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Abstract

A Debug Port Controller (DPC) architecture, designed
for re-use in multiple System-on-Chip (SoC) Integrated
Circuits (ICs) is presented. The DPC incorporates
security protection against unauthorized access along
with advanced debugging features such as long chain
debugging, universal BIST engines control, and generic
serial interfaces. An implemented security architecture of
DPC is presented together with an overall IC security
scheme. DPC is the most important part of this IC
security scheme. The suggested architecture demonstrates
extensive use of the debug process, and re-use of the
DPC in multiple SoC ICs without the need of adopting
its design for a specific SoC. The implementation of
the DPC for IEEE1149.1 standard is presented and
the hardware realization of the proposed architecture
is described in detail. The DPC that incorporates the
proposed architecture has been designed in a 90 nm
CMOS process as an integral part of several SoC ICs.

1. Introduction

Efficient test methodologies play one of the major
roles in modern System-on-Chip (SoC) designs. The
constantly increasing complexity of integrated circuits has
set high demands for effective test procedures. The test
cost per transistor has been decreasing at a much slower
rate than the manufacturing one and currently occupies a
significant portion of the total cost of IC [1]. IEEE 1149.1
standard [2], which defines a serial interface to access
test-dedicated logic embedded in IC, has been widely
used for implementing a wide variety of debug and test
functions at the wafer, packaged chip, and the board level.
The majority of test and debug functions of a modern
IC, including boundary scan testing, Built-In Self Test
(BIST) of embedded memory modules and peripherals
(and more), can be accessed through the standard debug

port. Designing a Debug Port Controller (DPC) which
could be either partially or completely re-used for another
IC is especially desirable for SoC’s [3], [4].

This paper presents a generic architecture of a DPC
which can be used in a series of SoC ICs without any
modifications being done to the DPC module design.
The adjustment to the specific IC is done by chip-level
system integration of the DPC as well as by DPC registers
programming.

Special attention has been paid to the thorough security
protection of the IC. As known, debug port manipulation is
one of the most common ways of executing unauthorized
program code, acquiring control over secure applications,
and running code in privileged modes.

Section II presents the proposed architecture. Section
III describes the methods of security protection used in the
proposed DPC. Section IV discusses the implementation
and testing details of the SoC IC. Section V concludes
the paper.

2. Proposed debug port architecture

SoC IC may incorporate several microprocessors,
microcontrollers, or CPUs, when as a rule each one will
include its own DPC. One of the design restrictions of
SoCs is that debug controllers of the integrated CPUs (or
peripherals) must be taken ”as-is”, without modifications.

It is the SoC DPC (referred to in this paper as ”the
DPC”) which plays a major role in controlling the overall
debug process, and serves as a master debug controller. In
the modern design process, companies concurrently design
a series of SoC ICs all having many design aspects in
common. In such a case, designing a dedicated DPC for
each specific IC design is expensive and inefficient. The
proposed SoC DPC has been designed so that it can be
placed in a wide variety of architecturally similar ICs
without any change in its design. The DPC has already
been incorporated into at least five different ICs. Each of
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these ICs bear a certain similarity, but includes a different
set of peripherals and microprocessors.

The majority of the features and architectural
approaches described in this paper do not necessary have
to be implemented using a specific standard. Nevertheless,
the DPC complies with the IEEE1149.1 standard. We will
therefore refer to this standard when mentioning specific
details of implementation. Fig. 1 shows the connectivity
scheme of the DPC with existing on-chip CPUs. All of
the mentioned CPUs include a debug controller as an
integral part of their design. All these debug controllers
are connected serially including the DPC itself. Such
connectivity is supported by the majority of debug tools
currently present on the market. Some of these debug
controllers may not include the standard IEEE1149.1
Test Access Port (TAP) controller and thus are unable to
determine the correct TAP state for their operation. Such
debug controllers need TAP states information (such as
Shift-Dr, Update-Dr [2], etc) to be decoded and supplied to
them. In order to provide for states interpretation for such
debug controllers, the DPC monitors all TMS [2] control
signals intended for each of the debug controllers in the
IC. Thus, the TAP states information can be supplied

Fig. 1. DPC Connectivity Block Diagram.

for those controllers that do not have a TAP controller
inside. These controls are separate for all such controllers
even though for all the active controllers, TAP states and
their transitions are identical. For different controllers in
certain situations, it is better to supply controls different
from the common TMS control sequence (this is mainly
because of security reasons).

