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Abstract 
 

Structured-ASIC design provides a mid-way point 
between FPGA and cell-based ASIC design for 
performance, area and power, but suffers from the same 
increasing verification burden associated with cell-based 
design.  In this paper we address the verification issue with 
a methodology and fabric to directly tie FPGA prototype 
and functional in-system verification with a clean 
migration path to structured ASIC.  The most important 
aspects of this methodology are the use of physically 
identical blocks for difficult-to-verify PLLs, I/O and RAM 
and a structured re-synthesis of FPGA logic blocks to 
target cells that guarantees anchor points for easy formal 
verification. 

1. Introduction 

Today’s hardware designers are faced with difficult 
decisions arising from conflicting efficiency and time-to-
market pressures.  Cell-based ASICs offer the best density, 
performance and power but have long design times, high 
NRE costs, and increasingly difficult verification cycles.  
FPGAs offer zero NRE-cost but higher unit cost and poorer 
density, performance and power compared to ASIC. 

A less-often cited benefit of FPGAs is methodology:  
Because physical issues, timing and power, SI, etc. are 
performed by the vendor and amortized across thousands 
of designs, the designer performs only functional 
verification and timing analysis, avoiding not just risk but 
many expensive tools.  Most FPGA designers use re-
programmability as an integral part of their test 
methodology and perform significant amounts of their test 
in-system.  A mask re-spin to an ASIC designer is 
analogous to a software iteration for an FPGA designer.   

Recently, structured ASICs or “neo-gate-arrays” have 
been proposed as a hardware model that bridges the gap 
between ASIC efficiency and FPGA flexibility.  A 
structured ASIC consists of a base array of hard blocks 
(e.g. I/O and RAM) along with relatively simple logic 
structures in a regular fabric that is hard-wired for most 
processing layers, but can be targeted at a specific 
application by customizing only several processing steps 
(e.g. two to four metal or via layers). 

The theoretical efficiency of structured-ASIC can be 
close to that of an ASIC while the NRE costs are 
minimized – at 90nm the NRE runs about 1/10 that of a full 
mask set for a cell-based ASIC.  Recent keynotes and panel 
sessions [1-5] have dealt with the efficacy of structured-
ASIC.   

A number of architectural proposals exist.  Patel [6] 
and Tong [7] described a via-programmed gate-array 
(VPGA), in which a fabric of LUT-like logic elements is 
programmed by via-connections between pre-defined 
routing layers.  This is architecturally very close to a FPGA 
methodology in that the routing architecture mimics the 
logic-element and routing structures of generic FPGAs.  
Pileggi [8] discussed further tradeoffs in VPGA design, 
Kheterpal [9] explored the routing architecture issues, and 
Reed Taylor and Schmit [10][11] evaluated VPGA power 
consumption design and tradeoffs. 

Hu [12] introduced the GLA or gain-based logic block 
array, which is also based on via-programming.  The GLA 
logic cell consists of two NAND2 and AND3 and a 
NAND3 interconnected. They describe a design flow for 
synthesizing and technology mapping to a library of these 3 
primitive gates, which are then packed into the base cell, 
and then a placement algorithm based on VPR [13].  Ran 
and Marek-Sadowska [14] examine transistor-level 
implementations of cell blocks for VPGAs and a design 
flow for via-programmable ports between fixed metal 
layers M1 and M2 (on a 2-metal process).  Shenoy, Kawa 
and Camposano [15] further investigate mask-
programmable fabrics and CAD tools. 

Most studies to-date on structured ASIC concentrate 
only on the logic fabric.  Much of the silicon area for both 
FPGAs and structured ASIC base arrays, however, is taken 
up by RAM and I/O buffers supporting high-speed serial 
and CDR transceivers, numerous I/O standards and DDR 
interfaces.  (See Figure 1.)  These blocks are non-trivial to 
design and characterize  Further, the preferred design flow 
for many designers is to prototype and ship low-volume on 
FPGAs then migrate to an ASIC should volumes dictate.  
Conversion requires re-design, qualification, and complete 
re-verification.  

