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Abstract 

In this paper the concept of a reconfigurable hardware 
macro to be used as a generic building block in low-
power, low-cost SoC for multioperable GNSS positioning 
is described, featuring sufficient computational power and 
flexibility. The central processing unit of the reconfigur-
able hardware macro is an ASIP accelerated by addi-
tional eFPGA and weakly configurable ASIC based co-
processors. The different hardware building blocks (i.e. 
ASIP, eFPGA, ASIC) of the target architecture are moti-
vated with state of the art GNSS receiver algorithms. To 
explore the design space of the target architecture and to 
develop appropriate partitioning cost functions a GNSS 
receiver testbed was realised on an FPGA board. The 
testbed utilises a programmable ASIP, designed and gen-
erated with the processor description language LISA, as a 
central processing unit. As a first accelerating co-
processor the correlator was realised. Exemplary optimi-
sations of the ASIP / co-processor architecture as well as 
the achieved improvements are described. 

1. Introduction 

Today there is an increasing variety of applications for 
global navigation satellite system (GNSS) receivers rang-
ing from simple navigation equipment or location based 
service in mobile phones to global time reference applica-
tions. 

In near future with the existing American Navstar GPS, 
the Russian GLONASS and the upcoming European 
GALILEO system, three GNSSs will be available. In 
addition, the user has the opportunity to use so-called 
augmentation systems like the European EGNOS to re-
ceive additional positioning, integrity and correction in-
formation. The interoperable use of these systems will 
improve the accuracy as well as the availability and sup-
ports GNSS real-time kinematic (RTK) positioning [1]. 

RTK and multioperable positioning, as well as applica-
bility to a wide range of applications will require high 

computational performance. A high degree of flexibility is 
demanded because of continuous evolution in the GNSS 
receiver algorithms and expected signal specification 
changes for GALILEO and the modernized Navstar GPS. 
Furthermore, most of the battery-powered applications are 
power dissipation and/or energy critical, leading to the 
well-known “power vs. flexibility conflict”. 

In this paper the concept of a reconfigurable hardware 
macro to be used as a generic building block in low-
power, low-cost System-on-Chip (SoC) is presented. The 
proposed target architecture (Figure 1) allows for mul-
tioperable GNSS positioning, simple integration in SoC 
and features sufficient computational power and flexibil-
ity. The target hardware architecture comprises an analog 
frontend with an A/D-converter and a digital signal proc-
essing part built up from a programmable application 
specific instruction processor (ASIP) being accelerated by 
application domain specific embedded FPGA (eFPGA) 
and weakly configurable ASIC based co-processors. 
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Figure 1: Outline of the target architecture  

The paper is organised as follows: 
In the second section the architecture of standard 

GNSS receivers and the realisation of the main signal 
processing blocks will be sketched. In section 3, based on 
flexibility and performance constraints, a first partitioning 
is derived and the accelerating blocks of the target archi-
tecture are motivated. In the fourth section the testbed 
implementation of an ASIP-based multioperable GNSS 
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receiver on an FPGA board is presented and first optimi-
sations of the ASIP instruction set are outlined. 

2. Standard GNSS receiver 

This section gives a brief overview of the architecture 
of a standard GNSS receiver and introduces the main 
signal processing blocks. For a detailed description of 
GNSS receiver applications, operation and algorithms 
refer to [2]. 

Today’s standard GNSS receivers comprise an analog 
and a digital part. The analog part consists of the analog 
frontend transferring the incoming RF signal to an inter-
mediate frequency (IF) and converting it from analog to 
digital. For NAVSTAR GPS and GALILEO, the satellite 
signals use the same carrier frequency and are separated in 
the code space domain (CDMA) by so-called pseudo 
random noise (PRN) codes. GLONASS separates the 
satellites in the frequency domain (FDMA) which requires 
a more complex RF frontend architecture. For a mul-
tioperable receiver the frontend should consider the RF 
signals from all available GNSS (e.g. GPS-L1, 
GLONASS, GALILEO L1/E5a, etc.). 
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Figure 2: Simplified GNSS receiver block diagram 

The digital part (Figure 2) consists of N parallel corre-
lator channels, the correlator control block and the posi-
tion velocity time (PVT) calculation. The three blocks are 
described in the following. 

