
Application Specific Instruction Processor Based Implementation
of a GNSS Receiver on an FPGA

G. Kappen, T. G. Noll
RWTH Aachen University, Chair of Electrical Engineering and

Computer Systems, Schinkelstr. 2, 52062 Aachen, Germany
{kappen , tgn}@eecs.rwth-aachen.de

Abstract

In this paper the concept of a reconfigurable hardware
macro to be used as a generic building block in low-
power, low-cost SoC for multioperable GNSS positioning
is described, featuring sufficient computational power and
flexibility. The central processing unit of the reconfigur-
able hardware macro is an ASIP accelerated by addi-
tional eFPGA and weakly configurable ASIC based co-
processors. The different hardware building blocks (i.e.
ASIP, eFPGA, ASIC) of the target architecture are moti-
vated with state of the art GNSS receiver algorithms. To
explore the design space of the target architecture and to
develop appropriate partitioning cost functions a GNSS
receiver testbed was realised on an FPGA board. The
testbed utilises a programmable ASIP, designed and gen-
erated with the processor description language LISA, as a
central processing unit. As a first accelerating co-
processor the correlator was realised. Exemplary optimi-
sations of the ASIP / co-processor architecture as well as
the achieved improvements are described.

1. Introduction

Today there is an increasing variety of applications for
global navigation satellite system (GNSS) receivers rang-
ing from simple navigation equipment or location based
service in mobile phones to global time reference applica-
tions.

In near future with the existing American Navstar GPS,
the Russian GLONASS and the upcoming European
GALILEO system, three GNSSs will be available. In
addition, the user has the opportunity to use so-called
augmentation systems like the European EGNOS to re-
ceive additional positioning, integrity and correction in-
formation. The interoperable use of these systems will
improve the accuracy as well as the availability and sup-
ports GNSS real-time kinematic (RTK) positioning [1].

RTK and multioperable positioning, as well as applica-
bility to a wide range of applications will require high

computational performance. A high degree of flexibility is
demanded because of continuous evolution in the GNSS
receiver algorithms and expected signal specification
changes for GALILEO and the modernized Navstar GPS.
Furthermore, most of the battery-powered applications are
power dissipation and/or energy critical, leading to the
well-known “power vs. flexibility conflict”.

In this paper the concept of a reconfigurable hardware
macro to be used as a generic building block in low-
power, low-cost System-on-Chip (SoC) is presented. The
proposed target architecture (Figure 1) allows for mul-
tioperable GNSS positioning, simple integration in SoC
and features sufficient computational power and flexibil-
ity. The target hardware architecture comprises an analog
frontend with an A/D-converter and a digital signal proc-
essing part built up from a programmable application
specific instruction processor (ASIP) being accelerated by
application domain specific embedded FPGA (eFPGA)
and weakly configurable ASIC based co-processors.

GNSS Receiver

ASIPeFPGA

Analog Frontend

Position/
Velocity

ASIC

Co-Proc. #3

Co-Proc #1

Co-Proc. #2

Co-Proc. #2

Figure 1: Outline of the target architecture

The paper is organised as follows:
In the second section the architecture of standard

GNSS receivers and the realisation of the main signal
processing blocks will be sketched. In section 3, based on
flexibility and performance constraints, a first partitioning
is derived and the accelerating blocks of the target archi-
tecture are motivated. In the fourth section the testbed
implementation of an ASIP-based multioperable GNSS

3-9810801-0-6/DATE06 © 2006 EDAA

receiver on an FPGA board is presented and first optimi-
sations of the ASIP instruction set are outlined.

2. Standard GNSS receiver

This section gives a brief overview of the architecture
of a standard GNSS receiver and introduces the main
signal processing blocks. For a detailed description of
GNSS receiver applications, operation and algorithms
refer to [2].

Today’s standard GNSS receivers comprise an analog
and a digital part. The analog part consists of the analog
frontend transferring the incoming RF signal to an inter-
mediate frequency (IF) and converting it from analog to
digital. For NAVSTAR GPS and GALILEO, the satellite
signals use the same carrier frequency and are separated in
the code space domain (CDMA) by so-called pseudo
random noise (PRN) codes. GLONASS separates the
satellites in the frequency domain (FDMA) which requires
a more complex RF frontend architecture. For a mul-
tioperable receiver the frontend should consider the RF
signals from all available GNSS (e.g. GPS-L1,
GLONASS, GALILEO L1/E5a, etc.).

