

A Methodology for FPGA to Structured-ASIC Synthesis and Verification

Mike Hutton, Richard Yuan, Jay Schleicher,
Gregg Baeckler, Sammy Cheung
Altera Corp. San Jose, CA, USA

{mhutton,ryuan}@altera.com

Kar Keng Chua, Hee Kong Phoon
Altera Corp. Penang, Malaysia

Abstract

Structured-ASIC design provides a mid-way point
between FPGA and cell-based ASIC design for
performance, area and power, but suffers from the same
increasing verification burden associated with cell-based
design. In this paper we address the verification issue with
a methodology and fabric to directly tie FPGA prototype
and functional in-system verification with a clean
migration path to structured ASIC. The most important
aspects of this methodology are the use of physically
identical blocks for difficult-to-verify PLLs, I/O and RAM
and a structured re-synthesis of FPGA logic blocks to
target cells that guarantees anchor points for easy formal
verification.

1. Introduction

Today’s hardware designers are faced with difficult
decisions arising from conflicting efficiency and time-to-
market pressures. Cell-based ASICs offer the best density,
performance and power but have long design times, high
NRE costs, and increasingly difficult verification cycles.
FPGAs offer zero NRE-cost but higher unit cost and poorer
density, performance and power compared to ASIC.

A less-often cited benefit of FPGAs is methodology:
Because physical issues, timing and power, SI, etc. are
performed by the vendor and amortized across thousands
of designs, the designer performs only functional
verification and timing analysis, avoiding not just risk but
many expensive tools. Most FPGA designers use re-
programmability as an integral part of their test
methodology and perform significant amounts of their test
in-system. A mask re-spin to an ASIC designer is
analogous to a software iteration for an FPGA designer.

Recently, structured ASICs or “neo-gate-arrays” have
been proposed as a hardware model that bridges the gap
between ASIC efficiency and FPGA flexibility. A
structured ASIC consists of a base array of hard blocks
(e.g. I/O and RAM) along with relatively simple logic
structures in a regular fabric that is hard-wired for most
processing layers, but can be targeted at a specific
application by customizing only several processing steps
(e.g. two to four metal or via layers).

The theoretical efficiency of structured-ASIC can be
close to that of an ASIC while the NRE costs are
minimized – at 90nm the NRE runs about 1/10 that of a full
mask set for a cell-based ASIC. Recent keynotes and panel
sessions [1-5] have dealt with the efficacy of structured-
ASIC.

A number of architectural proposals exist. Patel [6]
and Tong [7] described a via-programmed gate-array
(VPGA), in which a fabric of LUT-like logic elements is
programmed by via-connections between pre-defined
routing layers. This is architecturally very close to a FPGA
methodology in that the routing architecture mimics the
logic-element and routing structures of generic FPGAs.
Pileggi [8] discussed further tradeoffs in VPGA design,
Kheterpal [9] explored the routing architecture issues, and
Reed Taylor and Schmit [10][11] evaluated VPGA power
consumption design and tradeoffs.

Hu [12] introduced the GLA or gain-based logic block
array, which is also based on via-programming. The GLA
logic cell consists of two NAND2 and AND3 and a
NAND3 interconnected. They describe a design flow for
synthesizing and technology mapping to a library of these 3
primitive gates, which are then packed into the base cell,
and then a placement algorithm based on VPR [13]. Ran
and Marek-Sadowska [14] examine transistor-level
implementations of cell blocks for VPGAs and a design
flow for via-programmable ports between fixed metal
layers M1 and M2 (on a 2-metal process). Shenoy, Kawa
and Camposano [15] further investigate mask-
programmable fabrics and CAD tools.

Most studies to-date on structured ASIC concentrate
only on the logic fabric. Much of the silicon area for both
FPGAs and structured ASIC base arrays, however, is taken
up by RAM and I/O buffers supporting high-speed serial
and CDR transceivers, numerous I/O standards and DDR
interfaces. (See Figure 1.) These blocks are non-trivial to
design and characterize Further, the preferred design flow
for many designers is to prototype and ship low-volume on
FPGAs then migrate to an ASIC should volumes dictate.
Conversion requires re-design, qualification, and complete
re-verification.

A number of companies manufacture structured
ASICs, including Altera, AMI, ChipExpress, eASIC,
Faraday [16], Fujitsu, LSI, NEC [17] and Virage [18].

