
Synthesis of System Verilog Assertions

Sayantan Das Rizi Mohanty Pallab Dasgupta P.P. Chakrabarti
Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur, India.

Abstract

In recent years, Assertion-Based Verification is being
widely accepted as a key technology in the pre-silicon vali-
dation of system-on-chip(SOC) designs. The System Verilog
language integrates the specification of assertions with the
hardware description. In this paper we show that there are
several compelling reasons for synthesizing assertions in
hardware, and present an approach for synthesizing System
Verilog Assertions (SVA) in hardware. Our method investi-
gates the structure of SVA properties and decomposes them
into simple communicating parallel hardware units that to-
gether act as a monitor for the property. We present a tool
that performs this synthesis, and also show that the chip
area required by the monitors for a industry standard ABV
IP for the ARM AMBA AHB protocol is quite modest.

1. Introduction

Assertion-Based Verification (ABV) is assuming a sig-
nificant role in the design validation flow of chip design
companies. In recent times active participation from the de-
sign and EDA industries have led to the adoption of several
formal languages for assertion specification. These include
Forspec (of Intel) [2], Sugar/PSL (of IBM/Accelera) [7] and
OVA (of Synopsys) [5]. Several companies are developing /
marketing ABV verification IPs for standard protocols, like
PCI Bus [6], ARM AMBA Bus [1], and Hypertransport [3].

More recently, System Verilog [9] has integrated the
specification of assertions with the core hardware descrip-
tion language. The intent of specifying assertions within the
design is to enable the simulator to check the assertions dur-
ing simulation. Thus, the assertions are not treated as part
of the synthesizable Verilog code, rather they are treated as
properties that are expected to hold on the design.

This paper studies the problem of synthesizing SVA
checkers in hardware. There are three interesting reasons
that motivate us to investigate this, namely:

1. To extend ABV to hardware emulation and early de-
sign prototypes (such as FPGA),

2. For debugging post-silicon violations of tempo-
ral properties, and

3. To enable the System Verilog designer to design cir-
cuit components that are triggered by complex tempo-
ral behavior of the other components.

The first of the above requirements comes mainly from
ASIC designers who regularly create early prototypes of
their design and use emulation to beat the simulation bot-
tleneck in validation. It is usually very difficult to debug vi-
olation of complex temporal properties during emulation,
which is one of the motivating reasons to study the option
of synthesizing SVA checkers in hardware.

The second requirement will increasingly become im-
portant in large (and costly) designs, because companies
want to debug the reasons for failure in specific situations.
Currently finding out the violation of a temporal event after
tapeout is an extremely complex problem. Built-in check-
ers will provide valuable insights to the cause of failure.

We believe that the third requirement will be a key is-
sue in future design practices. In many safety-critical appli-
cations, the designer would like the design to recover from
(static or intermittent) temporal faults if they exist. This can
be achieved by enabling the triggering of the recovery mod-
ule on a match of the checker, modeling the temporal fault.

This paper investigates the problem of synthesizing mon-
itors for SVA. Our objective is not to synthesize a universal
checker that accepts any SVA property and monitors it, but
to create dedicated monitors for the given properties. The
advantage of creating monitors in hardware is that the mon-
itors for individual properties can work in parallel and hence
does not suffer from the state-explosion problem.

It may be pointed out that there has been previous at-
tempts to use pre-defined monitors. Notable among these
are the OVL library [11, 4] and IBM’s FOCs [8]. How-
ever none of these papers presents the details of synthesiz-
ing SVA.

2. SVA Introduction

This section outlines the structure of SVA. The build-
ing blocks of SVA are called Sequence Expressions(SE),

3-9810801-0-6/DATE06 © 2006 EDAA

that are used to describe the temporal behavior of a system.
The most basic sequence expressions are the signals and
Boolean expressions over the signals. Temporal sequence
expressions can be constructed by using the time range op-
erators. The syntax of a SE is defined as follows.

• SE −→ SE TIME RANGE SE | SE BOOLEAN ABBRV |
SE SEQUENCE OP SE | first match(SE) | EXP throughout
SE | EXP | (SE).