Figure 3 shows a Navstar GPS correlator channel in de-
tail. In the first stage the IF signal is multiplied with the 
complex local estimate of the intermediate carrier fre-
quency. 
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Figure 3: GPS Correlator Channel Block diagram 

The resulting complex baseband signal is multiplied 
with three different, half-chip separated, versions of the 
PRN code (i.e. late (L), prompt (P), early (E)) and inte-
grated and dumped in six correlation registers. These six 
registers form the input values for the carrier and code 
tracking. GLONASS and GALILEO correlators differ 
from the Navstar GPS correlator (Figure 3) mainly in the 
used PRN code. GALILEO additionally uses a modified 
modulation scheme called Binary Offset Carrier (BOC) 
which modulates the PRN code with a sub-carrier [3].  

In the correlator control block, code tracking aligns the 
code phase of the incoming and locally generated PRN 
code by a delay lock loop (DLL). The DLL input values 
are the early and late correlation registers. Carrier tracking 
utilises the prompt correlation values to adjust the carrier 
frequency with a combination of a Phase-Locked Loop 
(PLL) and a Frequency-Locked Loop (FLL). The ephem-
eris decoder extracts the ephemeris data (i.e. satellite orbit 
data, correction parameters, etc.) out of the satellite signal. 

The navigation processor calculates the satellite and the 
receiver position for a specific time, based on the decoded 
ephemeris and the measurement data of the correlator 
channels. Furthermore the PVT refines the positioning 
results by correction of the estimated ionospheric delay 
based on ephemeris and/or additional augmentation data 
(e.g. EGNOS). 

In today’s standard Navstar GPS receivers the correla-
tor channels are realised in dedicated hardware and thus 
the channel number and configuration is fixed. The corre-
lator control and the navigation processor are mostly im-
plemented on an embedded RISC processor (e.g. [4]). 

In the following section, starting from a description of 
the flexibility and performance requirements of the signal 
processing blocks (Figure 2), the hardware architecture 
(Figure 1) of the proposed GNSS receiver macro is moti-
vated. Hereafter a first mapping of the signal processing 
blocks to the target architecture is done. 

3. Target architecture  

3.1 Motivation 
To improve area and power efficiency the signal proc-

essing blocks (Figure 2) should be mapped to the appro-
priate hardware block of the proposed reconfigurable 
hardware macro. Therefore the flexibility and perform-
ance requirements of current and next generation GNSS 
signal processing must be analysed first:  

In order to improve the accuracy and the sensitivity of 
the receiver currently intensive research is undertaken to 
elaborate new concepts in the field e.g. of multipath 
propagation and cross correlation mitigation. 

Multipath propagation effects arise from the superposi-
tion of the direct and delayed path signals and directly 



affect code tracking and though the positioning accuracy 
due to deformation of the received signal. 

Recent publications propose new correlator configura-
tions to overcome the problem of multipath propagation. 
In [5] and [6] the above mentioned early / late correlator 
code tracking is expanded to a solution where linear com-
binations of early and late correlators with flexible delay, 
so-called Code Correlation Reference Waveforms 
(CCRW), are used. Other approaches use the correspon-
dence between the received signal power and the multi-
path error [7] to especially account for short delay multi-
path propagation. Concerning the new modulation scheme 
of the GALILEO signal other approaches for enhanced 
correlators in [8] and [3] are proposed.  

Furthermore, recent publications in the field of cross 
correlation mitigation for high sensitivity receivers [9] and 
enhanced tracking algorithms proposed in [10] require 
further changes in the correlator channel. 

In conclusion, today it seems to be impossible to spec-
ify a dedicated correlator channel enabling for the imple-
mentation of future enhanced correlation concepts. Even 
more severe it is expected that the most appropriate corre-
lation concept in future will strongly depend on the ad-
dressed application domain. Furthermore, expected signal 
specification changes for GALILEO and the modernised 
Navstar GPS, as well as different correlator channel struc-
tures for the available GNSS support this approach. 

The acquisition algorithm allocates the observable sat-
ellites to the receiver channels. Depending on the avail-
able data (Almanac, Ephemeris, Assisted GPS) there is 
some kind of a priori knowledge which can be exploited. 
In addition, different search strategies (e.g. frequency 
domain, serial search) could be used, which affect the 
time for a first position information (i.e. time-to-first-fix).  

