

Design and Implementation of a Rendering Algorithm in a SIMD Reconfigurable
Architecture (MorphoSys)

Javier Davila, Alfonso de Torres, Jose Manuel Sanchez, Marcos Sanchez-Elez, Nader Bagherzadeh*, F. Rivera
Dpt. Arquitectura de Computadores y Automatica, Universidad Complutense de Madrid (SPAIN).

*Dpt. Electrical Engineering and Computer Science, University of California Irvine (USA).

Abstract

In this paper we analyze a 3D image rendering
algorithm and the different mapping schemes to implement
it in a SIMD reconfigurable architecture. 3D image render
is highly computational and has an important restriction in
execution time due to the requirement to get interactive
results. We demonstrate that the execution of this
algorithm in MorphoSys can take advantage of the
available parallel resources, as well as of the possibility of
one cycle configuration change. In this paper we show that
it is possible to implement the rendering algorithm in our
coarse grain reconfigurable architecture, obtaining values
over 100 fps.

1. Introduction

Reconfigurable architectures have had an important
growth in the last years as academic as commercial level.
The reconfigurable systems consist of a programmable
hardware controlled by different control and configuration
points, which decide the hardware functionality required in
each moment to execute different applications [1].

The coarse grain reconfigurable architectures consist of
a matrix with some functional units, which can work to
word level instead of bit level, like FPGAs (fine grain)
[16][3]. This granularity reduces the architecture area,
consumed power, delays and configuration times
compared with FPGAs.

For more than one decade ago, different coarse grain
reconfigurable architectures have appeared. Examples of
those architectures are: Morphosys [4] targe architecture of
this work; RAPID [5] which uses linear arrays and it can be
programmed through a high level language, like C. PACT
XXP [6] including one AMBA bus as communication
channel. REMARC [7] which consists of one MIPS-II
RISC processor and an 8x8 array, made with 16 bits
nano-processors, each one of them with a little memory.
All the nano-processors are connected to a global control
unit. CHAMALEON architecture [8] is made up of a
reconfigurable unit, a programmable processor and in/out
device. ADRES [2] is a coarse grain reconfigurable

architecture developed at IMEC. All these architectures
have common characteristics as one cycle context
changing, array of reconfigurable cells with a rich
interconnectivity, on-chip data memory … All these
features have been optimized to execute multimedia and
signal processing applications.

In the last years, many multimedia interactive
applications have been implemented in different platforms
like cell phones or PDAs. Among the applications that are
having bigger growth, we can find 3D image processing
applications. They are present in games, museums or
virtual shop. They process a large amount of data, and they
have a strong computational work. Moreover, these
applications have an important inherent parallelism that
makes them perfect candidates for being executed in
reconfigurable architectures. Particularly, renderization
algorithm [9], it is one of the most used in many
applications to represent in the screen (2D) the 3D target
scene. This algorithm is usually implemented in PC
graphic cards [10] obtaining excellent results in execution
time, but these cards are not frequently used to execute
other kind of applications. However, the reconfigurable
architectures have demonstrate that can executed many of
the multimedia and DSP applications obtaining a
competitive performance [16], as well as some graphic
applications [7]. Therefore, the coarse grain reconfigurable
architectures are the perfect candidates to executed one of
the most used algorithm in graphics, renderization, as this
paper demonstrate.
 The paper is organized as follow. Section 2 describes
Morphosys architecture where we implement the rendering
algorithm, explained in Section 3. Section 4 exposes the
different strategies, which have been studied, to implement
the algorithm in Morphosys. Section 5 optimizes these
strategies solving the z-buffer problem. Section 6 show
experimental results obtained and Section 7 concludes the
paper.

