
A new approach to compress the configuration information
of programmable devices

M. Martina, G. Masera, A. Molino, F.Vacca
Politecnico di Torino

Dipartimento di Elettronica
I-10129 Torino, Italy

L. Sterpone, M. Violante
Politecnico di Torino

Dipartimento di Automatica ed Informatica
I-10129 Torino, Italy

Abstract

During the last decade programmable devices have
gained an impressive diffusion, tackling some traditional
ASIC marked domains. In particular, multi-million gate FP-
GAs have become a very appealing low-cost solution even
for consumer applications. However, one of the big issues
that can arise with modern FPGA devices is the need for
large and expensive external non-volatile memory to keep
the configuration data. In this work we developed an al-
ternative technique to compress FPGA bitstreams based on
the knowledge of the device internal structure. The pro-
posed method performs a two-step coder: in the first step
the bitstream is adaptively “filtered” to remove data redun-
dancy, while in the second step an arithmetic coder is used
to actually compress the information. The effectiveness of
the proposed technique has been demonstrated on a set of
case studies. As a result conventional approaches are out-
performed reaching a compression ratio of 4.26 against 3.3
times.

1. Introduction

Field Programmable Gate Arrays (FPGAs) are being in-
creasingly used as parts of consumer products. They have
gained a wide popularity due to their programmability to-
gether with the availability of high performance devices
with millions of configurable blocks. In fact FPGAs of-
fer a generic platform for hardware realization of applica-
tion specific algorithms. In particular FPGAs are suited for
accelerating compute intensive algorithms that can take ad-
vantage of massive hardware parallelism [1]. Moreover the
possibility to add reconfigurability to processors or more in
general to a System On a Chip (SOC), has fostered several
research works in the field of embedded systems. FPGA-
based embedded systems can sustain high processing rates
while providing the high degree of flexibility required in

dynamically changing environments.
As the number of configurable blocks and the complex-

ity of the routing resources has increased, the amount of
memory needed to store the configuration data grows ac-
cordingly. It is worth noticing that the configuration bit-
stream of the Xilinx Virtex FPGAs ranges from 0.6 Mbits
to 16Mbits [2]. As a consequence, storing configuration
bitstreams in an FPGA-based embedded system is a critical
issue since it could tackle the system cost. From an other
perspective the size of the bitstream has a negative impact
on the configuration time. This can potentially compromize
the performance of dynamically reconfigurable embedded
systems.

The aim of this paper is to propose an effective algorithm
to compress Xilinx Virtex bitstreams resorting to an adap-
tive binary arithmetic coder. In section 2 other works in
the field of FPGA bitstream compression are summarized,
whereas section 3 is devoted to emphasize the internal ar-
chitecture of Xilinx Virtex FPGAs. The strength of the
proposed algorithm stems from a deep knowledge of the
FPGA architecture and of the bitstream syntax. These in-
formations are exploited to feed the arithmetic coder with a
filtered version of the bitstream as described in section 4.

In section 5 we show experimental results and compar-
isons compressing the configuration data with ZIP and with
the compression tool provided by Xilinx [4]. Finally we
study the feasibility of exploiting the proposed algorithm in
a real embedded system based on an ARM processor. In
particular in an embedded scenario it is crucial to under-
stand the complexity of the decoder. In fact it is devoted to
receive the compressed bitstream, decompress and send it
to the FPGA configuration unit.

2. Related work

In order to reduce the memory footprint of the FPGA
configuration data, Xilinx developed a bitstream compres-
sion algorithm based on LZ77 scheme [4]. LZ77 is a

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



dictionary-based text compression scheme developed by
Lempel and Ziv in the 1977 [12]. This scheme works by
defining a fixed-size dictionary to hold bytes from an input
source, referring to it when compressing the remainder of
the input source to find existing pattern. As the compression
progresses, the dictionary is updated by loading more bytes
from the input source, subsequently forcing earlier entries
out.