• TIME RANGE −→ ##k | ##[k1 : k2]
• BOOLEAN ABBRV −→ [*k] | [*k1 : k2] | [*>k1 : k2] |

[*=k1 : k2]
• SEQUENCE OP −→ and | or | intersect | within.
• EXP −→ EXP || EXP | EXP && EXP | !EXP | p, p is a

Boolean signal

The structure of a SVA property is as follows:

PROPERTY −→ property PROP EXP endproperty

where PROP EXP can be of two types, namely:

[CLOCK EVENT] [disableiff EXP] [not] SE
|→ [disableiff EXP] [not] SE or,
[CLOCK EVENT] [disableiff EXP] [not] SE
|⇒ [disableiff EXP] [not] SE

In the above forms:

• CLOCK EVENT represents the name of the clock
against which the property is evaluated.

• disableiff EXP allows the user to specify asyn-
chronous reset. If the EXP becomes true then the
evaluation stops and the property is accepted as true.

• The not operator before a sequence expression s im-
plies that whenever s matches, not s fails and vice-
versa.

• |⇒ and |→ are implication operators differing by the
fact that the start match of the consequent part may
start at the same time stamp at which the antecedent
matches or one time stamp later, depending on the im-
plication operator being |→ or |⇒ respectively.

The Appendix 3 in [9] suggests that the opera-
tors or,intersect, [*N1 : N2],##[N1 : N2] and first match
are sufficient to describe any sequence expression in SVA.

2.1. Distribution of disjunction

Sequence expressions that have the semantics of disjunc-
tion can give out of order match i.e. the match correspond-
ing to a given start may appear after the match of a later
start. Consider the following sequence expression S = ((s1

or s2) intersect s3). Confirming to the semantics of inter-
sect S will match if one of s1 or s2 and s3 matches at the
same time. The occurrence of a match of s3 and one of s1

or s2 is not a sufficient condition to determine a match of
S because the two match outputs might correspond to two

different start signals. Storing the corresponding start sig-
nal for each match is impractical because this would require
the information to be stored in all the states of the checker
leading to large memory requirement for synthesizing them.
Thus in absence of this information it is impossible to deter-
mine whether the match outputs of (s1 or s2) and s3 corre-
sponds to the same start signal unless the match outputs are
ordered. Thus we define the flattening function F(s) to re-
move the disjunctions which causes the above problem.

1. F (B) ≡ B //Where B is boolean
2. F (s1 ##k s2) ≡ F (s1) ##k F (s2)
3. F (s1 ##[k1 : k2] s2)≡F (s1##k1s2) or. . .or F (s1##k2 s2)
4. F (s1 ##[k1 : $] s2) ≡ F (F (s1) ##[k1 : $] F (s2))
5. F (s1[*k]) ≡ F(s1)##1F(s1)##1 . . . ##1F(s1)

︸ ︷︷ ︸

k times

6. F (s1[*k1 : k2] ≡ F (s1 [*k1]) or . . . or F (s1 [*k2])
7. F (s1[*k1 : $] ≡ F (F (s1) [*k1 : $])
8. F ((s1 or s2)##[k1:k2]s3) ≡ (F (s1) ##[k1:k2] F (s3)) or

(F (s2) ##[k1:k2] F (s3))
9. F ((s1 or s2)[∗k1:k2]) ≡ F (s1) [∗k1:k2] or F (s2) [∗k1:k2]

10. F ((s1 or s2) intersect s3) ≡ (F (s1) intersect F (s3)) or
(F (s2) intersect F (s3))

11. F (first match(s)) ≡ first match(F(s))

In rules 8-10, if s3 contains an or operator, then the dis-
tribution is symmetrical. In case of intersection operator
if one of it’s operand is of bounded and the other is un-
bounded then the unbounded length sequence expression
can be decomposed appropriately to match the bounded
length operand of the intersection. For example (a ##[2 : $]
b) intersect (c ##4 d) can be equivalently written as ((a ##4
b) intersect (c ##4 d)) as other possibilities will always re-
solve to false. Also for similar reason (a *[2 : $] ##1 b) inter-
sect (c ##4 d) can be equivalently re-written as (a *[3] ##1
b) intersect (c ##4 d) as other possibilities will always re-
solve to false. Note that recursive application of F ensures
that the sequence expression operands of intersect are dis-
junction free and hence will always give in-order match.