2. Morphosys
MorphoSys [4] is a coarse grain reconfigurable
architecture developing in the University of California,
Irvine. Current demand on speed of multimedia

3-9810801-0-6/DATE06 © 2006 EDAA

Figure 1. MorphoSys Architecture

applications execution makes MorphoSys reconfigurable
architecture an interesting alternative. Its architectural
scheme is shown in Figure 1.
 The RC Array is the most important part of the
reconfigurable module. It is composed by 64
reconfigurable cells, placed in 8 rows by 8 columns array.
The RCs (Reconfigurable Cells) have a set of
interconnections for communicating. The RC Array is
divided into four 4x4 quadrants. Each cell is connected
with four nearest neighbors in each quadrant and also with
all the cells of its row and its column. There are
interquadrant connections too.
 Each reconfigurable cell seems a data-path of a
microprocessor. It has an ALU-multiplier, a shift unit of 32
bits, multiplexers that select ALU input, a register bank
and a context register.
 The Context Memory (CM) stores the different
configurations (contexts) that the architecture needs for
executing the application. Then the cell in the same row or
column share at one time the same context, it is a SIMD
system but letting execution of different configurations in
each row or columns at one time. This method lets to
reduce the size of the context memory because it has to
store one configuration for all the cells in the same column
or row. It also reduces the time of loading contexts and the
complexity of the interconnection network. Configuration
load penalty is minimum because the contexts are stored in
the CM, which is an internal memory. The context is
loaded into the RC internal context registers in one cycle,
which allows dynamic configuration. Furthermore, it is
possible loading contexts into context memory at the same
time that one configuration is executed in the RC Array.
 The Frame Buffer (FB) is the internal memory of the
reconfigurable module. It stores the application input data
and results. The FB has two memory banks. This division
lets loading output data to one bank at the same time the
other bank loads data to reconfigurable cells without
increasing execution time.

 The DMA Controller controls traffic between main
memory and Frame Buffer or Context Memory but it does
not allow simultaneous transfers of data and contexts.
TinyRISC is a 32 bits RISC processor, that controls the
system. It has an instructions set as a MIPS, adding control
instructions of Mosphosys. TinyRISC loads contexts in the
CM, loads data from main memory to the FB, stores
Morphosys results into main memory, and controls the
DMA and RC Array. It decides which configuration is
executed at each time.

 We have added another internal memory to the
original MorphoSys model, the Z-buffer, it was designed
for executing graphic applications. We store depth
information of screen pixels into it. Data is structured as
an array with the same number of rows and columns as the
width and height of the screen. Each pixel is stored into
Z-buffer only if it has lower depth than the stored pixels.
So, we only store pixels of the visible objects, not of the
hidden parts.

3. Rendering algorithm

Rendering is the process of generating an image from a
model. The model is a description of three dimensional
objects, it would contain geometry, viewpoint, texture and
lighting information. Then, rendering algorithm target is to
project a 3D scene in a graphic device (2D).

It is one of the major sub-topics of 3D computer
graphics. In the 'graphics pipeline' it is the last major step,
giving the final appearance to the models and animation. It
has uses in: computer games, simulators, movies special
effects, and design visualisation. Each one employs a
different balance of features and techniques. As a product,
a wide variety of renders are available.
 The rendering algorithm used in our work transforms a
3D scene made up of triangles in a 2D representation. The
algorithm processes all the triangles in the scene, and it
transforms their 3D points coordinates (vertex) in the
corresponding projection coordinates, and these last
coordinates are the screen pixels in the graphic device
(Figure 2). The implemented rendering algorithm is the
scanline rendering [9], it works on a point-by-point basis
rather than polygon-by-polygon basis. Some point in a line
is calculated, followed by successive points in the line.
When the line is finished, rendering proceeds to the next

Figure 2. Parallel projection of one triangle

line. This kind of algorithm can be easily integrated with
the Phong reflection model [11] and Z-buffer algorithm
[12].
 The rendering algorithm repeats the following steps for
each triangle that compose the scene:
 - It orders the triangles points (x0,y0,z0), (x1,y1,z1) and
(x2,y2,z2), using the ‘y’ coordinate from smaller to bigger,
in such a way that the A vertex correspond with the
smallest ‘y’ value and the C vertex with the greatest one. It
is done to make triangle filling easier.

