
in the IAsic interface could be implemented using two
alternatives: (a) using the DMA module of the ASIC,
which takes more time; or (b) using the backdoor methods
in the IHal interface, which improves performance.

4.3 Software Integration
Fig. 3 shows a diagram of all the modules implemented on
the SW machine. The dotted lines show the C++ interfaces
defined in this architecture. The arrows show the direction
in which methods or functions are called. Class AsicSim
inherits from the IAsic interface. Classes HalArbiter and
HalClient inherit from IHal interface.
The AsicSim class implements all the methods to access
registers, external memory and interrupts of the simulated
ASIC. The boxes REG, DMA, ISR and FLAG represent
software code written for the ASIC device driver that
needs to be ported from kernel to user mode. The AsicSim

implementation wraps all this functionality and calls the
appropriate IHal interface methods.
The HalArbiter class is designed to handle multiple soft-
ware threads that could be trying to access the same ASIC
resource simultaneously. It contains semaphores that block
all calling threads and lets a single thread access the
socket connection. The interrupt service routine (ISR) is
treated as a special thread that has higher priority than all
others. Once an interrupt message is detected, the HalAr-
biter waits for the current thread to finish its hardware
access and then allows the ISR to execute. Note that no
real interrupt is generated for the host CPU.
The HalClient class translates each IHal method into the
corresponding message to be sent to the socket port. This
implementation is not multi-thread safe (MTS) by nature,
so it must have a HalArbiter attached. A separate thread
inside HalClient is continuously monitoring the packets
coming from the socket port. If an interrupt message has
arrived, it calls a handler function that executes the inter-
rupt service routine (ISR) in the software code.

4.4 Hardware Integration
Fig. 4 shows a diagram of all the modules implemented on
the HW machine. The only interface defined is the IHal,
from which the class HalSim inherits. Note that all the
modules shown here are running inside a mixed-language
hardware simulator. Classes tagged with “sc_module” are
SystemC modules. The ASIC testbench (AsicTb.v) and its
internal blocks are written in Verilog.
The HalServer class checks for messages at the socket
port at every clock cycle of the simulated ASIC. When-
ever a new message is received, it distinguishes between a
register or memory access and calls the corresponding
methods from the IHal interface. The HalServer also pro-
vides a method that sends an interrupt message to the SW
machine. The MON (monitor) module is responsible for
monitoring the interrupt hardware signal and call this
HalServer method when appropriate.
The HalSim class includes several modules that interact
with the ASIC test-bench. The XTOR module converts the
register reads and writes from transaction level to signal
level, driving the ASIC ports according to a specific pro-
tocol. The MEM module handles the memory reads and
writes by directly accessing the memory model in the
testbench. That is, the MEM module is used to instantane-
ously move a block of data from main memory to the
ASIC memory without using the DMA block of the ASIC.
In addition, in a typical ASIC testbench there are other
functional models that model the behavior of external
devices necessary for the ASIC to work correctly (e.g.,
clock and reset generation).

Fig. 3. Architecture on the SW machine

5. A Case Study: LINXS Project
We have implemented the three main components of this
proposal (i.e., HalSever, HalClient and HalArbiter) using
C++. In addition, we have applied this methodology to the
Linxs pilot project.

5.1 Project Description
For this pilot project we selected a representative ASIC
design called BeagleLite. It has a PCI interface, SDRAM
memory controller plus several modules that perform
image processing functions.
The complete HDL (i.e. verilog) model for BeagleLite and
its associated Micron DRAM memory are available in the
HW simulation testbench. With the SystemC implementa-
tion on top of the HDL, the simulation is ready to start the
communication with the software machine. All the hard-
ware simulations run in a Pentium PC with Linux Red Hat
8.0.and using Cadence NC-Sim.
The multi-threaded SW application runs in several Linux
versions (Red Hat 7.1, 8.0 and 9.0).

5.2 Simulation Performance Numbers
Since almost all HW/SW interactions are done or initiated
using register accesses, we have measured the simulation
performance of a register read operation. In order to per-

form this measurement, we have coded a simple applica-
tion that runs 2000 times a read register operation. We
have obtained that a read register takes around 3.7ms. This
time includes: (a) the time required to send the packed
with the request from the SW to the HW machine; (b) the
time required by the verilog simulator to actually run the
cycle-accurate access to the ASIC register; and (c) the
time required to send the read return value from the HW
machine to the SW machine.
It is important to mention that we have also performed
experiments where we only measured the cycle-accurate
read register simulation time (i.e., traditional RTL-based
simulation approach). When we compared these numbers
with the performance numbers obtained when we use the
approach based on two machines (i.e., socket-based inter-
face), we have observed that the read register cycle-
accurate simulation time is the main contributor of the
complete read operation. In other words, the socket inter-
face introduces an overhead that is below 10%.
Then, we executed a second set of experiments, which
consists on actually running a multi-threaded SW applica-
tion. In this case, a thread implements the following steps:
(a) moves, the data to be processed from the main memory
to the ASIC simulated memory using the memory back-
door; (b) programs all the required registers in the ASIC
block, in order to enable that block to perform the image
processing algorithm; (c) waits for the interruption of the
ASIC block; and (d) finally reads the processed data from
the ASIC simulated memory back into the main memory.
At that moment, the SW code can check that both HW and
SW worked properly.
This mechanism could be applied to three different image
processing modules, and for each module, we have carried
out four experiments, where we have changed the size of
the input image. That is, we wanted to see the simulation
performance numbers (i.e., simulation time) when we
increase the input data size (e.g., 1Kbyte, 10Kbyte,
100Kbyte and 500Kbyte).
Fig. 5 shows the obtained results, where we show two
possible configurations: (a) in configuration one, both the
multi-threaded SW application and the HW simulator run
on the same machine; and (b) in configuration two, the

