
Flexible Specification and Application of Rule-based Transformations in an
Automotive Design Flow

Jan-Hendrik Oetjens
Robert Bosch GmbH

AE/EIM3
Postfach 1342

72703 Reutlingen
jan-hendrik.oetjens@de.bosch.com

Joachim Gerlach
Robert Bosch GmbH

AE/EIM3
Postfach 1342

72703 Reutlingen
joachim.gerlach@de.bosch.com

Wolfgang Rosenstiel
Universität Tübingen

Wilhelm-Schickard-Institut
Sand 13

72076 Tübingen
rosenstiel@informatik.uni-tuebingen.de

Abstract

This paper addresses an XML-based design environ-
ment, which provides a powerful basis for the manipula-
tion of hardware design descriptions. The contribution of
the paper is a flexible specification entry for the definition
of transformation rules, which allows a designer to spec-
ify transformations by his/her own without having XML
expertise. The specification entry provides a guided and
graphically supported mechanism to define transforma-
tion rules. This opens up a new approach, in which the
specification and verification of a transformation rule is
carried out by using simple design examples, to be ap-
plied to arbitrary complex designs subsequently. A new
key characteristic of our approach is that both transfor-
mation environment and transformation entry tool are
based on a very compact definition of the hardware de-
scription language grammar in use, and both of them are
fully automatically generated from that basic grammar
definition. This makes our approach highly open for other
hardware and system specification languages. The paper
describes the transformation environment and transfor-
mation entry tool, and demonstrates its application in
terms of two automotive-typical transformations, address-
ing power aspects on the one hand, and safety aspects on
the other.

1. Introduction

The increasing gap between design complexity and
productivity demands a permanent improvement of the
design process. To meet this challenge, an extensive
automation is required that limits manual interventions
during the design process to the vital points. Major parts
of these manual interventions are design transformations.
In an automotive design flow, these design transforma-
tions range from simple design adaptations to complex
optimizations. Typical examples are safety-enhancing

transformations (e.g. adding bus redundancy) or power
optimizations for power-critical applications (e.g. central
locking remote controls). Automating these transforma-
tions replaces the local view of a designer, which often
limits optimizations to a restricted area of the design, by a
global view that allows to utilize a larger optimization
potential. In addition, performing transformations manu-
ally is an error-prone process. Finally, in an industrial
environment those time-consuming manual transforma-
tions are often skipped due to time-to-market restrictions,
which results in suboptimal design implementations.

Many existing EDA tools integrate automated trans-
formations for design optimization. The wide range of
requirements in design processes often exceeds the set of
transformations, which these tools support. A flexible
methodology, which allows user-defined transformation
rules, addresses these requirements. It combines the flexi-
bility of manual transformations with the efficiency and
reliability of automated transformations.

In [1] we introduced a flexible environment for the
transformation of hardware designs. The proposed envi-
ronment uses the metalanguage XML [2] for design rep-
resentation. We showed that the use of XML allows an
efficient handling and transformation of design data. The
transformations are performed by widely used XML
tools, which initially require the definition of a transfor-
mation rule. This rule definition is a complex process that
requires a lot of XML expertise. In this paper, we present
a transformation entry tool that offers a view on these
transformation rules, which is common for a hardware
designer. According to this process, rules can be defined
within a fraction of the time compared to a manual im-
plementation, and there is no need of XML expertise.

The paper is organized as follows: In section 2, related
work dealing with design transformations and relevant
XML-based approaches in the EDA context are dis-
cussed. Section 3 presents our transformation environ-
ment and its new structure based on a compact grammar
definition. In section 4, the transformation entry tool is

3-9810801-0-6/DATE06 © 2006 EDAA

described. This tool was used to specify the transforma-
tions, which are presented in section 5. Finally, section 6
concludes with an outlook on future work.