-These vertexes are projected into the screen.
 -Triangles pixels are drawn in two stages for each ‘y’
line of pixels. The algorithm calculates first the edge pixels
of the line, these are the pixels of the lines AB, AC and BC.
And later, the pixels in between these two edges are drawn.

- After drawn one line, the ‘y’ coordinate is increased
by one, and the new edges are calculated. Later the pixels
in between these two edges are also computed. The
algorithm continues till drawn the whole triangle (Figure
3).

- The z value of each pixel, which is required for the
depth test is calculated through linear extrapolation from
the z0, z1 and z2 vertex values.

In order to facilitate the triangle edge calculation the
render can divide the triangle into two sub-triangles
(Figure 3). Firstly, the pixels between AB and AC are
drawn until the ‘y’ coordinate is greater than the ‘y’ value
for vertex B. Then, the algorithm draws the pixels between
lines BC and AC. It is always possible to divide the
triangle into two pieces because we have ordered the
triangle vertex before they are drawn.

In order to obtain an image with enough realism we
apply to each pixel a Gouraud shading algorithm [13]. We
calculate the light intensity in each triangle vertex applying
Id = IiKdcosα, which is the intensity of diffused light given
by Lambert's Law. Ii stands for the intensity of the light
source, α is the angle between the surface normal and a line
from the surface point to the light source (it varies between
0 and 90 degrees), and Kd is a constant between 0 and 1,
which is an approximation to the diffuse reflectivity which
depends on the nature of the material and the wavelength
of the incident light. This equation can be also written as
the dot product of two unit vector:

Figure 3. (a): filling pixels between AB and AC. (b):

filling pixels between BC and AC.

Id = IiKd(L·N)
Where N is the surface normal vector and L is the direction
of vector from the light source to the point on the surface.
We calculate this value for the three vertex of the triangle,
and then, we realize a linear interpolation form this point to
compute the light intensity in each pixel of that triangle.
This method produces results with high quality in a
reduced computation time.
 Finally, the algorithm checks the parts of the image
visible, deleting the hidden ones. The 3D scene is
composed by several objects, described as a set of
triangles, some objects may occlude the others in the final
2D image. We use the Z-Buffer algorithm to compute the
visible part of the image. In this case, the algorithm has to
draw in the screen the lower depth pixels, those closer to
the screen. The Z-Buffer is represented in a matrix
structure, like screen pixels matrix. This matrix stores the
‘z’ value and the colour of the current pixel in the position
‘x’ and ‘y’, its coordinates. When a new triangle is
rendered the new pixel colours and ‘z’ value is only stored
if this new ‘z’ coordinate is smaller than the current ‘z’ in
the ‘x’ and ‘y’ position of the Z-Buffer.
 We have chosen a simple rendering algorithm, but it
obtains, as experimental results demonstrate, a high quality
images in an interactive execution time. Moreover, we will
be able to add improvements incrementally, adding new
rendering characteristic to the algorithm pipeline.

4. Implementation Strategies
 There are several possible implementation strategies
for the rendering algorithm into MorphoSys. The strategy
finally chosen must minimize the execution time. It can be
achieved by minimizing the period of time in which the
reconfigurable cells are idle and reducing the time wasted
in data transfers not overlapped with computation.
 The rendering algorithm implemented was described in
the section above. From that description and taking into
account the MorphoSys architecture we must find the
different macro-tasks (kernels) that compose it. We can
infer the existence of 4 different kernels (Figure 4). The 3D
scene, described by triangles, is stored in the FB. The
“Vertex Ordering” kernel orders the tree triangles vertex.
The “Edge Pixel” kernel finds the edge pixels of the
corresponding triangle edges. The “z-buffer” kernel sends
the pixels found to the z-buffer. This kernel has to send the
pixels obtained by the “edge pixels” kernel and also by the
“line pixels” kernel. The internal pixels are calculated by
the “line pixel” kernel, which found one by one the pixels
in the x-line between the two edges. When the algorithm
ends one x-line, it has to calculate the new edges of the
upper x-line. The control point 2 (Figure 4) checks if the
last pixel founded is the last on the x-line. We also need a
control point to check if the triangle is completely render
(control point 1, Figure 4). Moreover, the final pixel