A number of companies manufacture structured 
ASICs, including Altera, AMI, ChipExpress, eASIC, 
Faraday [16], Fujitsu, LSI, NEC [17] and Virage [18].   
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We propose a structured ASIC fabric and design 
methodology closely tying the ease of design and 
verification to that of FPGAs, without sacrificing 
efficiency.  Our thesis is that verification and DSM design 
issues will force the majority of these designs to be 
conversions from FPGA prototypes, and thus the key 
methodology is in facilitating this flow.  We argue that 
hard blocks and clocking need to be similar or even 
identical between FPGA and ASIC, a seamless conversion 
of generic logic with common register boundaries needs to 
be maintained to ensure ease of verification, and a common 
tool flow must integrate the two design styles.   

Figure 1 illustrates the correspondence between an 
FPGA floorplan (top) and a compatible structured ASIC 
base array (bottom right).  In the proposed methodology 
there is a 1:1 layout-level correspondence between RAM, 
PLL, transceiver and I/O blocks, while soft-logic DSP 
multipliers and logic cell fabric of the FPGA are re-
synthesized to the structured ASIC fabric.  The key 
elements of the paper are the design and software flow for 
this re-synthesis and the tie-in to verification. 
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Figure 1. FPGA/ASIC Correspondence 

The remainder of the text is organized as follows.  In 
Section 2 we introduce the FPGA logic cell and structured-
ASIC HCell and HCell macro and base array which are the 
targets of our combined synthesis flow.  Section 3 
describes macro libraries and the synthesis flow for 
converting logic based on a commercial FPGA into this 
base array.   Section 4 shows the verification process for 

showing equivalence of an FPGA prototype to its 
corresponding ASIC device, and we conclude in Section 5. 

2. FPGA Logic Cell, HCell and HCell-Macros 

SRAM-based FPGA logic cells normally consist of k-
input LUTs and flip-flops.  The basic functionality of a 
logic cell is to implement k-input combinational functions 
and optionally register the function’s output.  For example, 
Figure 2 shows the basic logic unit in Altera’s Stratix II 
device [19], [20], called an ALM (“Adaptive Logic 
Module”).  An ALM can be configured to be a 6-LUT or 
two 5-LUT or smaller logic cells through appropriate LUT-
mask programming, and contains by-passable register 
elements.  We will use this ALM as an example, but the 
underlying methodology is applicable to other 4-LUT 
architectures such as Xilinx Virtex or Altera Stratix.   
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Figure 2. Simplified FPGA Logic Cell 

We will use the term HCell to represent the fine-
grained basic logic unit which forms the logic fabric in the 
structured ASIC base array.   It is similar to the FPGA logic 
cell in the sense that the fabric consists of a regular pattern 
formed by tiling one or more basic cells in a two-
dimensional array.  The difference is that the HCell has no 
overhead for configuration and, for the examples used in 
this paper, is assumed to be finer granularity. 

A wide range of HCell candidates can be explored, 
from fine-grained NAND gates to multiplexers to coarse-
grained LUTs.  Samples of HCell candidates are shown in 
Figure 3.  In a structured fabric an array of such cells and 
general purpose routing connecting them are laid down on 
the lower layers of the chip.  Specific layers then form via-
connections or metal lines to customize the generic array 
into specific functionality.  Figure 4 shows how logic 
function macros comprising multiple HCells can be placed 
into the regular fabric. 

We use a library of HCell macros to represent pre-
optimized, pre-characterized ASIC library cells.  Each 
HCell macro consists of one or more HCells arranged in 
one or two dimensional arrays.  A group of HCells together 
emulate a given FPGA combinational logic cell, DFF, or 
DSP (multiplier) block.  The macro defines the number of 
HCells needed, the configuration of each HCell used, and 
the connectivity among these HCells.  The configuration 



 

and the connectivity is done via lower level layers to 
minimize the impact on routing resources and achieve 
better density. Figure 5 illustrates the HCell macro concept. 

