

An 830mW, 586kbps 1024-bit RSA Chip Design

Chingwei Yeh*
Nat’l Chung-Cheng University

ieecwy@ccu.edu.tw

En-Feng Hsu
Nat’l Chung-Cheng University
Charle28@vlsi.ee.ccu.edu.tw

Kai-Wen Cheng
Nat’l Chung-Cheng University

91kevin@vlsi.ee.ccu.edu.tw

Jinn-Shyan Wang
Nat’l Chung-Cheng University

ieegsw@ccu.edu.tw

Nai-Jen Chang
Nat’l Chung-Cheng University

92asura@vlsi.ee.ccu.edu.tw

Abstract
This paper presents an RSA hardware design that

simultaneously achieves high-performance and low-
power. A bit-oriented, split modular multiplication
algorithm and architecture are proposed to fully exert
the radix-4 computational capability. Further, we
identify the switching profile of RSA data and
accordingly propose power-optimized designs for the
storage elements and key computational components.
The complete RSA modular exponentiation hardware
has been implemented using cell-based 0.18um CMOS
technology. Post-layout simulation shows that the
design delivers an average performance of 586kbps at
460MHz, 1.8V while consuming only 830mW.

1. Introduction

With the ever increasing popularity of networked
computing devices, it is widely recognized that security
will become a major concern. In 1976, Rivest et al.
proposed the RSA public-key cryptography [1, 2]. Since
then, RSA has gained increasing popularity and is now
the public-key cryptosystem that receives the widest
deployment in real applications.

The kernel operation for RSA is modular
multiplication. A pioneering work for modular
multiplication was attributed to P.L. Montgomery [3],
who computed a modular multiplication of two n-bit
numbers via n-iterations of simple additions and
shiftings. Since then, many follow-up works have been
proposed to speed up the algorithm via array-type
hardware accelerators [4, 5, 6, 7, 8, 9]. Specifically, [9]
maintained to be the fastest ASIC realization as it
successfully exploited the inherent parallelism between
multiplication and modular reduction in Montgomery’s
algorithm. The record was recently broken by [10],
where the combination radix-4 and cellular array were
shown to outperform the work of [9].

However, straightforward implementation of [10]
results in poor hardware utilization (33%[10]) and long

critical path. As a remedy, [10] first applied pipelining
to cut down the critical path, then interleaved four
independent data inputs to raise the hardware utilization.
Nevertheless, there are drawbacks in doing so. First of
all, [10] requires many Flip-Flops to support systolic
array-type computation. This is particularly serious for
RSA since the number of bits is already large (≧1024
for universally acceptable security). Secondly, a 4-to-1
multiplexer is required at each interleaving point, which
happens to be on the critical path. Lastly, the
interleaving of multiplication and square operation
(required in modular exponentiation, see pp. 480 of [10]
for details) implies that one cycle is allocated to the
square operation regardless of the real value of the
exponent bits. This means the design cannot skip the 0-
bits in the exponent and hence always follows the worst-
case execution time.

In this regard, we resort to the algorithm of [9] and
propose a radix-4 extension to cut down the number of
iterations in half. We further utilize the algorithmic
features to simplify the logic functions along the critical
path. The resultant design incurs only a little more
hardware cost than [9], yet provides more than twice the
speed-up. Finally, we identify the switching profile of
RSA data and accordingly propose a power-optimized
design for the storage elements and key computational
components. The complete 1024-bit RSA is realized via
cell-based design style using 0.18um CMOS technology.
Post-layout simulation shows that the design delivers an
average performance of 586kbps at 460MHz, 1.8V
while consuming only 830mW.

2. Algorithm Design

We adopt the H-type modular exponentiation
algorithm [9] and extend the split modular
multiplication scheme [9] to radix-4 as follows (proof of
correction omitted for brevity). Note that when q2i=0
and q2i+1=n1, we actually have the choice of adding 3N
or subtracting N. The former requires an n-bit register to

3-9810801-0-6/DATE06 © 2006 EDAA

store the value of 3N, while the latter requires wider bit
range in the operand and some hardware to handle sign
extension during the addition of partial products. In this
paper, we choose 3N for ease of implementation.

