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Abstract - Many electronic systems contain implementations
of cryptographic algorithms in order to provide security. It is
well known that cryptographic algorithms, irrespective of their
theoretical strength, can be broken through weaknesses in their
implementation. In particular, side-channel attacks, which exploit
unintended information leakage from the implementation, have been
established as a powerful way of attacking cryptographic systems.
All side-channel attacks can be viewed as consisting of two phases
— an observation phase, wherein information is gathered from
the target system, and an analysis or deduction phase in which
the collected information is used to infer the cryptographic key.
Thus far, most side-channel attacks have focused on extracting
information that directly reveals the key, or variables from which
the key can be easily deduced.

We propose a new framework for performing side-channel at-
tacks by formulating the analysis phase as a search problem that
can be solved using modern Boolean analysis techniques such
as satisfiability solvers. This approach can substantially enhance
the scope of side-channel attacks by allowing a potentially wide
range of internal variables to be exploited (not just those that are
“simply” related to the key). For example, software implementations
take great care in protecting secret keys through the use of on-
chip key generation and storage. However, they may inadvertently
expose the values of intermediate variables in their computations.
We demonstrate how to perform side-channel attacks on software
implementations of cryptographic algorithms based on the use of
a satisfiability solver for reasoning about the secret keys from the
values of the exposed variables. Our attack technique is automated,
and does not require mathematical expertise on the part of the
attacker. We demonstrate the merit of the proposed technique by
successfully applying it to two popular cryptographic algorithms,
DES and 3DES.

I. INTRODUCTION

Security has emerged as a critical concern in a wide range
of electronic systems. Extensive experience with the use and
deployment of security technologies has shown that, in practice,
most security systems are broken by exploiting weaknesses in their
implementation, making it important to consider security during the
complete design process.

Cryptographic primitives, such as encryption and hashing al-
gorithms, form the basis of most security mechanisms. A cryp-
tographic system may be abstracted as a mathematical function
that performs a given mapping of its input to its output, but in
reality it should be viewed as a specific (hardware or software)
implementation of the mathematical function. Cryptanalysis refers
to the process of breaking a cryptographic system without a brute-
force search (e.g., for an encryption algorithm, deriving the n-bit
key without 2n operations). Traditionally, cryptanalysis has focused
on just the mathematical function underlying the system, e.g., by
analyzing statistical properties of the outputs under the application
of targeted inputs [1], [2]. However, many of these attacks are
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infeasible in practice due to the large amount of data required to
implement them.

More recently, a powerful class of attacks called side-channel
attacks has emerged, which exploits information from the imple-
mentation to substantially reduce the complexity of performing
cryptanalysis [3]–[7]. Side-channel attacks can be viewed as con-
sisting of two phases — an observation phase, wherein information
is gathered by monitoring a ‘side-channel’ in the target system, and
an analysis or deduction phase in which the collected information
is used to infer the cryptographic key. Information leakage through
a side-channel is an inadvertent by-product of the implementation
process. Examples of side-channel information used in successful
attacks are operation timing [3], power dissipation [4], [5], elec-
tromagnetic radiation [6], and behavior in the presence of induced
faults [7]. Surprisingly small amounts of leaked information are
sufficient to break the secret key [8]. A wide range of design
techniques have been proposed to counter side-channel attacks [9]–
[11]. Even with the use of such techniques, the presence of side-
channels can be minimized, but it is very difficult to completely
eliminate them [12].

While some of the early side-channel attacks targeted hardware
implementations, software implementations are equally if not more
vulnerable. Data exposure can occur in software implementations
through memory bus exposure, core dump files, persistence of
data in disk memory after swap, etc. [13]. This problem of data
exposure exists even in secure software implementations [14].
Recent studies have revealed the possibility of data exposure from
software computations even after the computation is over [15]. In
some instances, even sensitive data, like passwords, were left in
accessible system buffers. Software side-channels typically reveal
data in Bytes or (larger) words, making them especially attractive
targets for attacks.