2. Related work

Today, various commercial tools transform design rep-
resentations. Most of these tools have a closed architec-
ture preventing an adaptation to individual requirements.
A typical example of this are synthesis tools, which usu-
ally support a restricted but fixed set of transformations.
With several optimization steps, they transform an inter-
nal design representation, but the hardware designer is
restricted in adding individual optimizations. Therefore,
the designer has to implement his/her idea manually or
has to discuss an adaptation with the vendor of the tool.

A first step in increasing the customizability was done
by code analyzing tools like SpyGlass [3]. This RTL ana-
lyzer is able to perform code checks with specified rules.
A graphical user interface allows the customization of
these rules and Perl functions allow the specification of
user defined rules. These Perl functions are implemented
in a C API that provides direct access to the internal de-
sign representation. Although SpyGlass has a tool-
specific data structure this approach allows a high degree
of customizability.

When looking at approaches that allow direct access to
their data structure, XML and OpenAccess [4] play an
important role. While XML is a language-based ap-
proach, OpenAccess represents an open standard for a
design database and data API. The C++ API of OpenAc-
cess is optimized for efficient access to the design data for
EDA tools, but in contrast to XML, there are no standards
for transformations available. Even though these stan-
dards are not used by the majority of the described XML-
based approaches in the EDA context [5][6][7], an appli-
cation using XML transformations is published in [8].
Following the example of Javadoc [9], this approach
automatically generates documentation of VHDL code.

3. XML-based design transformation

Our approach replaces manual design transformations
by a methodology that is based on the use of XML for
design representation and transformations. XML, which is
well known and widely used in the area of internet appli-
cations, provides features to create a flexible basis for an
expandable transformation environment. Many standard
tools offer XML interfaces and there are several lan-
guages for the transformation of XML documents avail-
able. The most popular of these languages is XSLT [10],
which is also the most important part of the XSL stan-
dard. This language is used to implement XSL stylesheets
that describe the transformation of XML data. The result-
ing document can be either XML or any other non-XML

format. Transforming the contents of XML documents
allows to process an XML design representation. In our
approach, we use XSL to describe design transformations,
which enables to take advantage of existing tools to per-
form transformations. These XSL processors compile
stylesheets into programs, which are highly optimized to
work on XML data. This results in good performance of
common XSL processors. Compared with dedicated in-
house software solutions, we benefit from existing and
technically mature tools and save development time.

3.1. XML data structure

Even though XML is mainly used in the web context,
its features support a wide range of other applications.
Because XML allows an almost unrestricted document
structure definition, it is possible to define an XML dia-
lect adapted to a specific application. In our transforma-
tion environment, the HDL parser directly generates this
XML structure by mapping its syntax tree to XML. Be-
yond this syntactical information, it is partially necessary
to support design transformations by adding semantic
information to the XML document. Instead of an extrac-
tion of this information by every single transformation, an
annotation of the XML document makes reuse of the se-
mantic information possible. An efficient method to store
this information in an XML structure is the annotation of
the XML tree with XML attributes. In this manner, the
information is stored in the nodes and no edges or nodes
have to be added to the tree.

The definition of this data structure is realized in XML
Schema documents [11]. XML Schema is an XML lan-
guage and can be used for an automated check of the de-
sign representations for syntactical correctness.

3.2. HDL-specific data

We use a grammar definition in XML Schema not only
for checking XML design representations but also as ba-
sis for the transformation environment. By an automated
generation of all grammar-specific components, the sup-
port of a HDL just requires an XML Schema representa-
tion of the appropriate grammar. With this novel XML-
based tool implementation, an easy adaptation of our ap-
proach to the requirements of different design flows is
possible. Figure 1 shows an overview of the documents
derived from the XML Schema definition of the grammar.