Figure 4. Flow Diagram of the Rendering Algorithm

colour, and all the environment effects can be added to the
diagram flow after the edge and line pixels kernels.
 The kernels’ internal loops and if-then-else structures
are easily solved by pseudo-branch contexts, which were
previously used for mapping, for example, the ray-tracing
algorithm [14]. The problem appears when we try to
mapping the control points 1 and 2 at Figure 4, in a SIMD
reconfigurable architecture, as MorphoSys. For example,
the control point 2 checks if all the pixels between the two
edges of the line have been rendered. Then it is very likely
that several reconfigurable cells have ended the line
rendering process, while the others require render more
pixels. In that case, the RCs that have ended that process
are idle while the others are executing the loop, due to the
SIMD execution model. In the other control point, control
point 1, it checks if the triangle is completely render. The
triangles sizes and positions are completely random, so in
the most of the cases we would have a great number of RCs
idle. The implementation finally chosen must minimize
this effect.

There several possible strategies:
- The first one implies the execution of one triangle in

each RC. This means the parallel execution of 64
triangles of different sizes, with an important problem
of coherence. Beside that, there is also a problem of
memory bandwidth due to the triangles concurrent
execution. The 64 cells are sending to the z-buffer 64
possible pixels at the same time that could address the
same pixel in memory. This occurs when two cells
obtain the same pixel but with different ‘z’ values
(different depth).

- Other possible strategy involves the execution of one
kernel per row (or column) of the RC Array, since
MorphoSys can be configured per rows. It can be
done if the different rows configurations are known at
compilation time. This solution could be performed
executing the first kernel in the first row, the second
in the second one, and go on. An improvement of this
solution would imply the usage of one column to
perform the “z-buffer” kernel. We could map 2x8
rendering pipelines. However, the kernels have very
different execution time, then the most part of the
computation time is being spent in the execution of
the “line pixels” kernel while the rest of the RC Array

(6 rows of 8 RCs) is idle. Although we could think of
use the idle rows to perform “line pixels”, this is not
possible because the position and color of the next
pixel in the line is calculated through the current
pixel.

- The vertex ordering allows us to execute each half of
the triangle independently. Therefore, we can map
half triangle in each RC. There are two differences
between this solution and the first one which make it
more suitable for MorphoSys. First, it only renders 32
triangles which make the possibility of differences
among them lower. But, we are not increasing the
execution time because ideally, as it processes half
triangle, it takes half the time. Second in the first
solution we should send pixels one by one to the
z-buffer to avoid incoherencies. In this case we can
send two pixels at times, because they belong to the
same triangle, then they cannot address the same
pixel in the screen, so the same address in the
z-buffer.

However, there is still a problem with z-buffer kernel,
because it still takes for the third strategy 32 cycles. During
this time the 96% of the RCs are idle.

