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Abstract  
 

In this paper we analyze a 3D image rendering 
algorithm and the different mapping schemes to implement 
it in a SIMD reconfigurable architecture. 3D image render 
is highly computational and has an important restriction in 
execution time due to the requirement to get interactive 
results. We demonstrate that the execution of this 
algorithm in MorphoSys can take advantage of the 
available parallel resources, as well as of the possibility of 
one cycle configuration change. In this paper we show that 
it is possible to implement the rendering algorithm in our 
coarse grain reconfigurable architecture, obtaining values 
over 100 fps. 

1. Introduction 

Reconfigurable architectures have had an important 
growth in the last years as academic as commercial level. 
The reconfigurable systems consist of a programmable 
hardware controlled by different control and configuration 
points, which decide the hardware functionality required in 
each moment to execute different applications [1]. 

The coarse grain reconfigurable architectures consist of 
a  matrix with some functional units, which can work to 
word level instead of bit level, like FPGAs (fine grain) 
[16][3]. This granularity reduces the architecture area, 
consumed power, delays and configuration times 
compared with FPGAs. 

For more than one decade ago, different coarse grain 
reconfigurable architectures have appeared. Examples of 
those architectures are: Morphosys [4] targe architecture of 
this work; RAPID [5] which uses linear arrays and it can be 
programmed through a high level language, like C. PACT 
XXP [6] including one AMBA bus as communication 
channel. REMARC [7] which consists of one MIPS-II 
RISC processor and an 8x8 array, made with 16 bits 
nano-processors, each one of them with a little memory. 
All the nano-processors are connected to a global control 
unit. CHAMALEON architecture [8] is made up of a 
reconfigurable unit, a programmable processor and in/out 
device. ADRES [2] is a coarse grain reconfigurable 

architecture developed at IMEC. All these architectures  
have common characteristics as one cycle context 
changing, array of reconfigurable cells with a rich 
interconnectivity, on-chip data memory … All these 
features have been optimized to execute multimedia and 
signal processing applications. 

In the last years, many multimedia interactive 
applications have been implemented in different platforms 
like cell phones or PDAs. Among the applications that are 
having bigger growth, we can find 3D image processing 
applications. They are present in games, museums or 
virtual shop. They process a large amount of data, and they 
have a strong computational work. Moreover, these 
applications have an important inherent parallelism that 
makes them perfect candidates for being executed in 
reconfigurable architectures. Particularly, renderization 
algorithm [9], it is one of the most used in many 
applications to represent in the screen (2D) the 3D target 
scene. This algorithm is usually implemented in PC 
graphic cards [10] obtaining excellent results in execution 
time, but these cards are not frequently used to execute 
other kind of applications. However, the reconfigurable 
architectures have demonstrate that can executed many of 
the multimedia and DSP applications obtaining a 
competitive performance [16], as well as some graphic 
applications [7]. Therefore, the coarse grain reconfigurable 
architectures are the perfect candidates to executed one of 
the most used algorithm in graphics, renderization, as this 
paper demonstrate. 
 The paper is organized as follow. Section 2 describes 
Morphosys architecture where we implement the rendering 
algorithm, explained in Section 3. Section 4 exposes the 
different strategies, which have been studied, to implement 
the algorithm in Morphosys. Section 5 optimizes these 
strategies solving the z-buffer problem. Section 6 show 
experimental results obtained and Section 7 concludes the 
paper. 
 
2. Morphosys 
MorphoSys [4] is a coarse grain reconfigurable 
architecture developing in the University of California, 
Irvine. Current demand on speed of multimedia  
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Figure 1. MorphoSys Architecture 