In this paper, we propose a framework for side-channel attacks
by formulating the analysis phase as a Boolean search problem
and solving it using state-of-the-art satisfiability (SAT) solvers. We
demonstrate this approach in the context of software side-channel
attacks. Our approach substantially enhances the scope of side-
channel attacks by allowing a potentially wide range of internal
variables to be exploited (not just those that are “simply” related
to the key). The exposure of secret keys or variables that are
directly related to them leads to a trivial compromise of security.
For example, in the DES algorithm, knowledge of the inputs to
each S-box in a round will allow the attacker to trivially calculate
the key. Therefore, secret keys and other “easy targets” are often
protected from exposure, e.g., through the use of protected on-
chip key generation and storage [16]. However, seemingly harmless
variable values, if exposed, can be sufficient to deduce the secret
keys when powerful analysis techniques, such as the SAT solver
used in this work, are employed.

The Boolean SAT problem is defined as follows. Given a Boolean
formula made up of a conjunction of clauses, each of which is a
disjunction of Boolean literals, determine whether values can be
assigned to the literals such that all the clauses in the formula are
satisfied, i.e., evaluate to 1. Such a literal assignment is referred
to as the satisfying assignment. The function of a SAT solver is
to find a satisfying assignment for any given Boolean formula, if
one exists, else give a proof that no such assignment is possible.
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While SAT has been shown to be NP-complete, efficient heuristics
exist that can solve many real-life SAT formulations. Furthermore,
the many applications of SAT have motivated advances in SAT
solving techniques that have been incorporated into freely-available
SAT software tools [17], [18]. Many practical search problems in
a wide range of areas have been formulated as SAT problems. In
the field of design automation, SAT has been successfully applied
in hardware and software verification and circuit testing. Given the
versatility and effectiveness of SAT solving techniques, it was a
natural choice to use a SAT solver as an automated reasoning engine
in our proposed framework for enabling side-channel attacks.

A. Paper contributions

The contributions of this paper include:
• A general framework for enabling side-channel attacks by for-

mulating the analysis of side-channel information as a search
problem that can be solved using SAT solvers. This approach
is fully automatic and obviates the need for mathematical
expertise on the part of the attacker.

• Demonstration that a large subset of the internal variables in a
cryptographic algorithm, not just the key or variables that are
directly related to it, can be used to launch successful attacks.

• Application of the proposed framework to perform software
side-channel attacks on the popular symmetric encryption
algorithms DES and 3DES.

• Characterization of the minimal subsets of internal variables
that are sufficient to break DES and 3DES given current state-
of-the-art SAT solvers.

Previous work in the area of side-channel attacks has identified
various side-channels, and proposed specific ad hoc techniques to
exploit the information derived from each of them. However, due
to the nature of the collected information, the analysis phase has
mostly been quite simple. In the context of software attacks, existing
work gives ample evidence of software data leakage. However,
there is no general framework to transform these vulnerabilities into
actual attacks on security software. Furthermore, when implemen-
tations take basic measures to protect the keys and other directly
related variables from leakage, more powerful analysis techniques,
such as the one proposed in our work, are necessary. From another
perspective, a knowledge of the internal variables that can be used
to launch side-channel attacks can translate into design guidelines
that dictate parts of the implementation that should be protected.

To the best of our knowledge, this is the first attempt to apply
Boolean analysis techniques to side-channel attacks.

B. Related work

Differential and linear cryptanalysis are two well-known math-
ematical cryptanalytic techniques. However, they require huge
amounts of input, thereby making them prohibitively expensive.
For example, to break the 16-round DES, differential and linear
cryptanalysis require 247 chosen and known plaintexts, respectively
(encrypted with the key to be computed) [1], [2]. Development
of side-channel attacks enabled practical cryptanalysis of a num-
ber of popular cryptographic algorithms, e.g., DES, RSA, DSS,
etc. [3], [5], [7]. Kelsey et al. [8] proved the power of side-channel
attacks by demonstrating that a minimal amount of side-channel
information is required for breaking some popular cryptographic
algorithms. Schaumuller-Bichl [19] introduced the method of formal
coding in which XOR sum-of-product expressions are formulated
for the DES output bits in terms of the plaintext and key bits. For
a known plaintext and ciphertext pair, the equations are solved to
get the key bits. However, the high complexity of the resulting
equations limited the attack to being a theoretical one. Massacci
and Marraro [20] proposed modeling of DES as a SAT formulation
for studying cryptographic properties of DES, and for traditional
cryptanalysis (which is based on the knowledge of only the plaintext
and ciphertext). However, their results showed the inability of SAT
to perform traditional cryptanalysis. Our work differs from theirs
in terms of recognizing and demonstrating the effectiveness of SAT
as a tool for enabling side-channel attacks.