2.1 Serial Configuration and Standalone Configuration

As can be seen from Fig. 1, two basic configurations
are provided - so called Standalone Configuration of
DPC and Serial Configuration. Standalone Configuration
means that only the DPC is connected between IC′s debug
data ports TDI and TDO [2]. In Serial Configuration
all the debug controllers on the chip are connected in
one chain. The latter configuration is supported by the
majority of commercial debug SW tools on the market
and is convenient for on-board testing and debugging of
the IC and the overall system; whereas the first one is
convenient when performing post-silicon testing of IC
wafers, and can substantially shorten testing time. For
example, the majority of on-chip memory modules are
tested using on-chip Memory Built-In-Self-Test (BIST)
units (which are controlled by a DPC). Using only one
DPC for the chip allows the tests to be carried out in the
most efficient manner, and improves the quality of the
test itself. Standalone Configuration is especially effective
for post-silicon testing because the data and instruction
chains are the shortest in this mode as they include only
DPC.

Fig. 2. Mapping "Access TSR" instructions in
CPU′s TAPs reserved IP spaces.

Fig. 2 shows a typical debug chain consisting of several
debug port controllers together with the dedicated SoC
DPC. At least one Instruction Register (IR) must include
an Access TAP Select Register (Access TSR) instruction.
Access TSR instructions are included in the SoC DPC IR
space. In addition to the SoC DPC, this instruction can
be added to other DPCs′ IR spaces, in place of available
reserved IR spaces. It is the additional logic, present in
SoC DPC, which tracks the states of all DPCs′ IR registers
and notifies SoC DPC in case any of on-chip CPUs has
a Access TSR instruction in its DPC′s IR. The latter
implementation allows the original DPC to be integrated
as is. TSR register is accessed via a Data Register (DR)
path. If more than one Access TSR instruction is given,
only one will be chosen based on a pre-defined priority.



Each bit in the TSR controls the bypass of a corresponding
DPC in the IC. Post reset configuration of the DPCs may
vary, set by input ports sampled at reset, or hard coded in
the SoC.

When a certain DPC is bypassed, it is replaced by a
dummy IR register of the same length as the original
one in the IR path; and by a one-bit DR register in the
DR path as shown in Fig. 3. In this situation, the debug
software (in the IR path) will still observe the same length
IR register, so no special software support is needed for
this feature. One of the possible applications of bypassing
a DPC, besides shortening the overall DR path length,
can be increasing the debug clock frequency. Some of the
peripherals in the chain may allow for much higher debug
clock frequency rates than the others. In this situation,
in order to switch to a higher frequency, we would need
to exclude from the debug chain those peripherals that
cannot support such frequencies.

2.2 Accessing SoC DPC′s registers

Fig. 3. Serial Configuration with Bypass Con-
trol Logic.

SoC DPC IR has 5 bits, which gives total of 32
different instructions coded with these bits. One of
possible instructions for example could be Access TSR.
Additional instructions could include standard IEEE1149.1
instructions, as well as others. Taking into account a
number of features implemented in the SoC DPC, a total
of only 32 IR instructions, addressing up to 32 different
registers might lead to an IR instruction shortage. One of
the possible solutions could be increase the length of the
DPC IR, but this solution would increase the time needed
to program the IR register by about 20instruction size
added). The solution we have used is to have a number of
additional registers mapped under the same IR instruction.
For this purpose one of the IR instructions is used to
access the additional 32 registers which we will refer to
as ExtraDebug registers. The instruction is called Access
ExtraDebug Registers (AEDR). Naturally there can be
foreseen multiple AEDR instructions in the IR address

space (AEDR1,AEDR2, etc.), each one controlling its
own different set of ExtraDebug registers. The AEDR
instruction technically gives an access to an additional
register, called the ExtraDebug Shift Register (EDSR)
which consists of 38 bits comprising a 32 bit data field, a
5 bit address field and read/write bit.