When an XML Schema description of an HDL gram-
mar is available, a set of XSL stylesheets is used to gen-
erate the derived documents automatically. First, the
XML Schema formatted grammar is translated into a
user-readable HTML format, which provides a reference
for the HDL grammar. Second, a library of XSL tem-
plates for code generation is automatically generated.
Transformation stylesheets use these templates to replace

existing HDL code, which is shown in a detailed descrip-
tion of the transformation process in section 3.4. Third, a
DTD compliant subset of the XML Schema definition is
translated into the DTD format. This allows the use of
non-Schema aware XSL processors. Finally, the XML
Schema file is transformed into a grammar description for
the parser generator ANTLR [12]. This description in a
tool-specific format is used by ANTLR to generate the
parser for our transformation environment.

Figure 1. Documents derived from the grammar

3.3. Transformation environment

The parser is the starting point of our transformation
environment and represents an interface to the existing
design flow. The Java-based analyzer for HDL hardware
descriptions generates XML design representations,
which are handled by an XSL processor for further proc-
essing. The use of Java allows the integration of Saxon
[13], which is a common XSL processor. Furthermore,
the platform independence of Java is useful for integrat-
ing the transformation environment into different envi-
ronments. Figure 2 shows the processing steps of the
transformation environment.

Figure 2. Transformation environment

After analyzing the HDL description, an elaboration
step is required. In this step, the analyzed components of
the design are stored in a common XML design represen-
tation. In our methodology, this and subsequent steps are
implemented by XSL stylesheets. The elaborated design
provides the basis for the transformation and annotation
steps. The annotations are used to setup the XML design
representation for the transformations by adding semantic
information. The amount of annotations depends on the
intended design transformation. The design transforma-
tions can be partitioned into smaller transformation steps
executed sequentially. This allows us to build complex
transformations in a bottom-up manner based on a set of
basic transformations steps. The required sequence of
annotations and transformations is checked before a trans-

formation is started. If a transformation causes invalid
annotation information, the annotation step is removed
from a transformation history list, which is stored in the
XML tree. If this annotation information is needed in a
following transformation step, the annotation step has to
be repeated. The correctness of those transformation
steps, which shall generate functional equivalent code, is
proved by an equivalence check. This is performed by a
commercial formal verification tool that compares given
HDL descriptions. These descriptions can be exported
from the XML representation after each processing step.

3.4. Design transformations

The transformation step described in the last section is
realized by XSL stylesheets, whose implementation fol-
lows a basic structure. This structure is adapted to the
specific transformation task. Figure 3 shows the flow of
XSL design transformations.

Figure 3. Flow of design transformations

A first partitioning can be made by differentiating be-
tween code analysis and code generation. While the code
analysis phase identifies the subtrees of the XML tree that
are relevant for a given transformation step, the code gen-
eration phase replaces those subtrees by new ones. The
code analysis performs a depth-first search in the XML
tree. If a subtree is a candidate for a transformation, the
code generation starts. The first step of the code genera-
tion is an extraction of the required data. This data is used
to generate a new subtree before the code analysis of the
next element is performed.

The described transformation environment is used in
an automotive design flow. It is available in three ver-
sions. An applet and an application version provide a
graphical user interface. Additionally, a command line
version allows to use the transformation environment in
batch mode.

4. User-defined transformation rules

Taking advantage of the full flexibility of the XML-
based transformation environment users can define their
own transformations. These XSL stylesheets are a very
efficient way to describe transformations on XML docu-
ments. A single XSLT statement is able to substitute
many lines of code in conventional languages. Even so,
the size of a complex transformation rule can easily ex-
ceed 1000 lines of XSL code. To support the user in im-
plementing or adapting a transformation rule we have

defined a systematical process for the transformation rule
entry. Figure 4 illustrates this process.

Figure 4. Specification of transformation rules

The entry process is based on a code example that
represents the starting point of the transformation task.
This corresponds to a designer’s “natural way of think-
ing”, which is example-based rather than rule-based. With
a short code example, covering the aspects that are rele-
vant for the addressed transformation, the designer is able
to define the transformation rule without having the over-
head of non-relevant code. This example is used to define
conditions for the transformations and the required data of
the source design. In a continuous validation process, the
user compares the transformation result with the specifi-
cation. If the specification is met and the transformation
shall be function preserving, a formal verification may be
used to prove the functional equivalence of the source and
the target design. After a successful validation of the rule,
it can be applied to arbitrary complex designs.