1 2 3 2 1 0 2

1 2 3 2 1 0 2

1 2 3 2 1 0 2

:
 : (...)
 : (...)
 : (...)
 0 , ,

:
 : 2 mod

4(, ,)
{

n n n

n n n

n n n

n

Inputs
Modulus N n n n n n n
Multiplier A a a a a a a
Multiplicand B b b b b b b
where A B N and N is odd

Output
Result R A B N

BSR A B N

//P1 : mu

− − −

− − −

− − −

−

=
=

=
≤ <

= × ×

2 1 2 2 2 3 2 1 2

1 2 3 2 1 0 2

2 1 2 2 1 2

 1 2 0;
// 1 (...)
// 2 (...)
 [0] 0;

 (0; / 2;)
 {
 (,) ([2])(mod 4);

n

n n n n n n

n n n

i i i i

ltiplication operation
A B C C C
C c c c c c c
C c c c c c c
P

//P2 : modular reduction
for i i n i

q q P i c c

− − − + +

− − −

+ +

× = = × +
=
=

=

= < + +

= +

2

2 1 2 1 2

2 1 2

2 1 1 2 1 2

 (0)
 {
 (0) [2 2] ([2]) / 4;
 [2 2] ([2] 2) / 4;
 }

 {
 () [2 2] ([2] 3) / 4;

i

i i i

i i

i i i

if q

if q P i P i c c
else P i P i c c N

else

if q n P i P i c c N
else

+ +

+

+ +

==

== + = +

+ = + +

== + = + +

2 1 2 [2 2] ([2]) / 4;
 }
 }
 [] 1;
}

i iP i P i c c N

return R P n C

++ = + +

= +

3. Architecture and Logic Design

Fig. 1 shows our hardware block diagram. Each bold
solid line on the output of a component in oval shape
represents one stage of pipeline register. For each loop
iteration, the multiplication/square operation is
performed via the “Multiply/Square Product Generator
(MSPG)” module followed by the “Double-Output
Carry-Save Adder (DoCSA)” module. Note that to

support radix-4 operations, both modules are designed
to deliver two bits at one clock cycle (to be elaborated in
Section 5).

Fig. 1 Hardware Block Diagram

The two-bit multiplication/squaring results (c2i+1c2i)
are fed into the “Radix-4 Modular Reduction (R4MR)”
module. A straightforward implementation of the
module is shown in the upper part of Fig. 2. The module
first generates the quotient bits(q2i+1,q2i) via the
“Quotient Unit” (dashed box in Fig. 2), and then uses
the quotient bits to compute (P[2i] + c2i+1c2i +kN) / 4,
where 0<k<4 in a carry-save fashion. The multiplexers
select one of the two modes: (1) adding kN and shifting
two bits; (2) adding the value of carry or sum from
DoCSA. Notice that the index of FAs in Fig. 2 starts
from 2, for the 2-bit LSB are always 0 according to the
algorithm.

Except the Quotient Unit, the complete R4MR has
almost the same hardware component as the
corresponding module in [9]. Hence, all the rest 1022
(∵2 bits are already computed by the Quotient Unit)
components in R4MR can operate as fast as the radix-2
counterpart in [9]. In other words, the whole R4MR will
be able to operate as fast as its radix-2 counterpart, only
if we can speed-up the Quotient Unit. Since the Quotient
Unit only occupies a very small portion of R4MR
(2/1024), it is very worthy of optimization so as to boost
the system performance. We will come to this point
shortly after description of the entire operation flow.

The DoCSA continues to send c2i+1c2i bits in the first
n/2 cycles. Once done, the DoCSA then contains the
partial sum and partial carry of C1 (the MSB part of the
multiplication/squaring, see algorithm description). Both
are sent to R4MR to generate the modular-reduced sum
and carry, which are copied to the registers outside of

R4MR. These registers save the values of the current
sum and carry for the 2-bit addition, so that R4MR will
be able to operate on the next sum and carry
concurrently.