The tracking adjusts the code and carrier frequency af-
ter the satellite signal has been detected and locked. The 
tracking loop usually consists of a discriminator and a 
loop filter. For best tracking results the parameters of the 
tracking loop algorithm (e.g. order / bandwidth of the loop 
filter, type of discriminator, etc.) should be adjustable in 
real-time to consider varying receiver conditions (e.g. 
temporal high receiver dynamics, weak satellite signals, 
etc.). 

The navigation processor mainly performs trigonomet-
ric and matrix computations to estimate the receiver and 
satellite position and correct the ionospheric delay. To 
decrease the effect of noisy measurement data or to inte-
grate inertial navigation sensors (INS) in different stages 
[11] of the receiver signal processing, the Kalman Filter is 
frequently used in the navigation processor block of 
GNSS receivers. Through the extensive use of matrix 
operations and a great number of state variables the Kal-
man Filter requires a high computational performance. 

After the analysis of the requirements of the signal 
processing blocks in this section, the next section de-
scribes the proposed hardware architecture. 

3.2 Hardware building blocks 
The central processing unit of the proposed multioper-

able GNSS receiver platform will be realised as an ASIP 
optimised for processing of GNSS receiver algorithms 
with minimal power and area consumption [12]. In order 
to achieve the required computational performance at an 
acceptable overall power and area efficiency, the ASIP 
will be accelerated by additional tightly coupled building 
blocks (co-processors). 

To motivate this target architecture, Figure 4 illustrates 
the design space in terms of power efficiency (in 
mW/MOPS) and area efficiency (in MOPS/mm²). The 
different entries in the diagram correspond to implementa-
tions of standard signal processing algorithms on different 
hardware platforms (e.g. General Purpose (GP) processor, 
DSP, FPGA, etc.). The entries are clustered according to 
the respective hardware platform. The flexibility de-
creases from left to right (programmable, reconfigurable, 
dedicated). A standard GPS correlator has been imple-
mented on three different platforms (GP-processor, DSP 
and FPGA) to approve the diagram for the GNSS receiver 
case. The correlator implementations are depicted by red 
symbols in the diagram. As can be seen from Figure 4 
ASIPs and eFPGAs establish an attractive compromise 
between standard programmable cores on the one hand 
side and dedicated hardware cores on the other side.  

Dedicated hardware implementation offer superior 
power and area efficiency but suffer from the fact that 
they feature no flexibility at all.  
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Figure 4: Power vs. Area Design space 

As the area efficiency of eFPGA implementations is 
about one to two orders of magnitude worse than that of 



dedicated hardware implementations the use of multi-
plexed dedicated hardware features the best solution as 
long as the number of different modes is limited and espe-
cially if the functionality of the different modes can be 
fixed during design time. Even if the number of modes 
gets large (and area efficiency decreases) this approach 
ensures lowest possible power dissipation by simply 
switching off non-used units.  

Of course, non-iterative and irregular control oriented 
functionality calls for obvious reasons for a software im-
plementation on programmable cores. Therefore, here a 
hybrid architecture is proposed (Figure 1): 

Control oriented functionality and positioning calcula-
tions are to be mapped on a software programmable proc-
essor core. In order to achieve best possible power and 
area efficiency instead of applying a standard processor 
core an architecture being specifically to this application 
(ASIP) will be applied. Number crunching functionalities 
which can be specified as generic sub-functions are im-
plemented on multiplexed dedicated hardware accelerator 
blocks. Units (especially parts of the correlator block) 
which neither can be specified finally nor are suitable for 
an implementation on the ASIP will be mapped on a re-
configurable eFPGA-based accelerator block. In order to 
significantly improve the power and area efficiency of the 
latter, its structure (especially its interconnect architec-
ture) will be optimised for this application towards an 
application specific eFPGA (Figure 4). 