3-9810801-0-6/DATE06 © 2006 EDAA

We propose a structured ASIC fabric and design
methodology closely tying the ease of design and
verification to that of FPGAs, without sacrificing
efficiency. Our thesis is that verification and DSM design
issues will force the majority of these designs to be
conversions from FPGA prototypes, and thus the key
methodology is in facilitating this flow. We argue that
hard blocks and clocking need to be similar or even
identical between FPGA and ASIC, a seamless conversion
of generic logic with common register boundaries needs to
be maintained to ensure ease of verification, and a common
tool flow must integrate the two design styles.

Figure 1 illustrates the correspondence between an
FPGA floorplan (top) and a compatible structured ASIC
base array (bottom right). In the proposed methodology
there is a 1:1 layout-level correspondence between RAM,
PLL, transceiver and I/O blocks, while soft-logic DSP
multipliers and logic cell fabric of the FPGA are re-
synthesized to the structured ASIC fabric. The key
elements of the paper are the design and software flow for
this re-synthesis and the tie-in to verification.

LUT FF

DSP

ALM

HCell Macros

PLL

Tx/Rx

RAM

I/O

Structured-ASIC
Base Array

FPGA

Figure 1. FPGA/ASIC Correspondence

The remainder of the text is organized as follows. In
Section 2 we introduce the FPGA logic cell and structured-
ASIC HCell and HCell macro and base array which are the
targets of our combined synthesis flow. Section 3
describes macro libraries and the synthesis flow for
converting logic based on a commercial FPGA into this
base array. Section 4 shows the verification process for

showing equivalence of an FPGA prototype to its
corresponding ASIC device, and we conclude in Section 5.

2. FPGA Logic Cell, HCell and HCell-Macros

SRAM-based FPGA logic cells normally consist of k-
input LUTs and flip-flops. The basic functionality of a
logic cell is to implement k-input combinational functions
and optionally register the function’s output. For example,
Figure 2 shows the basic logic unit in Altera’s Stratix II
device [19], [20], called an ALM (“Adaptive Logic
Module”). An ALM can be configured to be a 6-LUT or
two 5-LUT or smaller logic cells through appropriate LUT-
mask programming, and contains by-passable register
elements. We will use this ALM as an example, but the
underlying methodology is applicable to other 4-LUT
architectures such as Xilinx Virtex or Altera Stratix.

6-LUT

+
LUT

LUT

+
LUT

LUT

6-LUT

+
LUT

LUT

+
LUT

LUT

Figure 2. Simplified FPGA Logic Cell

We will use the term HCell to represent the fine-
grained basic logic unit which forms the logic fabric in the
structured ASIC base array. It is similar to the FPGA logic
cell in the sense that the fabric consists of a regular pattern
formed by tiling one or more basic cells in a two-
dimensional array. The difference is that the HCell has no
overhead for configuration and, for the examples used in
this paper, is assumed to be finer granularity.

A wide range of HCell candidates can be explored,
from fine-grained NAND gates to multiplexers to coarse-
grained LUTs. Samples of HCell candidates are shown in
Figure 3. In a structured fabric an array of such cells and
general purpose routing connecting them are laid down on
the lower layers of the chip. Specific layers then form via-
connections or metal lines to customize the generic array
into specific functionality. Figure 4 shows how logic
function macros comprising multiple HCells can be placed
into the regular fabric.

We use a library of HCell macros to represent pre-
optimized, pre-characterized ASIC library cells. Each
HCell macro consists of one or more HCells arranged in
one or two dimensional arrays. A group of HCells together
emulate a given FPGA combinational logic cell, DFF, or
DSP (multiplier) block. The macro defines the number of
HCells needed, the configuration of each HCell used, and
the connectivity among these HCells. The configuration

and the connectivity is done via lower level layers to
minimize the impact on routing resources and achieve
better density. Figure 5 illustrates the HCell macro concept.