We now present the optimization of the Quotient Unit.
As mentioned in the algorithm, the Quotient Unit is
responsible for the computation of q2i+1 and q2i (the two
LSB in P[2i]+c2i+1c2i). Due to the inherent complexity of
the original design, typical logic synthesizers can not do
much with respect to reducing delay. In lieu of this, we
recognize that according to the algorithm, the last two
bits in (P[2i] + c2i+1c2i +kN), 0<k<4, must equal to zero.
Thus, the two Adder5_3 can be reduced to a 5-input OR
gate together with the “module1” in Fig. 2. Once done,
the typical logic minimizer can be applied on module1 to
get further-optimized circuit. Lastly, to reduce the
critical path, we put an extra stage of pipeline register at
the input, leading to the modified circuit shown in the
lower part of Fig. 2. Although the overall execution time
is increased by one cycle, the tradeoff is very beneficial
as the original cycle time is already large.

(a)

(b)

Fig. 2 R4MR and Quotient Unit Designs: original (a); optimized (b).

The architectural comparison of our work with the
two most recent academic works [9, 10] is shown in
Table I and II. Specifically, Table I shows direct area
comparison, and Table II shows the area normalized by
theorectical performance implied by the algorithms. We
use the numbers of the major logic components,
expressed in the order of RSA bit width (n), as the base
area index. The base area values are then multiplied by

the actual size of each logic component based on a
0.18um CMOS technology to get more accurate area
results (ΣAREA).

It can be seen from Table I that in terms of the most
critical component of the design—the D-Flip-Flops
(DFFs), our design (12.5n) is slightly larger than its
radix-2 counterpart [9] (12n), and dramatically smaller
than the other radix-4 design [10] (19n). Overall, the
prior radix-4 work [10] paid lots of area for performance.
In contrast, our design, being able to deliver twice the
performance than [9], incurs only minor area increase in
terms of real process technology (from 157.6n to 176.4n).

For in-depth comparison, we normalize the area
result in Table I by the theoretical performance implied
by the algorithms (#cycles), and derive the comparison
data in the last column (Norm.ΣAREA / #cycles) with
n=1024. The result clearly shows that our design is 78%
and 29% better than its radix-2 and radix-4 competitors,
respectively.

TABLE I
ARCHITECTURAL COMPARISON OF ACADEMIC RSA DESIGNS-

AREA

Cmpnt.
(Area)

DFF
(10)

FA
(9)

mux
(2)

and
(1.2)

xor
(2.2) ΣAREA

[9]a 12n 2n 8n 3n 0 157.6n
[10]b 19n 2n 6n 3n 2n 228.0n

Proposedb 12.5n 3n 11n 2n 0 176.4n
aRadix-2; bRadix-4

TABLE II
ARCHITECTURAL COMPARISON OF ACADEMIC RSA DESIGNS-

NORMALIZED AREA

Cmpnt.
(Area) ΣAREA Average #cycles ΣAREA /

#cycles

[9]a 157.6n
21.5 3.5 2n n+ + 1.78

[10]b 228.0n (2 (3) / 2) (1)n n+ × +   1.29

Proposedb 176.4n
20.75 2.5 2n n+ + 1.00

aRadix-2; bRadix-4

4. Storage Strategy

The data in Table I show that DFFs, and thus the
constituent registers, could consume more than 50% of
the area. Since these registers serve different purposes,
they may well have different switching patterns. In this
section, we show how to take this opportunity to cut
down the cost and power consumption of storage
elements in a dramatic way. For all the descriptions of
components herein, please refer to Fig. 1.

4.1. SRAM Deployment

The Constant Register and Exponent Register in Fig.
1 never need update in an RSA exponentiation. Further,
they only need to give one or two bits output per cycle.
These characteristics suggest an SRAM design for

compact area and lower power consumption.
A 128×8 SRAM (7-bit address & 8-bit data width) is

designed for this purpose. The design contains 7.3k
transistors and consumes 3.2mW, both of which are
much better than the cell-based design of a 1024-bit
shift registers (37k transistors, 35mW by synthesis).
Namely, by replacing the two registers with an SRAM,
we save about 60k transistors and 60mW power.

4.2. Latch Deployment

Although the content of the Modulus Register is fixed,
too, it is not possible to use SRAM since this register
needs to supply 1024 bits of data per cycle to the R4MR
module. The same happens in the Plaintext Register.