2.3 ExtraDebug registers write access

The write access to any of ExtraDebug Registers
takes place when the TAP controller of the DPC enters
the Update-DR state. At that stage the lowest 32 bits of
data of the EDSR are written to the ExtraDebug registers
referenced by the 5 bit address field of the EDSR,
provided that the read/write bit of EDSR is negated.

2.4 ExtraDebug registers read access

The read access is divided into two cycles. In the
first cycle the data field of EDSR is ignored. Provided
that read/write bit of EDSR is asserted, the data from
the corresponding ExtraDebug register will be fetched
by the second read access cycle. The read access will be
accomplished on the next cycle in the Capture-DR state,
and the data will be shifted out during the Shift-DR state.
In the second path for a read access, simultaneous write
access is not supported. The number of Shift-Dr states
during the second cycle can vary depending on the width
of the accessed register

2.5 Generic serial channels

The DPC provides a number of generic serial access
channels which allow access to SoC modules through a
serial (TDI/TDO) interface. In order to access an arbitrary
serial channel, Serial Access Select Register (SASR), one
of the ExtraDebug registers should contain the address
of the desired serial channel to be used. Naturally, only
one serial channel can be chosen and accessed at a
given time. Only after this access can a Serial Access
instruction be entered into the IR register. Once such
an instruction is entered into the IR register, any entry
to Shift-DR state will generate one cycle of the control
signals for the chosen serial channel to be activated and
the corresponding serial channel output multiplexed to
TDO output (as all the serial channel inputs are already
connected to the common TDI input). Looping in Shift-DR
state will produce a required number of serial access
cycles.

A number of serial channels are configured to be
secured, i.e. the secured serial channels will be available
only in corresponding security modes.

In the current implementation of the SoC DPC, several



serial channels are split. Each such channel is split to a
number of different serial channels intended for BIST test
related information access. The specific channel in this
case is chosen taking into account additional information
residing in BIST Configuration Registers (BCR).

2.6 Universal BIST Configuration Registers

One of the problems arising during DPC design is
the uncertainty in designing BIST Configuration Registers
(BCR). Custom designing BCR registers so that they
would rigidly correspond to the specific BIST engines in
SoC has obviously numerous disadvantages. For example,
in one of the ICs that SoC DPC has been utilized in,
there are several different BIST engines each one having
its own design, architecture, and interface. The solution is
thus having several generic BCR registers each having the
same structure: General Purpose (GP) bits which could
be accommodated for connecting to and controlling any
possible interfaces in BISTs, N -bit SelectBus bus, Invoke
signal, and ReleaseEnable signal. N defines a maximal
number of identical BIST engines controlled by one
BCR register and it could be different for different BCR
registers. From our experience any BIST engine having
a reasonable yet custom interface could be controlled by
such BCR interface. The custom-defined bus and two
other controls are involved in:
- Forming Select control for all the BIST engines from
the same group.
- Forming individual Release signals for each one of the
BIST engines from the same group. Release signal is
used to release BIST from several possible modes when
it is stopped, such as Retention Test Mode or Debug
Mode. The individual Release signal for a BIST engine
is generated whenever Serial Access instruction resides
in IR register, ReleaseEnable signal is asserted, SASR
register contains corresponding serial channel number
corresponding to the specific BIST engines group, and
TAP controller is in Update-DR stage.

The proposed solution allows simple and flexible
interfacing of a wide range of BIST engines inside an
SoC.

2.7 Debug Control and Status Support

DPC controls some of the on-chip processors′ debug mode
features. This includes gating and routing of debug mode
entry requests coming from various on-chip and external
sources, SW induced debug mode entry for a number of
supported microprocessors, as well as providing status
information regarding debug state of on-chip processors.