AsicTb.v

ASIC

MEM XTOR MON

sc_module HalSim : IHal

sc_module
mem

sc_module
mon

sc_module
xtor

class HalServer

IHal

HW machine

socket

INT

Fig. 4. Architecture on the HW machine

Simulation Time (seconds)

115.15

23.66

2.95

1.02

HW and SW running in
the same machine

112.30500Kbyte

22.61100Kbyte

0.421Kbyte

10Kbyte

Data Size

2.51

HW and SW running in
different machines

Simulation Time (seconds)

115.15

23.66

2.95

1.02

HW and SW running in
the same machine

112.30500Kbyte

22.61100Kbyte

0.421Kbyte

10Kbyte

Data Size

2.51

HW and SW running in
different machines

Fig. 5. Simulation time when increasing the input data size

SW application runs on one machine and the HW simula-
tor runs in a different machine.
In these experiments, we are assuming input images with
8bits/pixel. We can observe that it takes about 23 seconds
to simulate an input image of 512 rows and 256 columns
(i.e., 100Kbyte of data size). The main objective of these
results is to show that the obtained simulation times are
acceptable for the initial SW development (i.e., larger
images might be processed also by our system, during the
nightly regressions of SW code).
Moreover, it is interesting to observe that the configura-
tion that uses two machines improves the results obtained
when we use a single machine. The reason for these re-
sults is because in the configuration that uses a single
machine, both processes (i.e., SW application and HW
simulator) must compete for the CPU utilization (i.e., the
SW application takes CPU time to the HW simulator,
which is more critical and time consuming process). In the
second configuration where we use two machines, the HW
simulator has a whole CPU to run the HW simulator.

6. Previous Work
There are other alternatives to early test SW and HW
integration but with different approaches that can fulfill
different needs:
• Use FPGA for ASIC prototyping [3]. This is a good

solution in terms of simulation performance (i.e., it
could run at speed), but it has the drawback that
there are some modules of the ASIC (i.e., ASIC
vendor-specific hard-macros) that could not be pro-
totyped on FPGA’s.

• C modeling. It exist the possibility to create high-
level models (e.g., C/C++) of the ASIC that can be
later on integrated with your SW. However, this
means having two models of the ASIC, one in ver-
ilog HDL and a second one in C/C++. This is costly
in terms of development effort and the use of a
C/C++ model could hide HDL bugs.

• Co-simulation [6][7]. Third party co-simulation
tools have proved to be successful to integrate SW
in certain SoC platforms but they are limited to em-
bedded processors (ARM, MIPS). They are also
limited in supporting large size SW/OS like Linux.
That is, it is totally unacceptable in terms of per-
formance to run a complex SW application on top
of an Instruction Set Simulator (ISS).

Our approach is new in giving a solution that combines
the flexibility of an FPGA prototype, supporting virtually
any CPU/OS combination that enables socket connection,
and the ability to use the final ASIC design that will be
used for sign-off. It requires very low effort to integrate as
it reuses the whole ASIC simulation test-bench, and it
maintains the SW development environment with very
few modifications.

7. Conclusions
It is becoming increasingly evident that HW/SW co-
simulation should play a key role in the development of
future SoC platforms, since it reduces the product devel-
opment time and reduces de design costs.
In this paper, we have introduced one of the main issues
that is stopping the widespread use of HW/SW co-
simulation in the industry. In our opinion, the required
HW/SW co-simulation solution must be non-disruptive in
the current methodologies and tools used by the SW de-
signers. This paper presented a software-friendly HW/SW
co-simulation approach, where we can completely re-use
the SW application running at user-level and achieve a
high-level of leverage for the code running in kernel.
We have applied this methodology to a real case study,
where we have used an ASIC that implements image proc-
essing algorithms. Despite of using a cycle-accurate model
of the ASIC, the simulation performance has been shown
to be acceptable for SW development.

References

[1] http://www.cadence.com
[2] http://www.mentor.com
[3] http://www.xilinx.com
[4] CODES+ISSS’03 Panel on System Level Design Tools,

http://www.ece.uci.edu/codes+isss/
[5] Mojy Chian, “Economics of SOC Development: How can

we make this a profitable endeavor?”; Invited talk at
CODES+ISSS’03

[6] Luca Formaggio, Franco Fummi, Graziano Pravadelli, ”A
Timing-Accurate HW/SW Co-simulation of an ISS with
SystemC”. CODES+ISSS’04.

[7] Shinya Honda, Takayuki Wakabayashi, Hiroyuki Tomi-
yama, Hiroaki Takada, “RTOS-Centric Hardware/Software
Co-simulator for Embedded System Design”.
CODES+ISSS’04

[8] Donald E. Thomas , Jay K. Adams , Herman Schmit, “A
Model and Methodology for Hardware-Software
Codesign”, IEEE Design & Test, v.10 n.3, Jul. 1993

[9] Giovanni De Micheli, “Computer-Aided Hardware-
Software Codesign”, IEEE Micro, v.14 n.4, Aug. 1994

[10] Matthias Bauer, Wolfgang Ecker, “Hardware/software co-
simulation in a VHDL-based test bench approach”, Proc. of
the 34th Conf. on Design automation Conference, 1997

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