S
START

D

a) SE Block b) Delay Block

S

R

M

Reset

MATCH

c) Interval Delay Block

[K1,K2]

Reset

MATCH
START

MATCHSTART
(S) (M)

Figure 1. Basic sequence expression block

3. Sequence Expression Synthesis Algorithm

We use a divide-and-conquer approach for synthesis of
sequence expression. The basic idea is to break the se-
quence expressions as a sequence of expressions concate-
nated with the corresponding time range expressions. The
checkers recognizing these smaller sequence expressions

are then interconnected so that they communicate among
each other to determine a match or fail of the actual se-
quence expression. Every checker generated by our algo-
rithm (as shown in Fig 1 (a)) has an input, start(S), which
triggers the start of checking and a single output match(M)
which indicates the match of an expression. There is also a
reset input for each block, on a high reset each block moves
to it’s initial state and waits for the start. We also have a De-
layFSM(D) block as shown in Fig 1 (b), having a single
input, start(S), a single output, match(M), and a delay pa-
rameter, D. On receiving the start input this block waits for
D cycles and then asserts the match output. Another vari-
ant of this block, called the IDelayFSM block is shown in
Fig 1 (c), is parameterized by a delay interval, [k1, k2]. On
receiving the start input this block waits for k1 cycles and
then asserts the match output for the next k2 − k1 cycles. If
k2 is $ then the block will hold the match output high till the
end of simulation after the first k1 cycles. Both these blocks
are synthesized as finite state machines. We define a func-
tion L(s), which returns the lower bound on the number of
time steps required by a sequence expression s to match.

We have divided the total set of SVA into 4 sub groups
namely, Simple Sequence Expression (SSE), Interval Se-
quence Expression (ISE), Complex Sequence Expression
(CSE) and Unbounded Sequence Expression (USE).

3.1. Synthesizing SSE and ISE

This subsection defines SSE and ISE and describes the
algorithms for synthesizing them. SSE and ISE are se-
quence expressions formed by Boolean expressions,
TIME RANGE operator and the SEQUENCE OP only.

The following two algorithms outlines our method for
synthesizing SSE and ISE. The reader may refer to [9] for
the detailed semantics of these operators. In all the Figures
referred in our synthesis algorithms ’S’ represent the start
input and ’M’ represents the match output.

Algorithm 1 (h) SynthSSE(s: SSE)

If s = s1 〈op〉 s2 where s1 and s2 are SSE, we use M1 and
M2 to denote SynthSSE(s1) and SynthSSE(s2) respectively.
case s = EXP //EXP: a Boolean expression
s is synthesized as a combinational block.
case s = s1 ##k s2

let M3 = DelayFSM(k). M1 identifies a match of s1 and
triggers M3, which then gives out a match k cycles later to
trigger M2. M2 identifies the match of s2. The match out-
put of M2 is used as the match output of the checker.
case s1[*k]
synthesize k copies of M1 namely M11,M12, . . . , M1k.
The M1i block is then connected to the M1i+1 block us-
ing a DelayFSM(1) block. The match output of M1k is used
as the match output of the checker.

Algorithm 2 (h) SynthISE(s: ISE)

If s = s1 〈op〉 s2 where s1 and s2 are ISE, we use M1 and
M2 to denote SynthISE(s1) and SynthISE(s2) respectively.
case s = s1 ##[k1 : k2] s2

M3=IDelayFSM(k1, k2). M1 identifies a match of s1 and
triggers M3,which waits for k1 cycles and then gives out
matches for the next k2−k1 cycles each triggering M2. The
match of M2 is used as the match output of the checker.
case s = s1[*k1 : k2]
create k2 copies of the block M1 and connect them in the
same manner like the checker creation for s1[*k2]. How-
ever,the final match output of the checker is obtained by
connecting the match outputs of the last (k2 − k1) blocks
by an OR-gate.