 

 

Figure 3. HCell Candidates 
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Figure 4 FPGA Logic Cells in HCell Fabric 

 

 

Figure 5 Sample HCell Macros 

An important issue in the design of the HCell and 
HCell macros is the 1:1 correspondence between FPGA 
prototype and structured cells.  Though it could be slightly 
more efficient to re-synthesize entire cones of logic and 
blocks into HCells, the benefits of maintaining all names 
and functional boundaries outweigh the area savings.  
Since the conversion of FPGA LEs and routing to HCells 
results in a 10:1 or more decrease in logic area  the 
contribution to overall die area is dramatically smaller than 
I/O, RAM and other hard blocks in the base die.  So, even a 
significant inefficiency in this structured conversion 
process will result in a negligible die-area cost.   

2.1 Creating HCell Macros 

Combinational HCell macros are created by re-
synthesizing FPGA logic cells in terms of base HCells. For 
a given logic cell in the prototype FPGA netlist, 

optimization is done to compact the logic by removing 
parts of the FPGA logic cell that are not used for a given 
instance, thus reducing the area cost, the intra-logic cell 
delay, and power dissipation.  More sophisticated 
optimization can also be done on each FPGA logic cell so 
that the resulting HCell macro meets the desired density, 
performance, and power cost metrics. Since the HCell 
macro library is pre-designed and the optimization problem 
is relatively small, we can improve results with longer 
runtime when necessary. 

A complete example of these optimizations in the re-
synthesis flow is shown in Figure 6:  if the HCell 
architecture consists of a single MUX, then the 6-input 
LUT FPGA cell implementing the function  

!D*C+D*E*!F*A+D*E*F*!B  

is reduced to a 3 element HCell macro. 
Relative to the combinational FPGA logic cells, we use 

a small number of registered HCell macros corresponding 
to all possible types of registered FPGA logic cells. These 
are built out of HCells to further reduce cost with respect to 
the FPGA logic fabric since we will only build the right 
type and right number of registers based on the FPGA 
design.  Similarly for DSP blocks we use one type of HCell 
macro.  Treating DSP blocks as “soft” logic enables us to 
build the blocks only on as-needed basis.  It also allows us 
to only build the logic that is needed for a particular mode 
of the FPGA DSP block. 
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Figure 6. Optimization of a 6-input LUT 

Figure 7 illustrates the logic cell to macro concept in 
more detail.  Each of the logic portion and the register 
portion of the FPGA cell are transformed into an 
appropriate HCell macro in the library.   Figure 8 shows 
specific examples:  a 4-LUT and 6-LUT become macros 
with 2 and 3 HCells respectively, two example 2-LUTs use 
one HCell each, and a DFF with CLR is built from an 
HCell macro with 2 HCells.  Template functions for such 



 

re-synthesis functions form the HCell macro library to be 
discussed in Section 2.3. 
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Figure 7  FPGA Logic Cell to HCell Macro Mapping 
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 Figure 8.  LUT & Flip-Flop generation with 2:1 MUX HCell 

2.2 Architecture Experiments 

We ran extensive architectural experiments to choose 
the best HCell architecture and HCell library.  

Our experimental methodology is built by customizing 
an FPGA synthesis flow to allow re-synthesis of a given 
FPGA logic cell such as the Stratix II ALM into various 
base HCells.  We used 100 commercial FPGA designs 
above 25,000 LUT4 logic elements in size.  Each was re-
implemented in HCell macros by the synthesis flow 
(described in Section 3) and then placed and routed using 
commercial ASIC placement tools.  

Another logic fabric parameter is the number of HCells 
M for each HCell macro, which is dependent on the logic 
cell’s complexity.  Ideally we want to choose a threshold M  
large enough to cover the majority of combinational FPGA 
logic cells that we see in user designs without requiring an 
increase in HCell routing resources.  The increased HCell 
size reduces the number of usable gates per square mm and 
makes the resulting device less cost-efficient.   