Correlator

Channel#1Channel#1Channel#1Channel #n
Channel #N

Correlator Control

Ephemeris
Decoder

Code
tracking

Carrier
tracking

Navigation Processor

Satellite
Position

Receiver
Position

Ionospheric
Correction

IF

PVT

Acquisition

Au
gm

en
ta

tio
n

Da
ta

Figure 2: Simplified GNSS receiver block diagram

The digital part (Figure 2) consists of N parallel corre-
lator channels, the correlator control block and the posi-
tion velocity time (PVT) calculation. The three blocks are
described in the following.

Figure 3 shows a Navstar GPS correlator channel in de-
tail. In the first stage the IF signal is multiplied with the
complex local estimate of the intermediate carrier fre-
quency.

IF

Integrate

Integrate

Integrate

Integrate

Integrate

Integrate

NCO

90°
PRNL P E NCO

Figure 3: GPS Correlator Channel Block diagram

The resulting complex baseband signal is multiplied
with three different, half-chip separated, versions of the
PRN code (i.e. late (L), prompt (P), early (E)) and inte-
grated and dumped in six correlation registers. These six
registers form the input values for the carrier and code
tracking. GLONASS and GALILEO correlators differ
from the Navstar GPS correlator (Figure 3) mainly in the
used PRN code. GALILEO additionally uses a modified
modulation scheme called Binary Offset Carrier (BOC)
which modulates the PRN code with a sub-carrier [3].

In the correlator control block, code tracking aligns the
code phase of the incoming and locally generated PRN
code by a delay lock loop (DLL). The DLL input values
are the early and late correlation registers. Carrier tracking
utilises the prompt correlation values to adjust the carrier
frequency with a combination of a Phase-Locked Loop
(PLL) and a Frequency-Locked Loop (FLL). The ephem-
eris decoder extracts the ephemeris data (i.e. satellite orbit
data, correction parameters, etc.) out of the satellite signal.

The navigation processor calculates the satellite and the
receiver position for a specific time, based on the decoded
ephemeris and the measurement data of the correlator
channels. Furthermore the PVT refines the positioning
results by correction of the estimated ionospheric delay
based on ephemeris and/or additional augmentation data
(e.g. EGNOS).

In today’s standard Navstar GPS receivers the correla-
tor channels are realised in dedicated hardware and thus
the channel number and configuration is fixed. The corre-
lator control and the navigation processor are mostly im-
plemented on an embedded RISC processor (e.g. [4]).

In the following section, starting from a description of
the flexibility and performance requirements of the signal
processing blocks (Figure 2), the hardware architecture
(Figure 1) of the proposed GNSS receiver macro is moti-
vated. Hereafter a first mapping of the signal processing
blocks to the target architecture is done.

3. Target architecture

3.1 Motivation
To improve area and power efficiency the signal proc-

essing blocks (Figure 2) should be mapped to the appro-
priate hardware block of the proposed reconfigurable
hardware macro. Therefore the flexibility and perform-
ance requirements of current and next generation GNSS
signal processing must be analysed first:

In order to improve the accuracy and the sensitivity of
the receiver currently intensive research is undertaken to
elaborate new concepts in the field e.g. of multipath
propagation and cross correlation mitigation.

Multipath propagation effects arise from the superposi-
tion of the direct and delayed path signals and directly

affect code tracking and though the positioning accuracy
due to deformation of the received signal.

Recent publications propose new correlator configura-
tions to overcome the problem of multipath propagation.
In [5] and [6] the above mentioned early / late correlator
code tracking is expanded to a solution where linear com-
binations of early and late correlators with flexible delay,
so-called Code Correlation Reference Waveforms
(CCRW), are used. Other approaches use the correspon-
dence between the received signal power and the multi-
path error [7] to especially account for short delay multi-
path propagation. Concerning the new modulation scheme
of the GALILEO signal other approaches for enhanced
correlators in [8] and [3] are proposed.

Furthermore, recent publications in the field of cross
correlation mitigation for high sensitivity receivers [9] and
enhanced tracking algorithms proposed in [10] require
further changes in the correlator channel.