The described process for the transformation rule entry
is implemented with a graphical tool that guides the user
through the required steps and automatically generates an
XSL stylesheet. In a sequence of dialogs, the tool inter-
acts with the user to retrieve the required data. This data
can be defined manually or by graphically selecting cor-
responding segments it in the HDL code of the code ex-
ample. Figure 5 shows the main steps of a rule specifica-
tion.

Figure 5. Transformation entry tool

Using a reset transformation for VHDL processes
(asynchronous reset ↔ synchronous reset) as an example
for the specification of a transformation rule, the trans-
formation rule entry begins with the definition of a proc-
ess statement as the start node. This start node defines the
transformed functional unit of the source design. After the
start node has been selected, exclusions and conditions
for the transformations may be defined. The exclusions
are used to specify segments of the source code not to be
treated by the transformation step. For the reset transfor-

mation, VHDL process statements without a clock are
excluded. The next step, the definition of transformation
conditions, allows to perform different transformations
for different segments of the source code. In case of the
reset transformation a differentiation between process
statements with synchronous and asynchronous resets is
needed to allow a bidirectional transformation. During the
code generation, the transformation entry tool guides the
user through the code definition by offering exclusively
the syntactical correct statements. When data from the
source design has to be copied into the transformation’s
target, a dialog allows to define this data by graphically
selecting it in the HDL description of the code example.
The transformation entry tool retrieves the HDL-specific
information, which is required for the code generation,
from the existing XML Schema description. In the same
way as the transformation environment does, the trans-
formation entry tool only requires this XML Schema
grammar definition to adapt the language-specific tool
components to other HDLs.

The transformation entry tool allows an intuitive defi-
nition of transformation rules. This is achieved by input
dialogs that guide the user through the rule definition
process. The entry tool was used to define the reset trans-
formation rule, used as an example before, as well as nu-
merous other rules. In contrast to hand coding in XSL, the
definition of a rule needs a fraction of the development
time and is less error-prone.

5. Experiments

In this section, we present a range of design transfor-
mation rules to demonstrate the flexibility of our ap-
proach. In the current state of our transformation envi-
ronment, the rule set covers several design manipulations
ranging from simple code adaptations to complex optimi-
zation steps. The currently available transformation rules
are shown in Table 1.

Table 1. Available Transformation Rules
Category Transformation rule

Separation of structural and functional code
Statement transformation: Concurrent signal assign-
ment ↔ combinatorial process
Reset transformation: Asynchronous ↔ synchronous

Support of
reusability

Code scrambler

Power optimization by clock gate insertion Optimization of
synthesis and
verification
results

Enhancement of the significance of line coverage
analysis by if-statement separation
Completion of sensitivity lists
Identification and removal of dead code

Automation of
manual trans-
formation steps Insertion of error correction for busses

The transformation rules can be classified into three
categories, including rules for improving the reusability
characteristics of a design (category one), for the optimi-
zation of synthesis and verification results (category two),

and for the automation of typical manual transformation
steps (category three).

The following sections will show two examples for
transformation rules in detail: The first rule, a clock gat-
ing transformation, describes an optimization transforma-
tion. The second rule addresses the safety requirements of
the automotive domain by automating the manual inser-
tion of an error correction mechanism in bus-based archi-
tectures.