Figure 3. HCell Candidates

Multiple HCells
Represent ALMALM

6-LUT

+
LUT

LUT

+
LUT

LUT

ALM

6-LUT

+
LUT

LUT

+
LUT

LUT

Figure 4 FPGA Logic Cells in HCell Fabric

Figure 5 Sample HCell Macros

An important issue in the design of the HCell and
HCell macros is the 1:1 correspondence between FPGA
prototype and structured cells. Though it could be slightly
more efficient to re-synthesize entire cones of logic and
blocks into HCells, the benefits of maintaining all names
and functional boundaries outweigh the area savings.
Since the conversion of FPGA LEs and routing to HCells
results in a 10:1 or more decrease in logic area the
contribution to overall die area is dramatically smaller than
I/O, RAM and other hard blocks in the base die. So, even a
significant inefficiency in this structured conversion
process will result in a negligible die-area cost.

2.1 Creating HCell Macros

Combinational HCell macros are created by re-
synthesizing FPGA logic cells in terms of base HCells. For
a given logic cell in the prototype FPGA netlist,

optimization is done to compact the logic by removing
parts of the FPGA logic cell that are not used for a given
instance, thus reducing the area cost, the intra-logic cell
delay, and power dissipation. More sophisticated
optimization can also be done on each FPGA logic cell so
that the resulting HCell macro meets the desired density,
performance, and power cost metrics. Since the HCell
macro library is pre-designed and the optimization problem
is relatively small, we can improve results with longer
runtime when necessary.

A complete example of these optimizations in the re-
synthesis flow is shown in Figure 6: if the HCell
architecture consists of a single MUX, then the 6-input
LUT FPGA cell implementing the function

!D*C+D*E*!F*A+D*E*F*!B

is reduced to a 3 element HCell macro.
Relative to the combinational FPGA logic cells, we use

a small number of registered HCell macros corresponding
to all possible types of registered FPGA logic cells. These
are built out of HCells to further reduce cost with respect to
the FPGA logic fabric since we will only build the right
type and right number of registers based on the FPGA
design. Similarly for DSP blocks we use one type of HCell
macro. Treating DSP blocks as “soft” logic enables us to
build the blocks only on as-needed basis. It also allows us
to only build the logic that is needed for a particular mode
of the FPGA DSP block.

F E D C OUT
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 A
0 1 1 1 A
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 B'
1 1 1 1 B'

Input Rotation

E D C F OUT
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 A
1 1 0 1 B'
1 1 1 0 A
1 1 1 1 B'

F
0
0 = 0

0

1

F
A
B'

0

1

F
1
1 = 1

0

1

E D C OUT
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 B':A
1 1 1 B':A

D E OUT
0 0 C
0 1 C
1 0 0
1 1 B':A

E D OUT
0 0 C
0 1 0
1 0 C
1 1 B':A

Input Rotation

F
A
B'

E DC

63 3 Equivalent 2:1 Mux
6 3 Logic Level

0
1
0
0
0
1
A
A
0
1
0
0
0
1
B'
B'

D

E

F

C

C

0
1 = C

0

1

C

0
0 = 0

0

1

F

A
B'

0

1FPGA LUT HCell Macro

0
1
0
0
0
1F

A
B'

E
D

C

0
0

1
1
0
0

0
0

0
0

1
1

A
A

A
A

0
0

1
1

0
0

0
0

0
0

1
1

1
0
1
0

C

D

E

F

B

Figure 6. Optimization of a 6-input LUT

Figure 7 illustrates the logic cell to macro concept in
more detail. Each of the logic portion and the register
portion of the FPGA cell are transformed into an
appropriate HCell macro in the library. Figure 8 shows
specific examples: a 4-LUT and 6-LUT become macros
with 2 and 3 HCells respectively, two example 2-LUTs use
one HCell each, and a DFF with CLR is built from an
HCell macro with 2 HCells. Template functions for such

re-synthesis functions form the HCell macro library to be
discussed in Section 2.3.

HCell Macro

HCell Macro

HCell Macro

ALM

6-LUT

+
LUT

LUT

+
LUT

LUT

ALM

6-LUT

+
LUT

LUT

+
LUT

LUT

Figure 7 FPGA Logic Cell to HCell Macro Mapping

CLK

1

D 0

CLR

0

0 1

CLK

1

0

Q
CLR

0

10

A

B 0

C 1
Y

A

B 0

B 1
Y

A

B 0

C 1

D

0

1 1
Y

A

B 0

C 1

D

0

E 1

F

0

1 1
Y

2,3-Input Function 6-Input Function

4-Input Function Normal DFF

 Figure 8. LUT & Flip-Flop generation with 2:1 MUX HCell

2.2 Architecture Experiments

We ran extensive architectural experiments to choose
the best HCell architecture and HCell library.