One example for an application domain eFPGA opti-
misation is the reduction of area an especially power con-
suming medium length interconnect resources [13]. This 
modification is based on the observation that regular in 
contrast to irregular logic requires less medium length 
interconnect resources. To confirm this for GNSS applica-
tions, the Navstar GPS correlator (regular) and the corre-
lator control (irregular) have been implemented on a 
commercial FPGA. For the two implementations the time 
delay between two nodes, which corresponds to the con-
nection length, has been compared. Figure 5 shows the 
interconnect length histograms according to the qualitative 
assumption and the quantitative confirmation by this ex-
periment. It can be seen that the correlator control logic 
needs a significantly higher fraction of medium intercon-
nects than the regular correlator. 
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Figure 5: Connections lengths comparison 

The optimisation of the ASIP is mainly done by cus-
tomisation of the instruction set architecture (ISA) and the 
processor architecture for this specific application. The 
basis for the modifications of the ASIPs ISA will be the 
profiling of actual and upcoming GNSS receiver algo-
rithms.  

3.3 Partitioning approach 
From the discussion above, in this section the mapping 

of the main signal processing blocks onto the hardware 
building blocks will be described.  

Because a fixed correlator channel architecture is cur-
rently not conceivable, some blocks of the correlator es-
pecially the code generator and the CCRW generation will 
be implemented on a reconfigurable logic while other 
parts are realised on the weakly configurable ASIC. 

In contrast, the acquisition is suited well for software 
implementation though this part should be implemented 
on the ASIP. 

For the tracking it must be investigated if a (partial) 
mapping to the reconfigurable co-processors increases the 
overall receiver performance and energy efficiency with-
out reducing the required flexibility of the tracking loop.  

However, especially the loop filters of the tracking 
loop are suitable for the current eFPGA topology [13]. 

In the presented approach, the functions of the naviga-
tion processor will be implemented on the ASIP. Here, 
further research must prove the use of an application op-
timised instruction set for matrix calculations. The impor-
tance of this optimised instruction set is further increasing 
for the usage of the Kalman Filter for position smoothing 
and INS aided receiver operation. Further sophisticated 
algorithms could benefit from an instruction set, optimised 
for matrix computations (e.g. subspace projection methods 
[9] which reduce the cross correlation in high sensitivity 
receivers). 

The different signal processing blocks of a GNSS re-
ceiver mentioned above, their need for flexibility and 
performance are considered to formulate a first coarse 
partitioning onto the different architecture blocks 
(Table 1).  

Table 1: GNSS receiver partitioning 

Signal Processing Block Hardware Block

Correlator
Acquisition
Tracking
Navigation Processor

eFPGA / ASIC
ASIP
ASIP / eFPGA
ASIP  

 
In the next section, the first implementation of a test-

bed on an FPGA board is discussed. 
 
 



4. GNSS receiver testbed  

For the purpose of target architecture evaluation and 
optimisation as well as exploration of approaches for 
multioperable positioning, a GNSS receiver testbed 
(Figure 6) was realised. Furthermore, the testbed will 
enable the formulation of cost functions for different parti-
tioning scenarios.  
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Figure 6: GNSS receiver testbed 

The analog RF part of the testbed was realised by com-
mercially available frontend and A/D components for all 
three GNSSs, while the digital part was implemented on a 
commercial FPGA. 

The description of the ASIP and the instruction set was 
done using the processor description language LISA [14]. 
After generating the ASIP simulator model, the LISA 
Processor Simulator reduces the debugging effort because 
both the processor and the application code can be com-
pletely simulated before tested in hardware. 

4.1 Prototype hardware 
To have a first starting point for the ASIP a standard 

RISC processor LISA description has been modified to be 
synthesisable for a commercially available FPGA. The 
ASIP VHDL code was automatically generated by the 
LISA Processor Generator. The complete ASIP with data 
and program memory was synthesised and compiled by 
FPGA design software. Characteristic features of this 
ASIP implementation on a Stratix II FPGA are summa-
rised in Table 2. To couple the ASIP to the accelerating 
co-processors tightly additionally data and control I/Os 
have been added to the ASIP architecture. 

The remaining part of the FPGA is used for the recon-
figurable implementation of the co-processors blocks. 

Table 2: Characteristic ASIP values 

#LEs fmax Data Memory Prog. Memory 
1765 112 MHz 4 kByte 4 kByte 

 
The complete software development for the ASIP was 

done in assembler. After debugging the software, the 
generated executable files were converted to program 

memory content which could be loaded onto FPGA mem-
ory.  