3. Security protection

Debug port manipulation is one of the known ways
of executing unauthorized program code, gaining control
over secure applications, and running code in privileged
modes. Debug ports (e.g. IEEE 1149.1), provide a debug
access to a number of hardware resources, among them
the system processor and the system bus. This could lead
to losing program control as well as providing unwanted
visibility into system peripherals and memory units.
Debug port access provides an intruder with all the means
required to break the system′s security mechanisms and
gain control over the operating system. Unauthorized
debug port usage should be prohibited in order to properly
secure the system. However, the debug port must be
available for platform development, manufacturing tests
and troubleshooting, as well as for software debugging by
authorized entities.

A security architecture aimed to prevent debug port
manipulation while allowing access for manufacturing
tests and software debugging has been developed thus
forming an access regulator to IC debug resources [9].

3.1 Security modes

This regulator provides several different protection
levels represented by four corresponding modes. The
required mode is selected by electrical fuses’ (e-fuses)
configuration and is programmed according to the product
state (e.g. manufacturer level quality testing, OEM mode,
end user mode, etc.), and the specific customer security
requirements. The four debug port security modes are
defined as follows:

Mode 1: No Debug (Maximum Security)
This mode provides the highest security level. When
selected, all debug port features are disabled, including
(but not limited to):

- Processor run time control - processor execution
thread stop and single-step operation.

- Memory access - read/write access to processor
registers, peripheral memory space or on-chip memory
modules. Memory accesses refers also to so-called on-the-
fly debug access mode in which the memory access is
performed while the processor is running and is not in the
conventional debug mode.

- Advanced modes of Memory Built In Self Test (BIST)
operation, specifically so called BIST debug mode which
allows advanced control of BIST operation which could
result in exposure of protected memory regions.

- Boundary Scan, which is as defined by the IEEE
1149.1 standard, is an integrated method for testing in-
terconnects on printed circuit boards that is implemented
at the IC level.



A Scan test is a powerful test technique, but at the
same time it could also be used as a powerful attack tool.
Scan chains can be used to recover on-chip secret keys,
which are not memory mapped, but could definitely be
accesses during scan operation. Yang, et. al. [7] show how
a scan channel can be used as a side channel to recover
secret keys from a hardware implementation of Data
Encryption Standard (DES). A Scan will be available in
the No Debug mode but the designed debug controller is
provided with a mechanism that detects an entry into the
scan test modes. This mechanism is not a part of the scan
chain therefore cannot be affected by a scan side based
channel attacks. Whenever scan mode entry is detected,
the debug controller alerts the on-chip secure modules,
which in response reset all of their internal flip-flops. This
solution allows for testing of the secure memory flip-flops
while eliminating scan based side channel attacks. Control
operation which does not jeopardize overall IC security
will be allowed, including various PLL bypass controls,
status bits external visibility, etc. These features do not
reduce the security level of the product, and they allow
performing important tests and board connectivity checks.

Mode 2: Secure Debug (High security)
This mode limits the debug port access by using an
authentication protocol. Any access to the debug port
is verified and authenticated. Only authorized debug
tools, possessing the correct secret key, are able to take
advantage of the debug port features. The secret key can
be unique for each individual chip, or for a small group
of chips.

Mode 3: Debug port Enabled (Low Security)
All debug port features are enabled. Although no access
authentication is required, a debug alarm will be activated
when a debug port access is detected

Mode 4: Development (No Security)
All debug port features are enabled, and no alarm is
activated when debug port access is detected. In order
to allow development of security applications that take
advantage of the systems security modules, it is required
to allow unlimited debug access to all the systems
resources, including security modules. This mode, of
course, eliminates any system protection and therefore is
configured only in special samples used in development
kits and not in merchant market standard devices.

3.2 Fuse configuration

The debug security modes are configured using e-
fuses which can be burned after packaging merely by
applying electrical signals. An e-fuse can be burned at

any time and can give the OEM vendor the flexibility
of deciding the security level of its products. The fuse
burning is an irreversible process; once the fuse has been
burned it is impossible to return the fuse back to the
un-burned state.