Similar works found in the literature until 2000 mainly
address the problem of the compression techniques applied
to software applications, where the size of the code for a
given processor has to be minimized. Many results can
be found in this framework, demonstrating that dictionary-
based compression methods lead to best performance. The
problem of FPGA bitstream compression is quite similar
to this framework, both in terms of low-complexity re-
quirements and statistical behavior of the compressed data
stream. However, modern FPGAs show very complicate
internal organization, and the bitstream organization is be-
coming quite complex. For this reason, simple compres-
sion schemes that work well in software-based applications
shows poor results while working with configuration bit-
streams.

In 2001 Dandalis and Prasanna proposed a compression
scheme [2] for the configuration of SRAM-based FPGA. In
that work a modified version of the original Lempel-Ziv al-
gorithm is used. Compression rates are improved by reduc-
ing the dictionary size in memory, by selectively decompos-
ing strings on it. The achieved memory savings for a set of
bitstreams have been shown to be in the range of 11 - 41%.

An accurate benchmarking of existing compression
methods can be found in [5]. In the same paper a novel
scheme is proposed based on LZ, where a modified Frame
Data input Register (FDR) is proposed and a factor of 2.5
improvement over [2] is reached. The FDR register is the
on-chip Serial In Parallel Out (SIPO) input buffer for the
configuration stream and, if modified, can act as analysis
window in the dictionary update process. The simulation
results that where presents on a wide range of applications
are useful, and demonstrate that Arithmetic compression [9]
[6] works better than Huffman codes[3] on configuration
bitstreams.

Recently, Pan et al. [7] proposed a new compression
technique exploiting the intra-bitstream correlation, and ex-
tended it looking at the inter-bitstream redundancies. They
found that a good way to compress bitstreams is to work
with the differences between consecutive frames. They
also demonstrated that Run Length Encoding (RLE) tech-
niques (e.g. Huffman) works better than dictionary-based
ones (e.g. LZ). This mainly depends on the fact that stream
regularities may be too fine-grained to be captured by the
LZSS method. The inter-bitstream correlation is a interest-
ing topic, and can be exploited to reduce configuration data

during consecutive reconfigurations.

3. Background

The partially reconfigurable SRAM-based FPGAs man-
ufactured by Xilinx comprise an array of configurable logic
blocks (CLBs) surrounded by input-output blocks (IOBs),
block RAMs (BRAMs), clock resources, configuration cir-
cuitry and several programmable interconnection points
(PIPs). All these resources are programmed by a config-
uration memory based on several SRAM cells.

Configuration bitstreams contain different command and
data that can be read and written through one of the de-
vice configuration interfaces. The configuration memory of
a Xilinx SRAM-based FPGA has a regular structure com-
posed of several rectangular arrays of bits. The bits are
grouped into one-bit wide vertical frames and extend from
the top to the bottom of the array. Frames are grouped to-
gether into larger units, called columns. There are several
types of columns composed of a specific number of frames:
a central column of 4 frames that control the clock, two IOB
columns, multiple block RAM columns of 64 frames, and
multiple CLB columns of 48 frames for each one. For each
frame, the first 18 bits control the two IOBs on the top of the
frame, then 18 bits are allocated for each CLB row and an-
other 18 bits control the two IOBs at the bottom of the frame
[11]. The frame is padded with bits to make it an exact mul-
tiple of 32 bits. Thus, the configuration memory can be vi-
sualized as a rectangular array of bits, divided into several
sub-rectangular arrays. In particular, the sub-rectangular ar-
rays related to the CLBs 1. They correspond to more than
the 90% of the FPGA area, and are programmed by a ma-
trix, called Tile, of 864 bits divided in 48 columns and 18
rows of bit. The current Xilinx Virtex configuration inter-
face can load whole frames of data at a time. Because of the
regular structure of the resources in the array, each Tile con-
figuring common structures among the FPGA arrays may
share high regularity. By encoding the bit differences be-
tween different tiles and between the CLB’s location within
the FPGA’s matrix array, we can reduce the redundancies
in storing identical information repeatedly for similar re-
sources. The purpose is to assign a set of suitable reference
sub-tile that can construct a difference tile matrix. Given
that the bit-flips obtained between two tiles tend to be either
few in numbers and scattered or clustered in bands, we ob-
serve long sequences of 0s in the difference vector with 1s
occurring in shorted sequences. Therefore, the Arithmetic
compression can be used to effectively compress sequences
in the difference matrix array.