5.1. Clock gating transformation

Today the power dissipation of integrated circuits be-
comes more and more important. Typical examples for
low power applications in the automotive domain are cen-
tral locking remote controls. Important parameters for the
power dissipation in integrated circuits are the registers.
This is addressed by inserting a clock gate into the clock
path of the registers. Common clock gating approaches
use either manual clock gating on major design compo-
nents or an automated insertion of clock gates on gate
level. The manual approach benefits from the designer‘s
knowledge of the design functionality but it is error-
prone, time-consuming and in many cases limited by the
restricted view of the designer. Whereas an automated
clock gate insertion on gate level provides good optimiza-
tion results, but prevents further adaptation by the de-
signer, who uses RTL for specification. In our approach,
the transformation works on RTL, which means on the
same abstraction level as the designer during the specifi-
cation. This allows to process functional units, which the
designer intuitively combines. On the gate level, informa-
tion about these functional units would be lost. In addi-
tion, because the transformation result is provided in the
designer’s typical HDL environment, further adaptations
are possible. The basic idea of the transformation is to
analyze the RTL description to insert clock gates into the
clock path of registers with potentially inactive inputs.
The clock gate is controlled by a combinatorial logic,
which is automatically determined. Figure 6 illustrates
this process.

Figure 6. Clock gating transformation

The clock gating transformation is partitioned into
three processing steps. These steps are performed by a set
of smaller transformations. The transformation starts by
selecting sequential VHDL processes that are suited for
clock gating. Therefore, a static analysis checks each

process for potentially inactive phases. After the proc-
esses have been partitioned, a second transformation step
optimizes the conditions of if- and case-statements in
processes allowing clock gating. The transformation fi-
nally inserts the clock gates with the appropriate control
logic. Table 2 (second column) summarizes the required
time for conception, implementation, and application of
the transformation rule on an automotive GPS correlator
design, which is part of a car navigation system.

Table 2. Transformation rules
 Clock gating

transformation
Bus

transformation
Number of XSL stylesheets 3 1
Lines of XSL code 4462 1856
Conception of transformation process 10 days 1 day
Rule specification with the entry tool 3 d. - 0.5 d. -
Hand coding of the rule (estimated) - 15 d. - 5 d.
∑ with / without entry tool 13 d. 25 d. 1.5 d. 6 d.
Transformation on a Sun Blade 2500 149 seconds 47 seconds
Manual transformation (estimated) 10 days 2 days

It is shown that, compared with a hand coding of the
transformation stylesheets, the rule specification with our
entry tool requires a fraction of the time. Through this, a
summation of conception and implementation time is only
slightly longer than the required time for a manual trans-
formation. This additional time is more than compensated
by the reusability of the rule for future designs. A com-
parison of our RTL power optimization transformation
with a commercial tool working on gate level is shown in
Figure 7.

Figure 7. Results of the clock gating transformation

Due to its technology-specific optimization, the tool is
able to provide slightly better dynamic power results.
Comparing area, the transformation result is quite similar
to the original design, while the commercial tool reaches
a reduction of sequential logic. This is achieved by re-
moving those feedback multiplexers in sequential logic
cells that the transformation rule keeps to allow the verifi-
cation with the integrated verification tool. The experi-
ments show that this flexible RTL optimization transfor-
mation, which was realized in 13 days, can reach similar
results compared to less flexible gate level approaches.

5.2. Bus transformation

Beyond the behavior-preserving transformations de-
scribed above, an automotive design flow has special re-

quirements that exceed typical optimization transforma-
tions. One of these typical requirements, which our flexi-
ble approach addresses, is safety. In the following section,
we show a transformation implementing an automated
insertion of error detection and correction in bus-based
architectures. A widely used approach for redundant data
transfer is the Hamming code [14], which is able to cor-
rect one-bit errors and detect two-bit errors. In the follow-
ing, this coding scheme is used as an example and other
redundancy mechanisms may be realized in a similar way.
The common way of realizing encoded busses is the time-
consuming manual insertion of encoder and decoder
blocks. If no parameterizable encoder and decoder block
is available, a specific solution for the current design has
to be implemented, which is rarely reused in other de-
signs. In our transformation, we automatically insert pa-
rameterizable encoder and decoder blocks. As shown in
Figure 8, this is implemented by inserting a wrapper
around the components with bus interfaces and attaching
encoder and decoder blocks to the interfaces.