Our experimental methodology is built by customizing
an FPGA synthesis flow to allow re-synthesis of a given
FPGA logic cell such as the Stratix II ALM into various
base HCells. We used 100 commercial FPGA designs
above 25,000 LUT4 logic elements in size. Each was re-
implemented in HCell macros by the synthesis flow
(described in Section 3) and then placed and routed using
commercial ASIC placement tools.

Another logic fabric parameter is the number of HCells
M for each HCell macro, which is dependent on the logic
cell’s complexity. Ideally we want to choose a threshold M
large enough to cover the majority of combinational FPGA
logic cells that we see in user designs without requiring an
increase in HCell routing resources. The increased HCell
size reduces the number of usable gates per square mm and
makes the resulting device less cost-efficient.

Figure 9 shows the conversion of k-LUTs in the FPGA
netlist into histograms of HCells required to implement
them after re-synthesis. For this experiment, we continue
to use the example 2:1 mux as the target HCell. We
observe that nearly all combinational FPGA logic cells can
be implemented in 6 or fewer HCells, and standardize on
M=6. Thus, some LUTs are implemented with more than

one HCell macro. Referring again to the 6-LUT of Figure
6, the logic reduces from 64 2:1 muxes and 64 LUT-mask
SRAM bits to between 1 and 6 2:1 mux cells. In practice
this is a 10:1 or more reduction in logic area.

2.3 HCell Macro Library

HCell macros can be pre-optimized and characterized
for best area, performance and power. Pre-characterizing
these macros and making them part of the library enables
faster turn-around time since it avoids the need to optimize,
verify, and characterize these cells on a per-design basis.

To achieve faster turn-around-time and to minimize
the impact on layer routing resources, it’s desirable to make
the library of HCell macros large enough so that the
majority of the combinational logic cells encountered in the
FPGA designs can be directly translated into a single macro
in the library.

Although a theoretical design could use any arbitrary
logic cell in terms of its functionality we find in practice
that if we accumulate the library cells using a sufficiently
large number of designs the library can cover a majority of
new design structures. This is similar to conclusions drawn
by Trevillyan some time ago [21] in a study of common
FPGA LUT-masks.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

2LUT 3LUT 4LUT 5LUT 6LUT
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

2LUT 3LUT 4LUT 5LUT 6LUT

1 1

2

2

2

3

3

3

3

2

4…6

4

4

5

5
6

618710

Most Functions
Need At Most 6 HCells

Figure 9. LUT to HCell Mapping Statistics

2.4 Expanding the HCell Library
The ALM allows LUTs of up-to k=7 inputs. Since it’s

unrealistic to enumerate all possible 7-input functions as
HCell macros the HCell macro library is not exhaustive.
On the other hand, there is a need to minimize the break up
of one FPGA logic cell into multiple HCell macros since
doing so uses more routing resources and thus negatively
impacts routability by the back-end physical design tools.

We note that the initial library can be expanded as new
designs are encountered. Previous work [21] has shown
that though there are a doubly exponential number of LUT-
masks in k only a small number are seen in practice and our
experiments confirm this. The verification flow can deal
with several thousands of macros.

The HCell macro accumulation flow consists first of
synthesizing the design for an FPGA. Then, for each
combinational logic cell, look it up in the HCell macro
library. If there is no match, we optimize this logic cell
using HCells and if it uses less than M HCells, then add it
to the HCell macro library.

Figure 10 shows the decreasing benefits of library
growth. The x-axis denotes additional new designs
whereas the y-axis denotes the average logic portion, over
the remaining designs in the design-set, that are not
covered by the current library. We start out the library with
arbitrary 50 designs. On average, less than 7% of the logic
portion of a new design fails to be covered by a single
macro in the pre-compiled library, and before all designs
are used this decreases below 2%.

3. COMBINED SYNTHESIS FLOW

This design methodology enables easy migration from
FPGA to a structured-ASIC, illustrated in Figure 11. For
the FPGA prototype, we execute

1. Design source (HDL) extraction
2. RTL level optimization
3. Logic optimization, and
4. FPGA LUT and DFF technology mapping.