By burning a specific fuse to the ”Debug Port Bypass”
mode, it is possible to bypass the ”Secure Debug” mode,
thus changing a device’s state from ”Secure Debug” to
”Debug port Enabled” mode. In all other security modes
this fuse will have no effect. This feature allows the
user to permanently open up the debug port access for
testing, without the need to undergo an authentication
process after each reset. In some cases the device under
test is taken from a customer which might have reported
certain issues related to it, and is to be returned to the
customer. In other cases, a second fuse, ”Cancel Debug
Port Bypass”, will be burned. The IC will then be reverted
back to ”Secure Debug” mode. Once ”Cancel Debug Port
Bypass” is burned, there is no way to activate Secure
Debug Port Bypass again.

3.3 Authentication protocol mechanism in Secure
Debug mode

The authentication protocol mechanism uses a ”Challenge-
Response pair”. The ”challenge” is a number that identifies
the specific SoC. The ”response” is a number that must
be sent in response to receiving the ”challenge”. When a
query is sent to the SoC by an outside source, it receives
the ”challenge”, and must respond with the correct
”response”. If the response is incorrect, the SoC DPC will
not allow access to DPC debug features. Fig. 4 shows the
process of challenge-response exchange, when first the
challenge code is requested and supplied, and then the
correct user response is fed inside the DPC negating the
Secure Block signal allowing access to security sensitive
parts of the IC.

Fig. 4. Challenge-response exchange pro-
cess.



There are two modes that the DPC supports for
generating the Challenge - Response pair. Fixed challenge-
response pair: each part has its individual challenge -
response pair which is determined at manufacturing time,
and will not change later on. The DPC will compare
the users response to the expected response. Random
challenge-response pair: in this mode, a random challenge
will be generated by a separate module, and the response,
which is a cryptographic manipulation of the random
challenge, will be checked inside the DPC as well. The
DPC can be configured to both modes.

3.4 Security State machine intervention prevention

The DPC security scheme will prevent attempts to
tamper with its Finite-State-Machines (FSM) which could
result in setting them to unprotected states skipping the
proper authentication procedures. It is always assumed
that Power-on-Reset (PoR) is asserted thus setting FSMs
to secured initial states. This assumption may not hold
true as PoR detection is usually placed outside the IC,
thus an intruder may switch off and on the IC power
multiple times thus accidentally causing one of DPC′s
state machines memory elements to reach a combination
which corresponds to an unprotected state. For example,
if an FSM has 4 different states, they are defined by
using only two bits. It means that if we could cancel PoR
assertion at power-up, several tries could lead to these two
bits receiving a value which corresponds to an unprotected
state. In order to prevent it, we have introduced a register,
all the bits of which turn to a specific pattern only after
the PoR reset. None of unprotected states of DPC′s state
machines can be reached while this register value is not
equal to the pre-defined value. As this register′s length
can be 64 bits or more, the probability of it reaching this
value accidentally is minor.

4. Implementation details

The SoC DPC described in this paper has been integrated
in a number of IC′s, among them Freescale′s i.MX31
application processor. Fig. 5 shows the application
processor′s development board that connects to a
commercial JTAG-based debug interface.

The application processor is based on the
ARM1136JF -STM core, starting at 532 MHz, with a
vector floating point co-processor and L2 cache. It is
fabricated using 90nm CMOS technology and is designed
for use in wireless devices running computationally-
intensive multimedia applications such as digital video
broadcast and video conferencing.

5. Conclusion

Fig. 5. Application processor′s development
board.

A Debug Port Controller (DPC) architecture designed
for re-use in multiple SoC ICs has been presented. The
suggested architecture shows facilitation of the debug
process and provides a flexible means for incorporating
the DPC in different SoC ICs without modifying its
design. Detailed architectural description of the proposed
DPC has been shown and the fabricated IC incorporated
has been presented. Implemented security protection
scheme which is the integral part of the DPC has been
presented and analyzed.
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