applications execution makes MorphoSys reconfigurable 
architecture an interesting alternative. Its architectural 
scheme is shown in Figure 1. 
 The RC Array is the most important part of the 
reconfigurable module. It is composed by 64 
reconfigurable cells, placed in 8 rows by 8 columns array. 
The RCs (Reconfigurable Cells) have a set of 
interconnections for communicating. The RC Array is 
divided into four 4x4 quadrants. Each cell is connected 
with four nearest neighbors in each quadrant and also with 
all the cells of its row and its column. There are 
interquadrant connections too.  
 Each reconfigurable cell seems a data-path of a 
microprocessor. It has an ALU-multiplier, a shift unit of 32 
bits, multiplexers that select ALU input, a register bank 
and a context register. 
 The Context Memory (CM) stores the different 
configurations (contexts) that the architecture needs for 
executing the application. Then the cell in the same row or 
column share at one time the same context, it is a SIMD 
system but letting execution of different configurations in 
each row or columns at one time. This method lets to 
reduce the size of the context memory because it has to 
store one configuration for all the cells in the same column 
or row. It also reduces the time of loading contexts and the 
complexity of the interconnection network. Configuration 
load penalty is minimum because the contexts are stored in 
the CM, which is an internal memory. The context is 
loaded into the RC internal context registers in one cycle, 
which allows dynamic configuration. Furthermore, it is 
possible loading contexts into context memory at the same 
time that one configuration is executed in the RC Array. 
 The Frame Buffer (FB) is the internal memory of the 
reconfigurable module. It stores the application input data 
and results. The FB has two memory banks. This division 
lets loading output data to one bank at the same time the 
other bank loads data to reconfigurable cells without 
increasing execution time. 

 The DMA Controller controls traffic between main 
memory and Frame Buffer or Context Memory but it does 
not allow simultaneous transfers of data and contexts. 
TinyRISC is a 32 bits RISC processor, that controls the 
system. It has an instructions set as a MIPS, adding control 
instructions of Mosphosys. TinyRISC loads contexts in the 
CM, loads data from main memory to the FB, stores 
Morphosys results into main memory, and controls the 
DMA and RC Array. It decides which configuration is 
executed at each time. 

 We have added another internal memory to the 
original MorphoSys model, the Z-buffer, it was designed 
for executing graphic applications. We store depth 
information of screen pixels into it.  Data is structured as 
an array with the same number of rows and columns as the 
width and height of the screen. Each pixel is stored into 
Z-buffer only if it has lower depth than the stored pixels. 
So, we only store pixels of the visible objects, not of the 
hidden parts. 

 
3. Rendering algorithm 

Rendering is the process of generating an image from a 
model. The model is a description of three dimensional 
objects, it would contain geometry, viewpoint, texture and 
lighting information. Then, rendering algorithm target is to 
project a 3D scene in a graphic device (2D). 

It is one of the major sub-topics of 3D computer 
graphics. In the 'graphics pipeline' it is the last major step, 
giving the final appearance to the models and animation. It 
has uses in: computer games, simulators, movies special 
effects, and design visualisation. Each one employs a 
different balance of features and techniques. As a product, 
a wide variety of renders are available. 
 The rendering algorithm used in our work transforms a 
3D scene made up of triangles in a 2D representation. The 
algorithm processes all the triangles in the scene, and it 
transforms their 3D points coordinates (vertex) in the 
corresponding projection coordinates, and these last 
coordinates are the screen pixels in the graphic device 
(Figure 2). The implemented rendering algorithm is the 
scanline rendering [9], it works on a point-by-point basis 
rather than polygon-by-polygon basis. Some point in a line 
is calculated, followed by successive points in the line. 
When the line is finished, rendering proceeds to the next 

 

  
Figure 2. Parallel projection of one triangle 



 

line. This kind of algorithm can be easily integrated with 
the Phong reflection model [11] and Z-buffer algorithm 
[12]. 
 The rendering algorithm repeats the following steps for 
each triangle that compose the scene: 
 - It orders the triangles points (x0,y0,z0), (x1,y1,z1) and 
(x2,y2,z2), using the ‘y’ coordinate from smaller to bigger, 
in such a way that the A vertex correspond with the 
smallest ‘y’ value and the C vertex with the greatest one. It 
is done to make triangle filling easier. 

-These vertexes are projected into the screen.  
 -Triangles pixels are drawn in two stages for each ‘y’ 
line of pixels. The algorithm calculates first the edge pixels 
of the line, these are the pixels of the lines AB, AC and BC. 
And later, the pixels in between these two edges are drawn. 

- After drawn one line, the ‘y’ coordinate is increased 
by one, and the new edges are calculated. Later the pixels 
in between these two edges are also computed. The 
algorithm continues till drawn the whole triangle (Figure 
3).  

- The z value of each pixel, which is required for the 
depth test is calculated through linear extrapolation from 
the z0, z1 and z2 vertex values.   