2



Figure 1. Xilinx CLB logical organization

4. Proposed algorithm

As described in section 3 the proposed algorithm has
been developed around the Xilinx Virtex architecture. The
bitstream’s organization of this device is composed of sev-
eral regions concerning CLBs, IOBs and BRAMs. Further-
more in every bit-region other sub-regions can be identified,
for instance for storage and logic elements such as Look-Up
Tables (LUTs), or for interconnection resources such as lo-
cal routing (LR) or global routing (GR). Since each region
and subregion is referred to different parts of the FPGA ar-
chitecture, they exhibit different statistical properties. As
an example not configured CLBs are characterized by the
same configuration pattern into the bitstream. Our consid-
eration leads to the idea of performing the bitstream com-
pression exploiting inter bitstream diversity. This can be
accomplished only through a deep knowledge of the FPGA
architecture and of the bitstream syntax. In particular it is
crucial to know which bits into the bitstream are related to
the different regions and sub-regions. Thus the first opera-
tion required to exploit inter bitstream diversity is to parse
the bitstream and to build a map of the regions and sub-
resions. Once this preliminary operation is completed the
algorithm evolves through three steps, as shown in figure 2.
Given a certain bitstream:

1. For each region (or subregion) find its most probable
pattern. This pattern is stored as the region filter (or
subregion filter).

2. Filter each region into the bitstream with its filter mask
(i.e. perform a bitwise exclusive or operation). This
operation “smooths” the bitstream as it tries to remove
the interdependence among symbols.

3. Apply an adaptive binary arithmetic encoder to com-
press the filtered bitstream. The arithmetic encoder
takes advantage of the strongly skewed distribution of
the filtered bitstream approaching the source entropy
[6].

The high compression ratio achievable with the proposed
approach stems from the binary arithmetic encoder. The ba-
sic idea behind arithmetic coding is to exploit symbols prob-

CLB i IOB i CLB i+1

bitstream

1) ...CLB
filter

IOB
filter filter

GR ...

2)

filtered bitstream

CLB i IOB i CLB i+1
filtered filtered filtered

3)
Encoder

Arithmetic

compressed bitstream

Figure 2. Proposed compression algorithm
steps

ability and to represent them through unambiguous values
in the range [0,1]. The encoding task is based on the recur-
sive probability interval partition, known as Elias coding; at
each iteration the interval is split into two sub-intervals, and
the code string C is adjusted so as to point to the base of the
sub-interval that corresponds to the input symbol di [6].

As far the decoder side is concerned, the decompression
scheme is dual with respect to the encoder. So that the de-
coder first performs the arithmetic decoding then given the
region and subregion filters, it applies the same filtering al-
gorithm employed by the decoder and achieves the original
bitstream.

5. Experimental results

The proposed approach has been tested on the bitstream
of different designs and compared with the standard ZIP
algorithm and the Xilinx tool [4]. As a case of study we
concentrate on the Xilinx Virtex XCV300 FPGA. For this
device we generated six bitstreams [10] for six different de-
signs, namely: Cordic, DCT, Div1, Mac1, Mac3 and 8051.
These designs differ in terms of percentage of logic and
memory occupation so that to be a significant set (see ta-
ble 1). The results of our experiments are shown in table 2.
As it can be observed the proposed algorithm shows better
performance than ZIP and the Xilinx compression tool.