In this regard, we revise the design into the one with
1024-bit latches and one 32-bit shift register (Fig. 3).
The 2-bit input data are stored in a 32-bit shift register.
Once full, the entire 32-bit data are sent to the proper
32-bit latch block. Notice that the enable signal of 32-bit
latch block is triggered by negative clock edge to
prevent the problem of data racing. In adopting the latch
design, the transistor count is reduced from 55k to 21k.

Fig. 3 The 1024-bit Latch-Based Register Design

4.3. Conditional Flip-Flop Design

After the prior two efforts, the utilization of DFFs is
reduced to 35% of whole chip. Still, a power-
optimization opportunity remains in taking advantage of
the switching activity versus the types of flip-flops
(Table III). This leads to the adoption of the Conditional
Skew-Tolerant Flip-Flop (CSTFF) proposed in [12] for
all DFFs in the current RSA design. For detail of CSTFF,
please refer to [12].

5. Low Power Computation Components

5.1. Adders in DoCSA

To support the radix-4 algorithm, the origin full adder

in DoCSA must be modified. We take the advantage of
the regularity of the RSA design by re-designing the
adder4_2 circuit into Fig.4 and repetitively applying the
new design to form the complete revision. The
advantage of the revision can be readily seen from the
comparison of adder4_2 circuits shown in Table III.

Fig.4 The adder4_2

Table III Comparison of Adder4_2
 #Transistors Delay(ns)

Original 256 0.79

Modified 88 0.70

5.2. MUX-Adders in R4MR

The R4MR module contains the Quotient Unit and
1024 cells that support addition and multiplexing. Due
to frequent operation of the module, the power
consumption is large. To solve the problem, we redesign
these cells by combining multiplexers and adders,
forming the so-called Mux-Adder shown in Fig.5. The
data in Table IV shows the design compares favorably
to the one realized with separate adders and multiplexers.

Fig.5 The Mux-Adder

TABLE IV
Comparison of Mux-Adder

 Power (µW) Delay(ns)
Separate Design 312.88 0.56

Merged Design 202.1 0.42

5.3. The Carry and Sum Registers

The function of Carry/Sum registers and the
associated addition is simple: storing the value of carry
and sum at the proper time, shifting the data by two bits
per cycle, and adding the two 2-bit output data.
However, naïve implementation of shift operation costs
lots of power because all 1024 DFFs shall be switching
in every cycle. We propose to modify the module as
shown in Fig.7. The revision incurs negligible area

overhead but significantly reduces the power
consumption from 63mW to 5.9mW.

Fig.6 Architecture of Carry/Sum Register
6. Empirical Evaluation

The complete 1024-bit RSA is done in cell-based
design style using 0.18um CMOS technology. Fig.7
shows the layout of the chip. The chip occupies an area
of 5.76mm2 (2400um× 2400um). Table V shows the
comparison with the recent academic works [9, 10].
Note that both [9] and [10] were 512-bit designs. So an
estimate of double the transistor count is assumed for
the case of 1024-bit. Also, both [9] and [10] provided
only pre-layout simulation (pre-sim) clock rate. Hence,
we simply take the pre-sim clock rate and assume the
1024-bit design runs as fast as the 512-bit one. In doing
so, the comparison has greatly biased towards [9, 10] as
our data were obtained via post-layout simulation (post-
sim) of the 1024-bit design. Still, Table V substantiates
the advantage of our design in remarkable performance
gain (586 kbps post-sim versus 146 and 79 kbps pre-sim)
at very competitive transistor count and silicon area.

TABLE V
COMPARISON OF ACADEMIC RSA HARDWARE DESIGNS

 Tech
Volt

Clk
MHz

Avg.
Kb/s

Tx
(k)

Area
(mm2)

[9] a
 Pre-layout sim. 0.6u 125 79 645 55.9b

[10] a
Pre-layout sim. 0.6u 150 146 912 N/A

Proposed
Post-layout sim. 0.18u 460 586 710 5.76
aOriginal design is for 512-bit modulus, data except “area(mm2)”
 deduced for 1024-bit based on the descriptions in [9] and [10].
bArea is for 512-bit modulus.