Figure 9 shows the conversion of k-LUTs in the FPGA 
netlist into histograms of HCells required to implement 
them after re-synthesis.  For this experiment, we continue 
to use the example 2:1 mux as the target HCell.  We 
observe that nearly all combinational FPGA logic cells can 
be implemented in 6 or fewer HCells, and standardize on 
M=6.  Thus, some LUTs are implemented with more than 

one HCell macro.  Referring again to the 6-LUT of Figure 
6, the logic reduces from 64 2:1 muxes and 64 LUT-mask 
SRAM bits to between 1 and 6 2:1 mux cells.  In practice 
this is a 10:1 or more reduction in logic area. 

2.3 HCell Macro Library 

HCell macros can be pre-optimized and characterized 
for best area, performance and power.  Pre-characterizing 
these macros and making them part of the library enables 
faster turn-around time since it avoids the need to optimize, 
verify, and characterize these cells on a per-design basis. 

To achieve faster turn-around-time and to minimize 
the impact on layer routing resources, it’s desirable to make 
the library of HCell macros large enough so that the 
majority of the combinational logic cells encountered in the 
FPGA designs can be directly translated into a single macro 
in the library. 

Although a theoretical design could use any arbitrary 
logic cell in terms of its functionality we find in practice 
that if we accumulate the library cells using a sufficiently 
large number of designs the library can cover a majority of 
new design structures.  This is similar to conclusions drawn 
by Trevillyan some time ago [21] in a study of common 
FPGA LUT-masks. 
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Figure 9. LUT to HCell Mapping Statistics 

2.4 Expanding the HCell Library 
The ALM allows LUTs of up-to k=7 inputs. Since it’s 

unrealistic to enumerate all possible 7-input functions as 
HCell macros the HCell macro library is not exhaustive.  
On the other hand, there is a need to minimize the break up 
of one FPGA logic cell into multiple HCell macros since 
doing so uses more routing resources and thus negatively 
impacts routability by the back-end physical design tools. 

We note that the initial library can be expanded as new 
designs are encountered.  Previous work [21] has shown 
that though there are a doubly exponential number of LUT-
masks in k only a small number are seen in practice and our 
experiments confirm this.  The verification flow can deal 
with several thousands of macros. 



 

The HCell macro accumulation flow consists first of 
synthesizing the design for an FPGA.  Then, for each 
combinational logic cell, look it up in the HCell macro 
library.  If there is no match, we optimize this logic cell 
using HCells and if it uses less than M HCells, then add it 
to the HCell macro library.  

Figure 10 shows the decreasing benefits of library 
growth.  The x-axis denotes additional new designs 
whereas the y-axis denotes the average logic portion, over 
the remaining designs in the design-set, that are not 
covered by the current library.  We start out the library with 
arbitrary 50 designs.  On average, less than 7% of the logic 
portion of a new design fails to be covered by a single 
macro in the pre-compiled library, and before all designs 
are used this decreases below 2%. 

3. COMBINED SYNTHESIS FLOW 

This design methodology enables easy migration from 
FPGA to a structured-ASIC, illustrated in Figure 11.  For 
the FPGA prototype, we execute 

1. Design source (HDL) extraction  
2. RTL level optimization 
3. Logic optimization, and  
4. FPGA LUT and DFF technology mapping.   

At this point, the ASIC design netlist is identical to the 
FPGA netlist.  For the ASIC design, we perform an 
additional re-synthesis step before entering place and route 
wherein each of the FPGA logic cells in the FPGA netlist is 
converted into equivalent ASIC library cells, i.e. HCell 
macros.  For each combinational and registered cell in the 
FPGA netlist there exists a corresponding HCell macro 
output cell which is functionally equivalent.  In the case of 
combinational LUTs there could be several buried HCell 
macros.  For DFF cells there is a 1:1 correspondence.  
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Figure 10.  Effect of Fixed HCell Macro Library 

Since we have designed the HCell macro library with a 
goal of covering most of the logic cells seen in the FPGA 
netlist, this translation process is fairly straight-forward and 

consists of looking up the proper HCell macro from the 
library using a binary-decision diagram (BDD) package. 