3.2. Synthesizing CSE

CSE consists of sequence expressions containing opera-
tors or, first match, and intersect. However CSE is a proper
super set of SSE and ISE. In this algorithm we assume that
the sequence expressions that appear to the left or right of
the intersect are all SSE. Sequence expressions which de-
fines temporal behavior over unbounded time are synthe-
sized differently and is explained later in the Subsection 3.3.

.

.

. MS

S

S

S

S

M1

M2

MK

MK−1

D2

D3

DK

Figure 2. first match(s)

Algorithm 3 (h) SynthCSE(s: CSE)

If s = s1 〈op〉 s2 where s1 and s2 are CSE, we use M1 and
M2 to denote SynthCSE(s1) and SynthCSE(s2) respectively.
case s = s1 or s2

The sequence expression s matches whenever one of s1 or
s2 matches. This is done by connecting the match outputs
of M1 and M2 with an OR-gate.
case s = s1 intersect s2

The sequence expression s matches when s1 and s2 matches
at the same time. This is achieved by connecting the match
outputs of M1 and M2 with an AND-gate.

case s = first match(s′)
first match(s’) ≡ first match(F(s′)) ≡ first match(s1 or s2

or . . . or sk) where each sequence expression si is free from
disjunctions and L(s1) ≤ L(s2) . . . ≤ L(sk). Confirming
to the semantics of first match a match of s will correspond
only to the match of si having the least L(si). This func-
tionality is achieved by making each si issue a match iff it
matches and all sj ∀j < i fails. This is done by the checker
Mi as shown in Fig 2. In Fig 2 the checker Mi and Mi+1

are connected using a Delay Block Di+1 with a delay pa-
rameter equal to (L(si+1)−L(si)). Whenever Mi matches
and the output of its corresponding Delay Block Di+1 is
zero(i.e none of the previous blocks have matched) the fi-
nal match output is asserted. This is done for every checker
Mi. Also whenever Mi identifies a match, this information
is propagated through the delay block Di+1 to indicate the
machine Mj(j > i) that a match has already been identi-
fied. The bold line in the Fig 2 indicates this path.

3.3. Synthesizing USE

This sub-section addresses the problem of synthesizing
sequence expressions which expresses unbounded temporal
behavior. But first we identify expressions which cannot be
synthesized in bounded area.
case s = s1##[k1 : $] s2 intersect s3[∗k2 : $]
The expression s will match when the right hand and the
left hand side of the intersect operator matches at the same
time and also they correspond to the same start signal. The
sequence expression s1##[k1 : $] s2 can take arbitrary
large time to match after the arrival of a start signal and in
the meanwhile there might be arbitrarily large number of
matches of s3[∗k2 : $] corresponding to different start in-
puts and hence it is practically impossible to store which of
these matches correspond to which start. Thus, when s2 and
s3[∗k2 : $] matches at the same time, it is impossible to de-
termine if they correspond to the same start input implying
s cannot be synthesized in bounded area.
first match(s1##[k1 : $] s2 intersect s3[∗k2 : $])
This expression is not synthesizable because (s1##[k1 : $]
s2 intersect s3[∗k2 : $]) is not synthesizable.

Algorithm 4 (h) SynthUSE(s: USE)

If s = s1〈op〉s2 where s1 and s2 are USE, we use M1 and
M2 to denote SynthUSE(s1) and SynthUSE(s2) respectively.
case s = s1 ##[k1 : $] s2

Let M3 = IDelayFSM(k1,$). M1 identifies a match of s1

and triggers M3,which gives out a match k1 cycles later
and thereafter holds it high forever. The match of M3 trig-
gers the checking of M2. M2 identifies the match of s2. The
match output of M2 is also the match output of the checker.
case s = s1[*k1 : $]
Create k1 copies of M1 and connect them in a manner iden-
tical to the construction of s1[*k1]. The match output of the

k1:$

k2:$

M

S

S

S

S

S

M1 M2

M3 M4

M5

M6

M7

s1 and s3

Figure 3. (s1##[k1 : $]s2)intersect(s3##[k2 : $]s4)

1 1. . .1. . .