At this point, the ASIC design netlist is identical to the
FPGA netlist. For the ASIC design, we perform an
additional re-synthesis step before entering place and route
wherein each of the FPGA logic cells in the FPGA netlist is
converted into equivalent ASIC library cells, i.e. HCell
macros. For each combinational and registered cell in the
FPGA netlist there exists a corresponding HCell macro
output cell which is functionally equivalent. In the case of
combinational LUTs there could be several buried HCell
macros. For DFF cells there is a 1:1 correspondence.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

Test Designs

%
 o

f
D

es
ig

n
 F

ro
m

 N
ew

 H
C

el
l M

ac
ro

s

Average case

Figure 10. Effect of Fixed HCell Macro Library

Since we have designed the HCell macro library with a
goal of covering most of the logic cells seen in the FPGA
netlist, this translation process is fairly straight-forward and

consists of looking up the proper HCell macro from the
library using a binary-decision diagram (BDD) package.

We translate each cell in the FPGA synthesized netlist
independently. Registers are translated directly into the
corresponding HCell macro from the library. For
combinational logic, we first perform a library lookup.
This consists of searching the permutation group of the
LUT-mask and checking correspondence in the library with
a BDD. Matches are converted directly. Otherwise we
cover the logic cell using the library cells. This can be
done as follows: first we optimize the FPGA logic cell
using a minimal number of HCells. Then in a recursive
manner we select LUTs to cover the whole HCell network
according to the following criteria – these LUTs have to be
part of the ASIC library; in addition, these LUTs represent
logic cones that do not have fanout outside the cone itself.

Note that the output of the original FPGA logic cell is
still visible in the resulting ASIC netlist, which makes
verification and debugging easy, as discussed in Section 4.

LUT
Mapping

FPGA
Place &
Route

OptimizationExtraction

ASIC
Resynthesis

ASIC
Place &
Route

Figure 11. Combined Synthesis Flow

4. Verification Flows

Though the FPGA design can be tested in-system by
programming the device, a replacement structured-ASIC
cannot be tested in-system. Thus, the key aspect to an
FPGA to ASIC migration is verification of identical
functionality prior to mask fabrication.

When migrating a design from FPGA prototype to
ASIC, the most difficult things to verify are the hard blocks
such as PLLs, RAMs, DLLs, and IOs. With our proposed
approach, these blocks are physically identical between an
FPGA prototype and ASIC counter-part so that verification
is reduced to the logic.

Logic verification is non-trivial in general, but with the
structured synthesis flow of Section 3 we greatly simplify
this by guaranteeing anchor-points at the output of every
DFF and combinational LUT in the FPGA netlist.

Verification thus consists of:

1. Write fpga.v at the end of the FPGA compile.
2. Write asic.v at the end of the ASIC compile.
3. Compare fpga.v against asic.v using a standard

formal verification tool.

The generally complicated issues of formal verification
between an original and modified netlist – node matching,
don’t-care synthesis, duplicated or merged registers, etc. do

not exist. Cones with numerous anchor points are
guaranteed by construction. For combinational FPGA cells
that require more than one ASIC library cell to represent,
the re-synthesis step asserts before and after the step that
the functionality doesn’t change. Since in general the
FPGA cell has a small number of inputs, this checking is
done efficiently using functional techniques such as 01-
tables and BDDs.

For the complicated cells (PLLs, RAM, etc), we have a
1:1 physical match between FPGA to ASIC. Synthesized
registers and clocking are a 1:1 functional match and are
guaranteed anchor points for verification. Re-synthesized
logic is functionally equivalent but not 1:1 and must be
fully verified. For this we store the functionality as a bit
string in the library cell name, and treat the library cell
description (usually in Verilog or VHDL) as just another
design, then synthesize it for FPGA, and compare the bit
strings. This is summarized in Figure 12.

Figure 12. Block Level Matching Between FPGA and ASIC

5. Conclusions

In this paper, we have described a methodology for
designing a structured-ASIC closely tied to a prototype
FPGA. The key elements of the proposal are in the design
of a structured-ASIC base array and re-synthesis and
verification flows that greatly simplify migration.

In the proposed fabric a single HCell forms the basis
for all logic re-synthesized from the FPGA netlist. HCells
are grouped into HCell macros which implement
functionality directly corresponding to DSP blocks, FPGA
combinational logic cells and FPGA registers, in which all
anchor points are 1:1 and directly visible to verification.