In conclusion, today it seems to be impossible to spec-
ify a dedicated correlator channel enabling for the imple-
mentation of future enhanced correlation concepts. Even
more severe it is expected that the most appropriate corre-
lation concept in future will strongly depend on the ad-
dressed application domain. Furthermore, expected signal
specification changes for GALILEO and the modernised
Navstar GPS, as well as different correlator channel struc-
tures for the available GNSS support this approach.

The acquisition algorithm allocates the observable sat-
ellites to the receiver channels. Depending on the avail-
able data (Almanac, Ephemeris, Assisted GPS) there is
some kind of a priori knowledge which can be exploited.
In addition, different search strategies (e.g. frequency
domain, serial search) could be used, which affect the
time for a first position information (i.e. time-to-first-fix).

The tracking adjusts the code and carrier frequency af-
ter the satellite signal has been detected and locked. The
tracking loop usually consists of a discriminator and a
loop filter. For best tracking results the parameters of the
tracking loop algorithm (e.g. order / bandwidth of the loop
filter, type of discriminator, etc.) should be adjustable in
real-time to consider varying receiver conditions (e.g.
temporal high receiver dynamics, weak satellite signals,
etc.).

The navigation processor mainly performs trigonomet-
ric and matrix computations to estimate the receiver and
satellite position and correct the ionospheric delay. To
decrease the effect of noisy measurement data or to inte-
grate inertial navigation sensors (INS) in different stages
[11] of the receiver signal processing, the Kalman Filter is
frequently used in the navigation processor block of
GNSS receivers. Through the extensive use of matrix
operations and a great number of state variables the Kal-
man Filter requires a high computational performance.

After the analysis of the requirements of the signal
processing blocks in this section, the next section de-
scribes the proposed hardware architecture.

3.2 Hardware building blocks
The central processing unit of the proposed multioper-

able GNSS receiver platform will be realised as an ASIP
optimised for processing of GNSS receiver algorithms
with minimal power and area consumption [12]. In order
to achieve the required computational performance at an
acceptable overall power and area efficiency, the ASIP
will be accelerated by additional tightly coupled building
blocks (co-processors).

To motivate this target architecture, Figure 4 illustrates
the design space in terms of power efficiency (in
mW/MOPS) and area efficiency (in MOPS/mm²). The
different entries in the diagram correspond to implementa-
tions of standard signal processing algorithms on different
hardware platforms (e.g. General Purpose (GP) processor,
DSP, FPGA, etc.). The entries are clustered according to
the respective hardware platform. The flexibility de-
creases from left to right (programmable, reconfigurable,
dedicated). A standard GPS correlator has been imple-
mented on three different platforms (GP-processor, DSP
and FPGA) to approve the diagram for the GNSS receiver
case. The correlator implementations are depicted by red
symbols in the diagram. As can be seen from Figure 4
ASIPs and eFPGAs establish an attractive compromise
between standard programmable cores on the one hand
side and dedicated hardware cores on the other side.

Dedicated hardware implementation offer superior
power and area efficiency but suffer from the fact that
they feature no flexibility at all.

MOPS / mm²

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06

m
W

/ M
O

PS

DSP
FPGA

phys. opt.
standard cells

ASIP

optimisation for
application domain

GP-processor GPS Correlator
Implementation

programmable dedicatedreconfigurable

MOPS / mm²

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06

m
W

/ M
O

PS

DSP
FPGA

phys. opt.
standard cells

ASIP

optimisation for
application domain

GP-processor GPS Correlator
Implementation

programmable dedicatedreconfigurable

Figure 4: Power vs. Area Design space

As the area efficiency of eFPGA implementations is
about one to two orders of magnitude worse than that of

dedicated hardware implementations the use of multi-
plexed dedicated hardware features the best solution as
long as the number of different modes is limited and espe-
cially if the functionality of the different modes can be
fixed during design time. Even if the number of modes
gets large (and area efficiency decreases) this approach
ensures lowest possible power dissipation by simply
switching off non-used units.