5. The z-buffer bottleneck

From the above discussion is clearly that the transfer of
pixels’ data to the z-buffer is the application bottleneck. In
this section we discuss the different approaches to reduce
its effect.
 One possible solution would imply the usage of one
row of RCs to discriminate the different pixels. Each row
of the architecture sends its corresponding pixels to this
row, and it performs the z-buffer algorithm deleting those
pixels that have the same position in the screen and greater
depth. However, it is impracticable because the time
required to check 56 pixels is huge compared with pixel
kernels calculation. For example the “line pixels” kernel
only takes 18 cycles. Then, there would be 7 rows the
majority of the time idle.
 An improvement to this solution involves a kind of row
sequential strategy. We propose to execute the whole
algorithm in each row, keeping one row to execute the
z-buffer kernel, but with several cycles delay for different
rows. Therefore, the row dedicated to perform the z-buffer
only has to compare 8 pixels at time. Even so, it takes at
least 16 cycles. This solution is completely inefficient,
above all because it takes more time than send one pixel a
time to the z-buffer by the row that produce them, which
takes 8 cycles.
 It is clear from the above discussion that a specific row
for help the z-buffer is not required. Moreover, if we apply
row sequential to the third strategy, the algorithm only
takes 4 cycles per row to send the pixels, because the two
pixels from the same triangle cannot belong to the same
pixel, so they can be sent at a time.

Figure 5. Different snapshots of the RC-Array for the

execution

 Therefore, the final strategy chosen is: execute the
algorithm in rows sequentially, where each row also
performs “z-buffer” kernel (Figure 5). The rows in white
are idle, the rendering algorithm is executed over the first
row, after the fourth cycle the rendering algorithm begins
to be executed in the second row. 4 cycles later it begins to
be executed in the third row and go on. Then after ‘N’
cycles, depends on the final render chosen, the first row
send its pixels in four cycles (we call this the “z-buffer”
kernel), and so, ‘N+4’ cycles later the second row send its
pixels.
 The previous solution has a problem depending on the
“edge pixels” and “line pixels” execution times. It is
because after these two kernels the “z-buffer” kernel is
executed, then, it can occur that when one row is sending
the pixels after the edge kernel other row, at the same time,
is sending pixels after the line kernel. In order to avoid this
situation we must add idle cycles to each row after the first
execution of the z-buffer kernel (Figure 6). For our
implementation we know that the idle cycles we should be
five, but the algorithm dedicate 3 cycles to check the
control point 1, so finally the rows are only two cycles idle.
For example, in the Figure 6.a in the next cycle the “line
pixels” kernel begins on row one. In the Figure 6.b in the
next cycle the first row will begin to send the pixel,
meanwhile in this cycle the last row is ending these
transfers.
6. We remind the reader that in case of any RC of the
same row ended one of the two loops before the others it
remains idle until all the cells on the same row finalize the
corresponding loop.
7. Experimental Results
MorphoSys is designed to be running at 450MHz. It has
512x16 internal RC-RAM, 4x16Kx16 FB, 64Kx16
Z-buffer, 8x1Kx32 Context Memory, and 16 internal
registers in each RC. The chip size is less than 30mm2
using 0.13um CMOS technology. Thus, MorphoSys is

 a) b)

Figure 6. Idle cycles added to the pipeline

Cycles
Strategy without

optimization
with

optimization
Sequential Processor 16995436
One triangle per RC 5008328 1006711
One triangle every 2 RCs 2676626 872093

Table 1. Different strategies: comparative results

more power efficient than general-purpose processors.

The algorithm was translated into MorphoSys
Assembly and then into machine code. The Simulation is
run on MorphoSys processor simulator “Mulate” [4].
 Table 1 shows the experimental results obtained with
the different strategies over the example of Figure 7
(Stanford’s bunny). These results demonstrate that the
strategy with the lowest execution time is the third with the
z-buffer optimization
 We have also rendered several images with different
number of triangles, as is shown in figures from 7 to 11.
The largest one corresponds to Thorax and hip with more
than one million of triangles, we obtain 79 fps as Table 2
shows. In the case of figures of lower number of triangles
our implementation reaches more than 600 fps which
demonstrate that interactivity is possible in MorphoSys.
This also indicates that we can improve the rendering
algorithm in order to obtain a better quality images because
we have enough frame per second.

If we compare our results with commercial render
architectures, we have obtained similar results in triangle
per second. For example, “Chromium” [15], which is a
cluster of 32x2 Pentium III render images a rate of 71
million of triangles per second; the Nvidia GeForce FX
5200 [10], that is a standard graphic card, render images as
a rate of 81 million of triangles per second. Moreover,
MorphoSys architecture can also be used to implement a
wide range of multimedia and DSP algorithms obtained
competitive results.