As a first example for a co-processor, a 12-channel cor-
relator was implemented in VHDL. Each channel can be 
configured for Navstar GPS, GALILEO and GLONASS 
operation. Because of the tightly coupling between the 
ASIP and its co-processors, the ASIP can directly access 
the correlator measurement data and control the local 
carrier- and code-frequency of every correlator channel. 
Therefore, no communication protocol is required which 
significantly reduces the complexity of the ASIP software.  

Table 3: Characteristic prototype values 

#LEs fmax Data Memory Program Memory 
5557 84 MHz 4 kByte 4 kByte 

 
In Table 3, the features of the testbed (digital part only) 

for the exemplary case with 12 correlator channels on a 
Stratix II FPGA are summarised. 

4.2 Correlator control software 
As a starting point for the ASIP software, the correlator 

control (i.e. acquisition and tracking) will be presented to 
show the co-processor / ASIP coupling and first ASIP 
optimisations. The correlator control software initially 
assigns the observable satellites to the correlator channels 
and starts a search in the code phase and frequency space 
for satellite signals. If satellite signals are present, the 
correlator unit synchronises the local carrier- and code-
frequency to track these satellites. If the correlator control 
tracks a minimum of four satellites, the software reads the 
measurement result registers and decodes the ephemeris 
data to calculate the satellite and receiver position. 

Benchmark results (Figure 7) of the complete GNSS 
algorithm reveal that especially the tracking takes a rea-
sonable amount of the overall computational time, de-
pending on the number of tracked satellites. 
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Figure 7: GNSS algorithm Benchmark results 

4.3 Optimisations 
First optimisations are presented to show how special 

instructions can significantly reduce the runtime of an 
application. In addition to this, the described modifica-



tions of the ASIP ISA show two different methods of 
supplementing new instructions in the coding tree and 
how this affects the ASIP features.  

To show these modifications, the tracking is examined 
closer. On the standard RISC processor, the tracking runs 
167 cycles. 

The arithmetical right shift (asr) is a very simple op-
eration which is added to the existing coding tree [14]. 
Because just a new leaf in the execute stage of the pipe-
line is added and the realisation in VHDL is simple, the 
total amount additional LEs is small. Nevertheless, the 
new instruction saves some execution cycles in the track-
ing routine code  

The second exemplary modification concerns the cal-
culation of two complex vector lengths (vlen) in one 
cycle. This instruction has been implemented as a new 
coding tree in the ASIP. Because the changes affect three 
pipeline stages and the realisation in VHDL is more com-
plex, the number of LEs is significantly increased. 

The results of the presented modifications are summa-
rised in Table 4. With the area (A) of the ASIP and the 
execution time (T) of the ASIP software it can be seen that 
the exemplarily chosen efficiency TA ⋅  complexity de-
creases for the added instructions. 

Table 4. Optimisation results. 

 #LE Cycles fmax AT 
RISC 1765 167 112 MHz 100 % 
+asr 1798 155 110 MHz 96.2 % 
+vlen 2551 102 113 MHz 87.5 % 

 
Further modifications will concern the instruction set 

of the ASIP as well as the coupling between the ASIP and 
the associated co-processors. The aim of the optimisations 
will be to achieve the performance specifications of the 
GNSS algorithm and then improve the area and power 
efficiency. 

5. Conclusion 

The concept of a reconfigurable GNSS receiver archi-
tecture based on an ASIP was presented. The proposed 
hardware uses an ASIP optimised for GNSS receiver 
algorithms which is accelerated by application domain 
optimised eFPGAs and dedicated weakly configurable 
ASIC blocks. The different signal processing blocks of 
actual and forthcoming GNSS receivers have been exam-
ined in terms of the needed flexibility and performance 
and a first partitioning has been presented. 

A GNSS receiver testbed comprised of an ASIP and 
VHDL macros was realised on a commercial FPGA to 
explore the design space of the proposed reconfigurable 
target architecture. With this prototype actually the paral-
lel reception and decoding of signals from up to 12 satel-
lites is possible. First optimisations of the ASIP core and 

their effect on the computational time and the ASIP area 
were described. 

Further research will focus on the optimisation of the 
ASIP ISA, the coupling between the ASIP and the accel-
erating co-processors and the optimisation of the eFPGA 
for GNSS. 
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