Of course, non-iterative and irregular control oriented
functionality calls for obvious reasons for a software im-
plementation on programmable cores. Therefore, here a
hybrid architecture is proposed (Figure 1):

Control oriented functionality and positioning calcula-
tions are to be mapped on a software programmable proc-
essor core. In order to achieve best possible power and
area efficiency instead of applying a standard processor
core an architecture being specifically to this application
(ASIP) will be applied. Number crunching functionalities
which can be specified as generic sub-functions are im-
plemented on multiplexed dedicated hardware accelerator
blocks. Units (especially parts of the correlator block)
which neither can be specified finally nor are suitable for
an implementation on the ASIP will be mapped on a re-
configurable eFPGA-based accelerator block. In order to
significantly improve the power and area efficiency of the
latter, its structure (especially its interconnect architec-
ture) will be optimised for this application towards an
application specific eFPGA (Figure 4).

One example for an application domain eFPGA opti-
misation is the reduction of area an especially power con-
suming medium length interconnect resources [13]. This
modification is based on the observation that regular in
contrast to irregular logic requires less medium length
interconnect resources. To confirm this for GNSS applica-
tions, the Navstar GPS correlator (regular) and the corre-
lator control (irregular) have been implemented on a
commercial FPGA. For the two implementations the time
delay between two nodes, which corresponds to the con-
nection length, has been compared. Figure 5 shows the
interconnect length histograms according to the qualitative
assumption and the quantitative confirmation by this ex-
periment. It can be seen that the correlator control logic
needs a significantly higher fraction of medium intercon-
nects than the regular correlator.

in

te
rc

on
ne

ct
s

Interconnect length

GPS Correlator channel
GPS Correlator control

Time delay in ns

S
ca

le
d

in

te
rc

on
ne

ct
s

regular logic
irregular logic

in

te
rc

on
ne

ct
s

Interconnect length

GPS Correlator channel
GPS Correlator control
GPS Correlator channel
GPS Correlator control

Time delay in ns

S
ca

le
d

in

te
rc

on
ne

ct
s

regular logic
irregular logic
regular logic
irregular logic

Figure 5: Connections lengths comparison

The optimisation of the ASIP is mainly done by cus-
tomisation of the instruction set architecture (ISA) and the
processor architecture for this specific application. The
basis for the modifications of the ASIPs ISA will be the
profiling of actual and upcoming GNSS receiver algo-
rithms.

3.3 Partitioning approach
From the discussion above, in this section the mapping

of the main signal processing blocks onto the hardware
building blocks will be described.

Because a fixed correlator channel architecture is cur-
rently not conceivable, some blocks of the correlator es-
pecially the code generator and the CCRW generation will
be implemented on a reconfigurable logic while other
parts are realised on the weakly configurable ASIC.

In contrast, the acquisition is suited well for software
implementation though this part should be implemented
on the ASIP.

For the tracking it must be investigated if a (partial)
mapping to the reconfigurable co-processors increases the
overall receiver performance and energy efficiency with-
out reducing the required flexibility of the tracking loop.

However, especially the loop filters of the tracking
loop are suitable for the current eFPGA topology [13].

In the presented approach, the functions of the naviga-
tion processor will be implemented on the ASIP. Here,
further research must prove the use of an application op-
timised instruction set for matrix calculations. The impor-
tance of this optimised instruction set is further increasing
for the usage of the Kalman Filter for position smoothing
and INS aided receiver operation. Further sophisticated
algorithms could benefit from an instruction set, optimised
for matrix computations (e.g. subspace projection methods
[9] which reduce the cross correlation in high sensitivity
receivers).

The different signal processing blocks of a GNSS re-
ceiver mentioned above, their need for flexibility and
performance are considered to formulate a first coarse
partitioning onto the different architecture blocks
(Table 1).

Table 1: GNSS receiver partitioning

Signal Processing Block Hardware Block

Correlator
Acquisition
Tracking
Navigation Processor

eFPGA / ASIC
ASIP
ASIP / eFPGA
ASIP

In the next section, the first implementation of a test-

bed on an FPGA board is discussed.

4. GNSS receiver testbed

For the purpose of target architecture evaluation and
optimisation as well as exploration of approaches for
multioperable positioning, a GNSS receiver testbed
(Figure 6) was realised. Furthermore, the testbed will
enable the formulation of cost functions for different parti-
tioning scenarios.