<−−−−−−−−−−−−n2 = l −−−−−−−−−>

<−−−−−−−−−−−−−n2 = K X l −−−−−−−−−−−−−−−>

<−−−−−−−−−−−−−−n1 = K X l −−−−−−−−−−−−−−−>

1 1. . .1. . .

1

1

L(s1)

L(s2)

<−−−−−−−−−−−−n1 = l −−−−−−−−−>

L(s1)

L(s2)

M

M

M

S

S

M1M1M1
M1

M2 M2 M2 M2

Figure 4. (s1 [*k1 : $])intersect(s2 [*k2 : $])

F
R

M

S
M1

M2

M3

M4

k1 : $

l − 1

Figure 5. first match(s1 ##[k1 : $] s2)

checker is connected with the match output of the kth M1

block. The output of kth M1 block is OR-ed with the out-
put of the (k − 1)th M1 block and connected with the start
input of the kth M1 block. This connection ensures match
of s due to match of s1*[k] where k ≥ k1.
case s=(s1 ##[k1 : $] s2) intersect (s3 ##[k2 : $]s4)
Here we assume (s1 and s3) is synthesizable. The sequence
expression will match when both s2 and s4 matches at the
same time. However the two matches must correspond to
the same start input. In order to check this, we introduce an
extra redundancy in the checker in form of a checker for (s1

and s3). Note that for s to match s1 and s3 must match at
some previous time. Let l be the minimum time required for
s to match after s1 and s3 has matched. Here both s1 and

k1:$

k2:$

F

R

M

S

SS

SS

S

S

S

M1 M2

M3 M4

M5

M6

M7

l − 1s1 and s3

Figure 6. first match((s1 ##[k1 : $]s2) intersect
(s3 ##[k2 : $]s4))

s3 are SSE and let l = L(s) - MAX(L(s1),L(s3)). Consider
a match of (s1 and s3) at time t corresponding to a start in-
put S. Now any match of s2 and s4 after or on time t + l
will correspond to a match of s corresponding to the start S.
Keeping this intent in mind our synthesis algorithm is as
follows: Let M5=IDelayFSM(l,$),M6=IDelayFSM(k1, $),
M7=IDelayFSM(k2, $). The machine M5 is triggered by a
match of s1 and s3, a match of M5 indicates that s1 and s3

have matched l cycles earlier. The outputs of M2,M4 and
M5 are connected by an ANDgate whose output comprise
the final match output as shown in Fig 3.
case s = (s1 [*k1 : $]) intersect (s2 [*k2 : $])
Here we assume that s1 and s2 are synthesizable. Let l be
the Lowest Common Multiple(LCM) of L(s1) and L(s2)
and k the smallest integer such that (k × l) ≥ (k1 ×L(s1))
and (k × l) ≥ (k2 × L(s2)). Sequence expression s (if
matches) will match for the first time at time step k × l.
Subsequent matches for s(if occurs) will arrive at time steps
equal to multiple of l after the first match. Keeping this
intent in mind the checker is synthesized as follows: Let
n1 = k×l

L(s1)
, n2 = k×l

L(s2)
, n′

1 = l
L(s1)

and n′
2 = l

L(s2)
.