We also compare our design with the state-of-the-art
commercial products that are within our reach (via
public internet access). Specifically, we would like to
show how the point-designs presented in Section IV and
V can be integrated together to contribute to dramatic
power savings, yet still maintain the performance
advantage of the original algorithm and architecture.
Note that some of these commercial products provide
other cryptographic functions (e.g., DES, MD5, etc) on
the same chip as well, though the RSA is usually the
largest and the most power and time consuming among
all. Hence, the listed data only serve to ascertain the
quality of our design and do not reflect the actual RSA
performance of these commercial products.

From Table VI, it can be seen that our design delivers
the best performance in terms of RSA exponentiation
operations per second, and is 21% better than the

second-best design (Nitrox-II CN2560). Meanwhile, to
make a fair comparison of power consumption, we have
divided the power consumption with the performance
figure (RSA OPS) and normalized all designs with ours.
The result shows a remarkable power versus
performance advantage of our design—22 times smaller
than the second-best design (Nitrox-II CN2560).

TABLE VI
COMPARISON OF INDUSTRIAL 1024-BIT RSA HARDWARE DESIGNS

 Tech(um)/
Voltage(V)

Clk
MHz

RSA
OPS

Power (P)
(mW)

Norm.
P /OPS

IBM
RICO-1 0.5/-- 48 45 350 458

Motorola
MPC180 0.25/1.8 66 31 600 1139

Hifn
7956 -- /1.8 66 84 1000 700

Cavium
Nitrox-II 0.13/1.0 400 40000 15000 22

Proposed 0.18/1.8 460 48500 830 1

Fig.7 Chip Layout

1. CONCLUSION
We have presented a 1024-bit RSA design that

delivers an average performance of 586kbps at 460MHz,
1.8V while consuming only 830mW. The successful
proposition and integration of algorithm, architecture,
logic and circuit designs have attributed to superior
performance indices that compare very favorably to both
the academic and industrial state-of-the-art designs.

References

[1] W. Diffie and M.E. Hellman, "New directions in cryptography,"

IEEE Trans. Inform. Theory, vol. IT-22, pp. 644-654, Nov. 1976.
[2] R. L. Rivest, A. Shamir, and L. Adleman, "A method for

obtaining digital signature and public-key cryptosystems," Com.
of the ACM, vol. 21, No. 2, pp. 120-126, Feb. 1978.

[3] P. L. Montgomery, "Modular multiplication without trial
division," Math. of Computation, vol. 44, No. 7, pp. 519-512,
Apr. 1985.

[4] C.D. Walter, "Systolic Modular Multiplication," IEEE Trans. on
Computers, vol. 42, pp.376-378, March. 1993.

[5] M. Shand and J. Vuillemin, "Fast implementation of RSA
cryptography," Proc. 11th IEEE Symp. Comput. Arith., Jun.
1993, pp. 253-259.

[6] P. Kornerup, "A systolic, linear-array multiplier for a class of
right-shift algorithms," IEEE Trans. Comput., vol. 43, pp. 892-
898, Aug. 1994.

[7] P.S. Chen, S.A. Hwang, and C.W. Wu, “A systolic RSA public
key cryptosystem,” in Proc. IEEE Int. Symp. Circuits and
Systems (ISCAS), vol. 4, Atlanta, GA, May 1996, pp. 408–411.

[8] P.A. Wang, W.C. Tsai, C.B. Shung, "New VLSI architectures of
RSA public-key crypto-system," IEEE International Symposium
on Circuits and System, pp.2040-2043, 1997.

[9] C.C. Yang, T.S. Chang, C.W. Jen, "A new RSA cryptosystem
hardware design based on Montgomery's algorithm," IEEE Trans.
Circuits Syst. II, vol. 45, pp.908-913, 1998.

[10] J.-H. Hong and C.-W. Wu, "Celluar modular multiplier for fast
RSA public-key cryptosystem based on modified Booth
algorithm," IEEE Trans. VLSI Syst., vol. 11., Jun. 2003, pp. 474-
484.

[11] H.T. Bui, Y. Wang, and Y. Jiang, “Design and Analysis of Low-
Power 10-Transistor Full Adders Using Novel XOR-XNOR
Gates,“ IEEE Transaction on Circuit and System, vol.49, January
2002.

[12] J.S. Wang et al, “An Ultra Low Power, Fast Lock-in, Small Jitter,
All Digital Delay Locked Loop,” Proc. IEEE ISSCC, 2005,
paper 22.7.

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