FPGA

ASIPCorrelator
Analog

Frontend
Tightly coupled

Program Memory

Data Memory

Channel#1Channel#1Channel#1Channel#n

Channel#12

Figure 6: GNSS receiver testbed

The analog RF part of the testbed was realised by com-
mercially available frontend and A/D components for all
three GNSSs, while the digital part was implemented on a
commercial FPGA.

The description of the ASIP and the instruction set was
done using the processor description language LISA [14].
After generating the ASIP simulator model, the LISA
Processor Simulator reduces the debugging effort because
both the processor and the application code can be com-
pletely simulated before tested in hardware.

4.1 Prototype hardware
To have a first starting point for the ASIP a standard

RISC processor LISA description has been modified to be
synthesisable for a commercially available FPGA. The
ASIP VHDL code was automatically generated by the
LISA Processor Generator. The complete ASIP with data
and program memory was synthesised and compiled by
FPGA design software. Characteristic features of this
ASIP implementation on a Stratix II FPGA are summa-
rised in Table 2. To couple the ASIP to the accelerating
co-processors tightly additionally data and control I/Os
have been added to the ASIP architecture.

The remaining part of the FPGA is used for the recon-
figurable implementation of the co-processors blocks.

Table 2: Characteristic ASIP values

#LEs fmax Data Memory Prog. Memory
1765 112 MHz 4 kByte 4 kByte

The complete software development for the ASIP was

done in assembler. After debugging the software, the
generated executable files were converted to program

memory content which could be loaded onto FPGA mem-
ory.

As a first example for a co-processor, a 12-channel cor-
relator was implemented in VHDL. Each channel can be
configured for Navstar GPS, GALILEO and GLONASS
operation. Because of the tightly coupling between the
ASIP and its co-processors, the ASIP can directly access
the correlator measurement data and control the local
carrier- and code-frequency of every correlator channel.
Therefore, no communication protocol is required which
significantly reduces the complexity of the ASIP software.

Table 3: Characteristic prototype values

#LEs fmax Data Memory Program Memory
5557 84 MHz 4 kByte 4 kByte

In Table 3, the features of the testbed (digital part only)

for the exemplary case with 12 correlator channels on a
Stratix II FPGA are summarised.

4.2 Correlator control software
As a starting point for the ASIP software, the correlator

control (i.e. acquisition and tracking) will be presented to
show the co-processor / ASIP coupling and first ASIP
optimisations. The correlator control software initially
assigns the observable satellites to the correlator channels
and starts a search in the code phase and frequency space
for satellite signals. If satellite signals are present, the
correlator unit synchronises the local carrier- and code-
frequency to track these satellites. If the correlator control
tracks a minimum of four satellites, the software reads the
measurement result registers and decodes the ephemeris
data to calculate the satellite and receiver position.

Benchmark results (Figure 7) of the complete GNSS
algorithm reveal that especially the tracking takes a rea-
sonable amount of the overall computational time, de-
pending on the number of tracked satellites.

0 5 10 15 20 25 30

Receiver Positon

Satellite Position

Ionospheric Correction

Tracking

Fractional part of computational time in %

Time per call Overall time (six satellites tracked)

Navigation Processor

Correlator Control

0 5 10 15 20 25 30

Receiver Positon

Satellite Position

Ionospheric Correction

Tracking

Fractional part of computational time in %

Time per call Overall time (six satellites tracked)

Navigation Processor

Correlator Control

Figure 7: GNSS algorithm Benchmark results

4.3 Optimisations
First optimisations are presented to show how special

instructions can significantly reduce the runtime of an
application. In addition to this, the described modifica-

tions of the ASIP ISA show two different methods of
supplementing new instructions in the coding tree and
how this affects the ASIP features.

To show these modifications, the tracking is examined
closer. On the standard RISC processor, the tracking runs
167 cycles.

The arithmetical right shift (asr) is a very simple op-
eration which is added to the existing coding tree [14].
Because just a new leaf in the execute stage of the pipe-
line is added and the realisation in VHDL is simple, the
total amount additional LEs is small. Nevertheless, the
new instruction saves some execution cycles in the track-
ing routine code

The second exemplary modification concerns the cal-
culation of two complex vector lengths (vlen) in one
cycle. This instruction has been implemented as a new
coding tree in the ASIP. Because the changes affect three
pipeline stages and the realisation in VHDL is more com-
plex, the number of LEs is significantly increased.