 Image Triangles fps T/s

Bunny (Fig. 7) 69451 516 35836716

Horse (Fig. 8) 96966 657 63706662

Buda (Fig. 9) 1087716 133 14466.228

Thorax and hip(Fig. 10) 1136745 73 82982385
Hand (Fig. 11) 654666 128 83797248

Table 2. Frame per second (fps) and triangles per
second (T/s) for different images.

8. Conclusions
 In this paper we have demonstrated that is possible to
get 3D image representations and interacting with them.

Algorithm has been implemented against a
coarse-grained reconfigurable hardware device with a

4 cycles later N cycles later

Edge Pixels

Line pixels
 idle

 idle

SIMD execution model. In this implementation we have
found all cells are doing useful job most part of the time.
The render can be easly improved adding more realistic
effects and keeping interactive results. At architectural
level we could improve the use of z-buffer in the way of
using a smaller size memory than screen pixels.
References
1. Catherine Compton (Northwestern University) and Scott
Hauck (University of Washington), “Reconfigurable Computing:
A Survey of Systems and Software”. Pages: 1-2.
2. Katholic Universiteit and Vrije Universiteit of Belgium,
“ADRES: An Architecture with tightly coupled VLIW Processor
and Coarse-Grained Reconfigurable Matrix”. Págs: 1-3.
3. R. Hartenstein (1997). “The Microprocessor is no more
General Purpose: why Future Reconfigurable Platforms will win;
invited paper”, Proc. International Conference on Innovative
Systems in Silicon, ISIS'97, Austin, Texas, USA, October 8-10.
4. H. Singh, M.-H Lee, G. Lu et al. Morphosys: an integrated
reconfigurable system for data-parallel and
computation-intensive applications. IEEE Trans. on Computers,
49(5):465-481, May 2000.
5. C. Ebeling, D. Cronquist, et al. ”RaPiD – reconfigurable
pipelined datapath”. In Proc. International Workshop on Field
Programmable Logic and Applications, 1996. Pages: 23-25.
6. PACT XPP Technologies, 2003. http://www.pactcorp.com.
7. T. Miyamori and K. Olukotun: REMARC: Reconfigurable
Multimedia Array Coprocessor; Proc. ACM/SIGDA FPGA ’98,
Monterey, Feb. 1998. Page: 261.
8. Marcos Sánchez-Élez, Seminario Internacional sobre Sistemas
Dinámicamente Reconfigurables (Universidad de Antioquia,
Colombia), “Arquitecturas Reconfigurables de Grano Grueso”.
9. Alan Watt, “3D Computer Graphics”. 3rd Edition.
Addison-Wesley.
10. www.nvidia.com
11. R. L. Cook , K. E. Torrance, A Reflectance Model for
Computer Graphics, ACM Transactions on Graphics (TOG), v.1
n.1, p.7-24, Jan. 1982

Figure 7. Bunny

Figure 8. Horse

12. Watkins, G. "A Real-Time Visible Surface Algorithm",
Computer Science Department, University of Utah,
UTECH-CSC-70-101, June 1970
13. X.J. Guo, B. Land. “Phong shading and Gouraud shading”.
http://www.nbb.cornell.edu/neurobio/land/OldStudentProjects/c
s490-95to96/guo/report.html
14. M. Sanchez-Elez, H. Du, N. Tabrizi, et al. “Algorithm
Optimizations and Mapping Scheme for Interactive Ray Tracing
on a Reconfigurable Architecture” Computer & Graphics 27
(2003), Elsevier.
15. G. Humphreys, M. Eldridge, M. Everett et. al. ”WireGL: A
Scalable Graphics System for Clusters” Proceedings of the
SIGRAPH 2001.

Figure 9. Buda

Figure 10. Thorax and hip

Figure 11. Hand

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