Synthesize n1 blocks of M1 and n2 blocks of M2 and con-
nect them as shown in Fig 4. The feedback loop from the
n1

th M1 block to the (n1 − n′
1 + 1)th

M1 block and the
n2

th M2 block to the (n2 − n′
2 + 1)th

M2 block is neces-
sary to identify subsequent matches of s. The match out-
put of the checker is connected with the match output of the
n1

th M1 and the n2
th M2 block by an AND gate.

case s = first match(s’)

if(s’ is of the form (s1[∗k1 : $]) or of the form
(s1[∗k1 : $] or s1[∗k2 : $])

Replace si[∗ki : $] by s[∗ki] and synthesize
endif
if s’ ≡ (s1[∗k1 : $] intersect s2[∗k2 : $])

Replace si[∗ki : $] by si[∗ k×l
L(si)

] and synthesize
l = LCM(L(s1),L(s2)) and k is the smallest

integer such that k × l > ki × L(si) ∀i = 1, 2
endif

case s = first match(s1 ##[k1 : $] s2)
Here we assume s2 to be a SSE otherwise we use F to de-
compose it into SSEs. Let M3 = IDelayFSM(k1,$) and l be
the minimum time required for s to match after a match of
s1 (l = L(##[k1 : $] s2)). Let M4 = DelayFSM(l−1). The
output of M4 is connected to the input of a flipflop F . The
sequence expression s will match when M2 matches and F
is high. The reset input of F is asserted when s matches but
M4 does not. The reset input ensures that there are no multi-
ple matches for a single start. Fig 5 shows the above connec-
tion. It should be noted that if s1 contains unbounded tem-
poral operators then we will synthesize M1 to be a checker
for recognizing first match(s1) instead of s1.
case s = first match((s1 ##[k1 : $]s2) intersect (s3 ##[k2 : $]s4))
The synthesis of this checkers is almost the same as the syn-
thesis of (s1 [*k1 : $]) intersect (s2 [*k2 : $]). The only
differences are that we change M5 to DelayFSM(l-1) and
store the output of M5 in a flipflop F . The reset input of F
is asserted when there is a match of s but no match of M5.
The reset input ensures that there are no multiple matches
for a single start. Fig 6 shows the above connection.

Until now we have only provided algorithms to synthe-
size checkers for sequence expressions which asserts match
when the sequence expression matches. But how to iden-
tify the fail? We have solved this problem as follows. Given
a sequence expressions s we create a checkers correspond-
ing to not s such that the match of not s correspond to a fail
of s. Below we provide the rules to generate not s from s.

1. not(exp) ≡ ¬exp // Where exp is Boolean expression.
2. not(s1 ##k s2) ≡ not(s1) or s1 ## k not(s2)
3. not(s1 ##[k1 : k2] s2) ≡ not(s1) or (s1 ## k1(not(s2) and

##1 not(s2) and . . . and ##(k2 − k1) not(s2)))
4. not(s1 ##[k1 : $] s2) ≡ not(s1)
5. not (s1[*k1]) ≡ not(s1) or s1 ##1 not(s1[*(k1 − 1)])
6. not (s1[*k1 : k2]) ≡ not(s1[*k1])
7. not first match(s) ≡ not(s)
8. not(s1 or s2) ≡ not(s1) and not(s2)
9. not(s1 intersect s2) ≡ not(s1) or not(s2), s1 and s2 are SSE.

10. not ((s1 [*k1 : $]) intersect (s2 [*k2 : $])) ≡ not(s1) or
not(s2) or not(s1 [*l1] intersect s2 [*l2]). Where, l1 = N×
LCM(L(s1),L(s2))

L(s1)
, l2 = N× LCM(L(s1),L(s2))

L(s2)

N is the smallest integer such that N×LCM(L(s1),L(s2))
is greater than both k1 × L(s1) and k2 × L(s2)

4. SVA Property Synthesis

We synthesize all the sequence expression blocks of a
given SVA property, and then use these blocks to syn-
thesize the property. The following algorithm outlines our
methodology for synthesizing SVA properties using the
blocks for the sequence expressions (given by Algorithms
SynthSSE,SynthISE,SynthCSE and SynthUSE).