The results of the presented modifications are summa-
rised in Table 4. With the area (A) of the ASIP and the
execution time (T) of the ASIP software it can be seen that
the exemplarily chosen efficiency TA ⋅ complexity de-
creases for the added instructions.

Table 4. Optimisation results.

 #LE Cycles fmax AT
RISC 1765 167 112 MHz 100 %
+asr 1798 155 110 MHz 96.2 %
+vlen 2551 102 113 MHz 87.5 %

Further modifications will concern the instruction set

of the ASIP as well as the coupling between the ASIP and
the associated co-processors. The aim of the optimisations
will be to achieve the performance specifications of the
GNSS algorithm and then improve the area and power
efficiency.

5. Conclusion

The concept of a reconfigurable GNSS receiver archi-
tecture based on an ASIP was presented. The proposed
hardware uses an ASIP optimised for GNSS receiver
algorithms which is accelerated by application domain
optimised eFPGAs and dedicated weakly configurable
ASIC blocks. The different signal processing blocks of
actual and forthcoming GNSS receivers have been exam-
ined in terms of the needed flexibility and performance
and a first partitioning has been presented.

A GNSS receiver testbed comprised of an ASIP and
VHDL macros was realised on a commercial FPGA to
explore the design space of the proposed reconfigurable
target architecture. With this prototype actually the paral-
lel reception and decoding of signals from up to 12 satel-
lites is possible. First optimisations of the ASIP core and

their effect on the computational time and the ASIP area
were described.

Further research will focus on the optimisation of the
ASIP ISA, the coupling between the ASIP and the accel-
erating co-processors and the optimisation of the eFPGA
for GNSS.

References

[1] Eisfeller, B., Tiberius C., Pany T., Heinrichs G.,
Real-Time Kinematic in the Light of GPS Moderni-
zation and Galileo, GPS World, October, 2002

[2] Kaplan, Elliot D., Understanding GPS Principles and
Applications, Artech House, 1996.

[3] Hein, G. W., Irsigler, M., Avila Rodriguez, J. A.,
Pany, T., Performance of Galileo L1 Signal Candi-
dates, Proc. ENC-GNSS 2004, Rotterdam, May,
2004

[4] SiRFstarIIA GPS System on Chip, SiRF Technology,
Inc., May, 2005

[5] Garin, L. J., The “Shaping Correlator“, Novel Multi-
path Mitigation Technique Applicable to GALILEO
BOC(1,1) Modulation Waveforms in High Volume
Markets, Proc. ENC-GNSS 2005, Munich, July, 2005

[6] Pany, T., Irsigler, M., Eisfeller, B., Optimum Coher-
ent Discriminator Based Code Multipath Mitigation
By S-Curve Shaping For BOC(N,N) and BPSK Sig-
nals, Proc. ENC-GNSS 2005, Munich, July, 2005

[7] Sleewaegen, J.-M., Boon, F., Mitigating Short-Delay
Multipath: a Promising New Technique, ION GPS
2001, Salt Lake City, September, 2001

[8] Kovar, P., Vejraska, F., Seidl, L., Kacmarik, P., Gali-
leo Receiver Core Technologies, GNSS 2004, Syd-
ney, December, 2004

[9] Glennon, E. P., Dempster, A. G., A Review of Cross
Correlation Mitigation Techniques, GNSS 2004,
Sydney, December, 2004

[10] Dovis, F., Pini, M., Mulassano, P., Turbo DLL: an
Innovative Architecture for Multipath Mitigation in
GNSS Receivers, ION GNSS 2004, Long Beach Sep-
tember, 2004

[11] Babu, R., Wang, J., Improving the Quality of IMU-
Derived Doppler Estimates for Ultra-Tight GPS/INS
Integration, ENC-GNSS 2004, Rotterdam, May,
2004

[12] Keutzer, K., Malik, S., Newton, A. R., From ASIC to
ASIP: The next Design Discontinuity, ICCD 2002
Proceedings, 2002

[13] Neumann, B., von Sydow, T., Blume, H., Noll, T. G.,
Design and quantitative analysis of parametrisable
eFPGA-architectures for arithmetic, Kleinheubacher
Tagung, September, 2005

[14] LISATek Creator’s Manual, CoWare, Oktober 2004

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