In order to facilitate the triangle edge calculation the 
render can divide the triangle into two sub-triangles 
(Figure 3). Firstly, the pixels between AB and AC are 
drawn until the ‘y’ coordinate is greater than the ‘y’ value 
for vertex B. Then, the algorithm draws the pixels between 
lines BC and AC. It is always possible to divide the 
triangle into two pieces because we have ordered the 
triangle vertex before they are drawn. 

In order to obtain an image with enough realism we 
apply to each pixel a Gouraud shading algorithm [13]. We 
calculate the light intensity in each triangle vertex applying 
Id = IiKdcosα, which is the intensity of diffused light given 
by Lambert's Law. Ii stands for the intensity of the light 
source, α is the angle between the surface normal and a line 
from the surface point to the light source (it varies between 
0 and 90 degrees), and Kd is a constant between 0 and 1, 
which is an approximation to the diffuse reflectivity which 
depends on the nature of the material and the wavelength 
of the incident light. This equation can be also written as 
the dot product of two unit vector:  
 

 
Figure 3. (a): filling pixels between AB and AC. (b): 

filling pixels between BC and AC. 

Id = IiKd(L·N) 
Where N is the surface normal vector and L is the direction 
of vector from the light source to the point on the surface. 
We calculate this value for the three vertex of the triangle, 
and then, we realize a linear interpolation form this point to 
compute the light intensity in each pixel of that triangle. 
This method produces results with high quality in a 
reduced computation time. 
    Finally, the algorithm checks the parts of the image 
visible, deleting the hidden ones. The 3D scene is 
composed by several objects, described as a set of 
triangles, some objects may occlude the others in the final 
2D image. We use the Z-Buffer algorithm to compute the 
visible part of the image. In this case, the algorithm has to 
draw in the screen the lower depth pixels, those closer to 
the screen. The Z-Buffer is represented in a matrix 
structure, like screen pixels matrix. This matrix stores the 
‘z’ value and the colour of the current pixel in the position 
‘x’ and ‘y’, its coordinates. When a new triangle is 
rendered the new pixel colours and ‘z’ value is only stored 
if this new ‘z’ coordinate is smaller than the current ‘z’ in 
the ‘x’ and ‘y’ position of the Z-Buffer.  
 We have chosen a simple rendering algorithm, but it 
obtains, as experimental results demonstrate, a high quality 
images in an interactive execution time. Moreover, we will 
be able to add improvements incrementally, adding new 
rendering characteristic to the algorithm pipeline. 

 
4. Implementation Strategies 
 There are several possible implementation strategies 
for the rendering algorithm into MorphoSys. The strategy 
finally chosen must minimize the execution time. It can be 
achieved by minimizing the period of time in which the 
reconfigurable cells are idle and reducing the time wasted 
in data transfers not overlapped with computation. 
 The rendering algorithm implemented was described in 
the section above. From that description and taking into 
account the MorphoSys architecture we must find the 
different macro-tasks (kernels) that compose it. We can 
infer the existence of 4 different kernels (Figure 4). The 3D 
scene, described by triangles, is stored in the FB. The 
“Vertex Ordering” kernel orders the tree triangles vertex. 
The “Edge Pixel” kernel finds the edge pixels of the 
corresponding triangle edges. The “z-buffer” kernel sends 
the pixels found to the z-buffer. This kernel has to send the 
pixels obtained by the “edge pixels” kernel and also by the 
“line pixels” kernel. The internal pixels are calculated by 
the “line pixel” kernel, which found one by one the pixels 
in the x-line between the two edges. When the algorithm 
ends one x-line, it has to calculate the new edges of the 
upper x-line. The control point 2 (Figure 4) checks if the 
last pixel founded is the last on the x-line. We also need a 
control point to check if the triangle is completely render 
(control point 1, Figure 4). Moreover, the final pixel  
  



 

 
Figure 4. Flow Diagram of the Rendering Algorithm 

 
colour, and all the environment effects can be added to the 
diagram flow after the edge and line pixels kernels.    
 The kernels’ internal loops and if-then-else structures 
are easily solved by pseudo-branch contexts, which were 
previously used for mapping, for example, the ray-tracing 
algorithm [14]. The problem appears when we try to 
mapping the control points 1 and 2 at Figure 4, in a SIMD 
reconfigurable architecture, as MorphoSys. For example, 
the control point 2 checks if all the pixels between the two 
edges of the line have been rendered. Then it is very likely 
that several reconfigurable cells have ended the line 
rendering process, while the others require render more 
pixels. In that case, the RCs that have ended that process 
are idle while the others are executing the loop, due to the 
SIMD execution model. In the other control point, control 
point 1, it checks if the triangle is completely render. The 
triangles sizes and positions are completely random, so in 
the most of the cases we would have a great number of RCs 
idle. The implementation finally chosen must minimize 
this effect. 