RR

a) Machine for MATCH

R
R

b) Machine for FAIL

R

M M
MM

M
M

M
M

S S
SS

S

S S

S
S

FM1

M1

M2

M3 M3

M4

M5

not(s1)

not(s2)

clk

clk

Figure 7. SVA synthesis

Algorithm 5 (h) SynthSVA(p: SVA property)

case p = (clk exp) disableiff exp [not] s1 |→[not] s2

Let M1 = SynthSVA(s1), M2 = SynthSVA(s2), M3 =
SynthSVA(not(exp)) and M4 = SynthSVA(not(s1). If M3

matches then the property evaluation stops and a match
is given to the output. Stopping a evaluation is achieved
by connecting the match output of M3 with the reset in-
put of M1,M2 and M4. A match of M4 makes the property
match vacuously. The property is synthesized by inter-
connecting the blocks M1,M2,M3 and M4 as shown in
Fig 7(a). The property will fail(F) when s1 matches but s2

fails. In order to identify the fail of the property we synthe-
size a new block M5=SynthSVA(not(s2)) and then connect
M1,M3 and M5 as shown in Fig 7(b).
case p = (clk exp) disableiff exp [not] s1 |⇒[not] s2 Syn-
thesis of this property is identical to that of the previous one
except that the blocks corresponding to s1 and s2 are con-
nected through a DelayFSM(1) instead of a wire.
If the not operator is present before a sequence expression
s, then we synthesize not(s) instead of s.

5. Results

Our tool decomposes a given set of properties into the
basic sequence expression blocks and translates them into
synthesizable Verilog. The tool implements the intercon-
nections between these blocks by instantiating these basic
blocks within higher-level modules.

We used an industry standard Assertion based verifica-
tion IP for the ARM AMBA AHB [1] as a case study. We
synthesized the assertions in this suite and simulated this
code along with the models for the AMBA AHB models
using the Synopsys VCS simulator. We compared the out-
put of this simulation with the output of VCS simulation of
the same models with the assertion monitoring done by the
Synopsys OVA checker. The outputs were identical, indi-
cating that the synthesis produced the correct monitors. Cu-
riously, we found that VCS was able to simulate the synthe-
sized checkers faster than the OVA checker. Table 1 com-
pares the run times for the AMBA AHB master, slave and

arbiter properties. The table also shows the number of in-
puts and outputs of the AHB interfaces, and the number of
assertions in the VIP.

We then used the Synopsys Design Compiler [10] to esti-
mate the area required by the checkers using the 0.18µ Syn-
opsys library. The table shows the number of ports, nets, and
cells used by our circuits, along with the total combinational
and sequential area. The last column in this table shows that
the area overhead for the on-chip checkers is quite mod-
est for a VIP which is quite complex by industry standards.

Circuit No of No of No of Time Time
Module inputs outputs assertions OVA(s) OUR(s)

master 11 9 14 1.4 1.12
slave 13 4 6 1.2 1.09

arbiter 14 3 8 1.29 1.19

Circuit #ports #nets #cells Area % increase
Module in Area

master 5 44 41 9000 15%
slave 6 32 21 4300 8%

arbiter 5 36 31 2150 12%

Table 1. Experimental Results on AHB

Acknowledgments

Pallab Dasgupta and P.P.Chakrabarti acknowledge the
Department of Science & Technology, Govt. of India for
the partial support of this work.

References

[1] ARM AMBA Specification Rev 2.0,http://www.arm.com
[2] Armoni, R. et. al. The ForSpec Temporal Logic In Proc. of

TACAS’2001.
[3] HyperTransport 2.0, http://www.hypertransport.org
[4] Pellauer,M. Mieszko,L. Rishiyur,N ”Synthesis of Syn-

chronous Assertions with Guarded Atomic Actions” MEM-
OCODE,2005.

[5] OpenVera Assertions LRM 2.0. http://www.open-vera.com
[6] PCI Local Bus Specification Revision 2.2 (1998).

http://www.pcisig.com/specifications/conventional
[7] Sugar Formal Property Language Reference Manual.

http://www.haifa.il.ibm.com/projects/verification/sugar/
[8] FOCs Homepage

http://www.haifa.il.ibm.com/projects/verification/focs/
[9] System Verilog. http://www.systemverilog.org/

[10] Synopsis Design Compiler.
http://www.synopsys.com/products/logic/design comp cs.html

[11] OVL Library. www.eda.org/ovl

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