Overall this fabric and methodology allows for a direct
correspondence and simple flow from FPGA to ASIC. The
methodology is independent of the FPGA fabric and exact
HCell characteristics used.

References
[1] R. Camposano, “Will the ASIC Survive”, Keynote Address

at SBCCI 2004, p5.
[2] W. Dally and A. Chang, “The Role of Custom Design in

ASIC Chips”, in Proc. DAC 2000, pp. 643-647.
[3] A.B. Kahng, “Design Technology Productivity in the DSM

Era”, in Proc ASPDAC, 2001.
[4] A. El-Gamal, J. Cohn, A. Kahng, I. Bolsens, A. Broom, C.

Hamlin, P. Magarshack, Z. Or-Bach and L. Pileggi, “Fast,
Cheap and Under Control: The Next Implementation
Fabric”, in Proc. DAC 2003, pp. 354-355.

[5] Dataquest; “ASIC Design Times Spiral Out of Control”;
Gary Smith; January 2002.

[6] C. Patel, A. Cozzie, H. Schmit and L. Pileggi, “An
Architectural Exploration of Via Patterned Gate Arrays”, in
Proc. ISPD 2003, pp. 184-189.

[7] K. Tong, V. Kheterpal, V. Rovner and L. Pileggi, “Regular
logic fabrics for a via patterned gate array (VPGA)”, in Proc.
CICC 2003.

[8] L. Pileggi et.al., “Exploring Regular Fabrics to Optimize the
Performance-Cost Trade-Off”, in Proc. DAC 2003, pp. 782-
787.

[9] V. Kheterpal, A.J. Strojwas and L. Pileggi, “Routing
Architecture Ex07.

[10] R. Reed Taylor and H. Schmit, “Enabling Energy Efficiency
in Via-Patterned Gate Array Devices”, in Proc. DAC 2004,
pp. 874-877.

[11] R. Reed Taylor and H. Schmit, “Creating a Power-aware
Structured ASIC”, in Proc. ISLPED 2004, pp. 74-77.

[12] B. Hu, H. Jiang, Q. Liu and M. Marek-Sadowska, “Synthesis
and Placement Flow for Gain-Based Programmable Regular
Fabrics”, in Proc. ISPD 2003, pp. 197-203.

[13] V. Betz, J. Rose and A. Marquardt, “Architecture and CAD
for Deep-Submicron FPGAs”, Kluwer, 1999.

[14] Y. Ran and M. Marek-Sadowska, “On Designing Via-
Configurable Cell Blocks for Regular Fabrics”, in Proc.
DAC 2004, pp. 198-203.

[15] N. Shenoy, J. Kawa and R. Camposano, “Design Automation
for Mask Programmable Fabrics”, in Proc. DAC 2004, pp.
192-197.

[16] K-C Wu and Y-W Tsai, “Structured ASIC, Evolution or
Revolution”, in Proc. ISPD 2004, pp. 103-106.

[17] T. Okamoto, T. Kimoto and N. Maeda, “Design
Methodology and Tools for NEC Electronics’ Structured
ASIC ISSP”, in Proc. ISPD 2004, pp. 90-96.

[18] D. Sherlekar, “Design Considerations for Regular Fabrics”,
in Proc. ISPD 2004, pp. 97-102.

[19] M. Hutton et.al., “Improving FPGA Performance and Area
Using an Adaptive Logic Module”, in Proc. FPL 2004, pp.
135-144.

[20] D. Lewis et.al, “The Stratix II Logic and Routing
Architecture”, in Proc. FPGA 2005, pp. 14-20.

[21] L. Trevillyan, “An Experiment in Technology Mapping for
FPGAs Using a Fixed Library”, in Proc. IWLS 1993

1-1 Match

1-1 Match

Functional Match

1-1 Functional Match

Functional Match

1-1 Functional Match

1-1 Match I/Os

FPGA
Netlis

ASIC
Netlis

I/Os

PLLs PLLs

RAMs RAMs

DSP Custom Block DSP HCell Macros

FPGA Registers HCell Macros

I/O I/O FPGA Comb Logic HCell Macros

Clocks &
Control Signals

Clocks &
Control Signals

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