Finally we run the proposed decoder on a cycle accu-

3



Circuit Uncompressed [byte] Proposed [byte] ZIP [byte] Xilinx compression tool [byte]
Cordic 219052 56751 59801 209134
DCT 219052 66412 92587 210391
Div1 219052 70433 86143 209368
Mac1 219052 12386 13415 126884
Mac3 219052 35479 38487 169448
8051 219052 67071 97019 218986

Table 2. Comparison among different compression strategies

Circuit Description Logic Memory
Cordic Pipelined 14 iter. cordic 24% 0%
DCT 8×8 2D-DCT core 51% 12%
Div1 28 bit divider 82% 0%
Mac1 12 bit MAC (26 bit result) 3% 0%
Mac3 32 bit MAC (68 bit result) 19% 0%
8051 8 bit microcontroller 45% 37%

Table 1. Bitstream benchmark designs de-
scription

rate ARM model [8] in order to estimate execution times
on a processor suitable for embedded applications. It is
worth noticing that the obtained decompression times are
near 10% faster than compression ones. This fact is due to
the filter search procedure required only by the compressor.
The overall decompression procedure for each of the bench-
marked bitstreams takes about 1.91 s on a ARM7 running
at 206 MHz.

6. Conclusions

As described in the previous sections, the aim of this
work is twofold: on one hand we wanted to devise a novel
method to efficiently compress FPGA bitstreams, while on
the other hand we were interested in a preliminary complex-
ity evaluation.

As far as the first goal is concerned, the presented
method is able to outperform ZIP–like algorithm as well
as the Xilinx compression tool, achieving an average com-
pression ratio of 4.26 times, compared to 3.3 times of ZIP.
Such a figure can be of particular interest in reconfigurable
system since it enables a sensible reduction of bitstream
size, reducing configuration times and bitstream memory
requirements. On the complexity side, preliminary analy-
sis shows that arithmetic coding tends to adsorb the greatest
part of the computation time. This is particularly true since
the adopted arithmetic coder requires divisions and multi-
plications to support adaptation. Encoder performance can
benefit from the use of semi–adaptive or multiplications–
free arithmetic coders, as in [6]. Another future direction

will be to implement dedicated accelerator cores able to im-
prove codec performance for the presented approach.

References

[1] K. Compton and S. Hauck. Reconfigurable computing: A
survey of systems and software. ACM Computing Surveys,
34(2):171–210, Jun 2002.

[2] A. Dandalis and V. K. Prasanna. Configuration compres-
sion for FPGA-based embedded systems. In ACM Inter-
national Symposium on Field Programmable Gate Arrays,
pages 173–182, 2001.

[3] D. Huffman. A method for the construction of minimum
redundancy codes. Proceedings of the Institute of Radio En-
gineers, 40:1098–1101, 1952.

[4] A. Khu. Xilinx FPGA Configuration Data Compression and
Decompression. Xilinx - WP152, Sep 2001.

[5] Z. Li and S. Hauck. Configuration compression for Virtex
FPGAs. In IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, pages 111–119, 2001.

[6] A. Moffat, R. M. Neal, and I. H. Witten. Arithmetic cod-
ing revisited. ACM Transactions on Information Systems,
16(3):256–294, Jul 1998.

[7] J. Pan, T. Mitra, and W. Wong. Configuration bitstream
compression for dynamically reconfigurable FPGAs. In
IEEE/ACM International Conference on Computer Aided
Design, 2004.

[8] W. Qin. http://www.princeton.edu/∼wqin/armsim.htm.
[9] J. Rissanen. Generalised Kraft inequality and arithmetic

coding. IBM J. Res. Dev., 20:198–203, 1976.
[10] Web. http://www.vlsilab.polito.it/ molino/scientific/bitstream.zip.
[11] Xilinx. Virtex Series Configuration Architecture User Guide.

Xilinx - XAPP151, Oct 2004.
[12] J. Ziv and A. Lempel. A universal algorithm for sequen-

tial data compression. IEEE Tran. on Information Theory,
23(3):337–343, May 1977.

4


	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06