We translate each cell in the FPGA synthesized netlist 
independently.  Registers are translated directly into the 
corresponding HCell macro from the library.  For 
combinational logic, we first perform a library lookup.  
This consists of searching the permutation group of the 
LUT-mask and checking correspondence in the library with 
a BDD.  Matches are converted directly.  Otherwise we 
cover the logic cell using the library cells.   This can be 
done as follows: first we optimize the FPGA logic cell 
using a minimal number of HCells.  Then in a recursive 
manner we select LUTs to cover the whole HCell network 
according to the following criteria – these LUTs have to be 
part of the ASIC library; in addition, these LUTs represent 
logic cones that do not have fanout outside the cone itself. 

Note that the output of the original FPGA logic cell is 
still visible in the resulting ASIC netlist, which makes 
verification and debugging easy, as discussed in Section 4. 
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Figure 11.  Combined Synthesis Flow 

4. Verification Flows 

Though the FPGA design can be tested in-system by 
programming the device, a replacement structured-ASIC 
cannot be tested in-system.  Thus, the key aspect to an 
FPGA to ASIC migration is verification of identical 
functionality prior to mask fabrication. 

When migrating a design from FPGA prototype to 
ASIC, the most difficult things to verify are the hard blocks 
such as PLLs, RAMs, DLLs, and IOs.  With our proposed 
approach, these blocks are physically identical between an 
FPGA prototype and ASIC counter-part so that verification 
is reduced to the logic.   

Logic verification is non-trivial in general, but with the 
structured synthesis flow of Section 3 we greatly simplify 
this by guaranteeing anchor-points at the output of every 
DFF and combinational LUT in the FPGA netlist.     

Verification thus consists of: 

1. Write fpga.v at the end of the FPGA compile. 
2. Write asic.v at the end of the ASIC compile. 
3. Compare fpga.v against asic.v using a standard 

formal verification tool. 

The generally complicated issues of formal verification 
between an original and modified netlist – node matching, 
don’t-care synthesis, duplicated or merged registers, etc. do 



 

not exist.  Cones with numerous anchor points are 
guaranteed by construction. For combinational FPGA cells 
that require more than one ASIC library cell to represent, 
the re-synthesis step asserts before and after the step that 
the functionality doesn’t change.   Since in general the 
FPGA cell has a small number of inputs, this checking is 
done efficiently using functional techniques such as 01-
tables and BDDs. 

For the complicated cells (PLLs, RAM, etc), we have a 
1:1 physical match between FPGA to ASIC.  Synthesized 
registers and clocking are a 1:1 functional match and are 
guaranteed anchor points for verification.  Re-synthesized 
logic is functionally equivalent but not 1:1 and must be 
fully verified.  For this we store the functionality as a bit 
string in the library cell name, and treat the library cell 
description (usually in Verilog or VHDL) as just another 
design, then synthesize it for FPGA, and compare the bit 
strings.  This is summarized in Figure 12. 

 

Figure 12. Block Level Matching Between FPGA and ASIC 

5. Conclusions 

In this paper, we have described a methodology for 
designing a structured-ASIC closely tied to a prototype 
FPGA.  The key elements of the proposal are in the design 
of a structured-ASIC base array and re-synthesis and 
verification flows that greatly simplify migration. 

In the proposed fabric a single HCell forms the basis 
for all logic re-synthesized from the FPGA netlist.  HCells 
are grouped into HCell macros which implement 
functionality directly corresponding to DSP blocks, FPGA 
combinational logic cells and FPGA registers, in which all 
anchor points are 1:1 and directly visible to verification. 

Overall this fabric and methodology allows for a direct 
correspondence and simple flow from FPGA to ASIC.  The 
methodology is independent of the FPGA fabric and exact 
HCell characteristics used. 
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