There several possible strategies: 
- The first one implies the execution of one triangle in 

each RC. This means the parallel execution of 64 
triangles of different sizes, with an important problem 
of coherence. Beside that, there is also a problem of 
memory bandwidth due to the triangles concurrent 
execution. The 64 cells are sending to the z-buffer 64 
possible pixels at the same time that could address the 
same pixel in memory. This occurs when two cells 
obtain the same pixel but with different ‘z’ values 
(different depth). 

- Other possible strategy involves the execution of one 
kernel per row (or column) of the RC Array, since 
MorphoSys can be configured per rows. It can be 
done if the different rows configurations are known at 
compilation time. This solution could be performed 
executing the first kernel in the first row, the second 
in the second one, and go on. An improvement of this 
solution would imply the usage of one column to 
perform the “z-buffer” kernel. We could map 2x8 
rendering pipelines. However, the kernels have very 
different execution time, then the most part of the 
computation time is being spent in the execution of 
the “line pixels” kernel while the rest of the RC Array 

(6 rows of 8 RCs) is idle. Although we could think of 
use the idle rows to perform “line pixels”, this is not 
possible because the position and color of the next 
pixel in the line is calculated through the current 
pixel.  

- The vertex ordering allows us to execute each half of 
the triangle independently. Therefore, we can map 
half triangle in each RC. There are two differences 
between this solution and the first one which make it 
more suitable for MorphoSys. First, it only renders 32 
triangles which make the possibility of differences 
among them lower. But, we are not increasing the 
execution time because ideally, as it processes half 
triangle, it takes half the time. Second in the first 
solution we should send pixels one by one to the 
z-buffer to avoid incoherencies. In this case we can 
send two pixels at times, because they belong to the 
same triangle, then they cannot address the same 
pixel in the screen, so the same address in the 
z-buffer. 

However, there is still a problem with z-buffer kernel, 
because it still takes for the third strategy 32 cycles. During 
this time the 96% of the RCs are idle.      

 
5. The z-buffer bottleneck 

From the above discussion is clearly that the transfer of 
pixels’ data to the z-buffer is the application bottleneck. In 
this section we discuss the different approaches to reduce 
its effect. 
 One possible solution would imply the usage of one 
row of RCs to discriminate the different pixels. Each row 
of the architecture sends its corresponding pixels to this 
row, and it performs the z-buffer algorithm deleting those 
pixels that have the same position in the screen and greater 
depth. However, it is impracticable because the time 
required to check 56 pixels is huge compared with pixel 
kernels calculation. For example the “line pixels” kernel 
only takes 18 cycles. Then, there would be 7 rows the 
majority of the time idle.    
 An improvement to this solution involves a kind of row 
sequential strategy. We propose to execute the whole 
algorithm in each row, keeping one row to execute the 
z-buffer kernel, but with several cycles delay for different 
rows. Therefore, the row dedicated to perform the z-buffer 
only has to compare 8 pixels at time. Even so, it takes at 
least 16 cycles. This solution is completely inefficient,  
above all because it takes more time than send one pixel a 
time to the z-buffer by the row that produce them, which 
takes 8 cycles.  
 It is clear from the above discussion that a specific row 
for help the z-buffer is not required. Moreover, if we apply 
row sequential to the third strategy, the algorithm only 
takes 4 cycles per row to send the pixels, because the two 
pixels from the same triangle cannot belong to the same 
pixel, so they can be sent at a time.  