Figure 8. Bus transformation

As the transformation described in the last section, the
insertion process is performed in three steps. The first
step is the determination of components attached to the
considered bus. After that, these components are encapsu-
lated into wrappers and encoder and decoder blocks are
inserted at the interfaces. The parameterizable encoder
and decoder blocks are configured in the last step, where
the required bus width is determined and the bus is
adapted. The required time for conception, implementa-
tion, and application of the transformation rule on an ex-
ample design is summarized in Table 2 (third column).
The design contains a bus arbiter and several master and
slave modules, which are connected with data and address
busses. In this example, the required time for a manual
bus transformation already exceeds the time for the con-
ception and the entry tool based specification of the trans-
formation rule.

Both transformation examples increase the design
complexity and show that design transformations beyond
typical optimizations play an important role in automotive
design. This underlines the importance of the flexibility
of our XML-based transformation approach.

6. Conclusion and future work

In this paper, we have presented a flexible specifica-
tion entry for the definition of XML-based transformation
rules. The entry provides a guided and graphically sup-

ported mechanism for the definition of transformation
rules. This opens up a new approach, which corresponds
to the designer’s “natural way of thinking”. Specification
and verification of a transformation rule is carried out by
using simple design examples to be applied to arbitrary
complex designs subsequently. As shown in the experi-
ments, this allows an efficient specification of transforma-
tion rules and helps to replace time-consuming and error-
prone manual transformation steps. The implementation
of the transformation entry tool and the transformation
environment is based on a very compact definition of the
underlying HDL grammar. This new feature of our ap-
proach is realized by automatically generating language-
specific tool components from the basic grammar defini-
tion. It opens our approach to other hardware and system
specification languages. In combination with the simple
specification of transformation rules, this approach could
be easily extended to other application domains.

Future work will focus on supporting further hardware
and system specification languages as well as transforma-
tions between different languages.

7. References

[1] Oetjens, J.-H., J. Gerlach, W. Rosenstiel, An XML Based
Approach for the Flexible Representation and Transformation of
System Descriptions, Forum on Design Languages, Lille, 2004
[2] World Wide Web Consortium, Extensible Markup Lan-
guage, http://www.w3.org/XML/
[3] Atrenta Inc., SpyGlass Predictive Analyzer,
http://www.atrenta.com/
[4] Si2, OpenAccess Project,
http://www.si2.org/openaccess/index.html
[5] Lee, E. A., S. Neuendorffer, MoML A Modeling Markup
Language in XML, International Conference on Computer
Aided Design, San Jose, 2000.
[6] Reshadi, M. H., B. Gorji-Ara, Z. Navabi, HDML: Com-
piled VHDL in XML, VHDL International Users Forum Fall
Workshop, Orlando, 2000
[7] Zamfirescu, A., Z. Zhao, HXML – A New Approach to
Managing Hardware Information, Forum on Design Languages,
Lyon, 1999
[8] Ecker, W., M. Heuchling, J. Mades, T. Schneider, A. Win-
disch, K. Yang, Using XML for VHDL Model Representation,
World Computer Congress, Beijing, 2000
[9] Sun Microsystems, Javadoc Tool Home Page,
http://java.sun.com/j2se/javadoc/
[10] World Wide Web Consortium, XSL Transformations
(XSLT) Version 1.0, http://www.w3.org/TR/xslt/
[11] World Wide Web Consortium, XML Schema 1.0,
http://www.w3.org/XML/Schema/
[12] ANTLR, ANother Tool for Language Recognition,
http://www.antlr.org/
[13] The SAXON XSLT and Xquery Processor,
http://saxon.sourceforge.net/
[14] Hamming, R. W., Error Detecting and Error Correcting
Codes, Bell System Technical Journal. 29: 147, 1950

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