 

 
Figure 5. Different snapshots of the RC-Array for the 

execution 
 

 Therefore, the final strategy chosen is: execute the 
algorithm in rows sequentially, where each row also 
performs “z-buffer” kernel (Figure 5). The rows in white 
are idle, the rendering algorithm is executed over the first 
row, after the fourth cycle the rendering algorithm begins 
to be executed in the second row. 4 cycles later it begins to 
be executed in the third row and go on. Then after ‘N’ 
cycles, depends on the final render chosen, the first row 
send its pixels in four cycles (we call this the “z-buffer” 
kernel), and so, ‘N+4’ cycles later the second row send its 
pixels. 
 The previous solution has a problem depending on the 
“edge pixels” and “line pixels” execution times. It is 
because after these two kernels the “z-buffer” kernel is 
executed, then, it can occur that when one row is sending 
the pixels after the edge kernel other row, at the same time, 
is sending pixels after the line kernel. In order to avoid this 
situation we must add idle cycles to each row after the first 
execution of the z-buffer kernel (Figure 6). For our 
implementation we know that the idle cycles we should be 
five, but the algorithm dedicate 3 cycles to check the 
control point 1, so finally the rows are only two cycles idle. 
For example, in the Figure 6.a in the next cycle the “line 
pixels” kernel begins on row one. In the Figure 6.b in the 
next cycle the first row will begin to send the pixel, 
meanwhile in this cycle the last row is ending these 
transfers. 
6.  We remind the reader that in case of any RC of the 
same row ended one of the two loops before the others it 
remains idle until all the cells on the same row finalize the 
corresponding loop.    
7. Experimental Results 
MorphoSys is designed to be running at 450MHz. It has 
512x16 internal RC-RAM, 4x16Kx16 FB, 64Kx16 
Z-buffer, 8x1Kx32 Context Memory, and 16 internal 
registers in each RC. The chip size is less than 30mm2 
using 0.13um CMOS technology. Thus, MorphoSys is 

 
     a)             b) 

Figure 6. Idle cycles added to the pipeline 

Cycles 
Strategy without 

optimization 
with 

optimization 
Sequential Processor 16995436 
One triangle per RC 5008328 1006711 
One triangle every 2 RCs 2676626 872093 

Table 1. Different strategies: comparative results 
 
more power efficient than general-purpose processors. 

The algorithm was translated into MorphoSys 
Assembly and then into machine code. The Simulation is 
run on MorphoSys processor simulator “Mulate” [4]. 
 Table 1 shows the experimental results obtained with 
the different strategies over the example of Figure 7 
(Stanford’s bunny). These results demonstrate that the 
strategy with the lowest execution time is the third with the 
z-buffer optimization  
 We have also rendered several images with different 
number of triangles, as is shown in figures from 7 to 11. 
The largest one corresponds to Thorax and hip with more 
than one million of triangles, we obtain 79 fps as Table 2 
shows. In the case of figures of lower number of triangles 
our implementation reaches more than 600 fps which 
demonstrate that interactivity is possible in MorphoSys. 
This also indicates that we can improve the rendering 
algorithm in order to obtain a better quality images because 
we have enough frame per second. 

If we compare our results with commercial render 
architectures, we have obtained similar results in triangle 
per second. For example, “Chromium” [15], which is a 
cluster of 32x2 Pentium III render images a rate of 71 
million of triangles per second; the Nvidia GeForce FX 
5200 [10], that is a standard graphic card, render images as 
a rate of 81 million of triangles per second. Moreover, 
MorphoSys architecture can also be used to implement a 
wide range of multimedia and DSP algorithms obtained 
competitive results.    
 
 Image Triangles fps T/s 

Bunny (Fig. 7) 69451 516 35836716 

Horse (Fig. 8) 96966 657 63706662 

Buda (Fig. 9)  1087716 133 14466.228 

Thorax and hip(Fig. 10) 1136745 73 82982385 
Hand (Fig. 11) 654666 128 83797248 

Table 2. Frame per second (fps) and triangles per 
second (T/s) for different images. 

 
8. Conclusions 
 In this paper we have demonstrated that is possible to 
get 3D image representations and interacting with them. 

Algorithm has been implemented against a 
coarse-grained reconfigurable hardware device with a 

4 cycles later N cycles later 

Edge Pixels 

Line pixels 
    idle  

 
 
 
    idle 



 

SIMD execution model. In this implementation we have 
found all cells are doing useful job most part of the time. 
The render can be easly improved adding more realistic 
effects and keeping interactive results. At architectural 
level we could improve the use of z-buffer in the way of 
using a smaller size memory than screen pixels. 
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Figure 9. Buda 

 

 
Figure 10. Thorax and hip 

 

 
Figure 11. Hand 
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