The rest of the paper is organized as follows. Section II discusses
the various ways in which software side-channels are created,
thereby enabling side-channel attacks. Section III gives an overview
of our proposed technique, and illustrates the formulation of a
cryptographic algorithm as a Boolean formula, using DES and
3DES as examples. Section IV presents results of our compre-
hensive experiments with a state-of-the-art SAT solver to identify
the intermediate values in DES and 3DES which enable successful
inferring of the key. We conclude in Section V with our observations
and directions for future work.

II. EXPOSURE OF SOFTWARE DATA

In this section, we enumerate the various ways in which side-
channels that leak the values of software variables exist. We con-
clude the section by illustrating the manner in which we obtained
the values of internal variables to cryptanalyze DES and 3DES in
our experiments.

Application programs use routines provided by system libraries to
implement common functionality. Through system calls, application
code and system libraries interact with the operating system (OS)
kernel which manages the hardware. The complexities of imple-
menting hardware and software systems leave opportunities for data
leakage at the various interfaces: application-library, application-
OS, library-OS, and OS-hardware. There are two ways in which
opportunities for data exposure at these interfaces occur:

• It can happen inadvertently during normal operation due to
bugs, improper policies, misconfiguration, etc. Chow et al. [15]
showed the existence of program data in system buffers long
after the program terminated. Garfinkel and Shelat [21] showed
the persistence of data on magnetic disks, and ways to extract
it. Thus, swapping of processes greatly increases the chance
of data exposure. Core dumps of programs are also a valuable
source of program data [22].

• It can occur due to malicious hardware or software attacks
that exploit system vulnerabilities, e.g., hacking of the run-
time stack [23], probing the cache [24], monitoring the memory
traffic on the system bus [25], etc. Also, there exist tools for
examining the contents of program memory as the program is
being executed [26]. They can be used to gather the values of
the required intermediate variables.

Even secure software implementations have been observed to have
data exposure problems [27].

In this work, as an illustrative example, we evaluated a bus
probing attack on an embedded software implementation of crypto-
graphic algorithm. However, our technique is not restricted to any
specific software side channel — any mechanism that reveals the
values of some program intermediate variables can be used.

We compiled open-source FIPS-43 [28] compliant software im-
plementations of the DES and 3DES encryption algorithms (avail-
able at: http://www.cr0.net:8040/code/crypto/) on
the Xtensa processor, a commercial 32-bit embedded processor [29].
The software implementations of these algorithms were simulated
using the Xtensa instruction set simulator (ISS), which models the
processor, memory hierarchy, and system bus. The main memory
trace was observed to extract values of program intermediate vari-
ables, which were then fed into the proposed SAT-based framework
(described in the following section). We considered various cache
configurations from 4KB upto 32KB. In all cases, we were able
to obtain sufficient information (some internal variable values) to
discover the key using the proposed framework.

III. SAT FRAMEWORK FOR ENABLING SIDE-CHANNEL

ATTACKS

In this section, we present details of our proposed SAT-based
cryptanalysis framework. We begin by giving an overview of the
framework, and briefly describe its constituent steps. Later, the
method for representing a cryptographic algorithm as a Boolean
formula is described. We use the popular DES and 3DES algorithms
for illustrating this formulation process, and to discuss the results
of our experiments. However, it should be noted that our technique
is general and can be applied to any cryptographic algorithm.



A. Overview of the proposed framework

We wish to represent the functionality of the cryptographic
algorithm being targeted as an equivalent Boolean formula in
conjunctive normal form (CNF), apply constraints corresponding
to the observations, i.e., plaintext, ciphertext, and internal (or
intermediate) variables produced by the secret key, to the for-
mula, and finally, compute the secret key by using a SAT solver
to solve the resulting formula. Consider a DES implementation
having a side-channel that leaks values of intermediate values.
For i ∈ {1,2, ..,n}, plaintext Pi is mapped to ciphertext Ci for
the secret key K. {V j+1

i ,V j+2
i , . . . ,V j+k

i } (collectively denoted by
{V j

i }) represent the values of k intermediate variables leaked when
the implementation transforms Pi to Ci.

Fig. 1 illustrates the operational flow of the proposed SAT-
based framework. The first step is to obtain the Boolean formu-
lation of the algorithm (details are presented in Section III-B).
Let Ψ(P,C,K,V 1,V 2, . . . ,V m) represent the Boolean formula of
the cryptographic algorithm (in our case, DES) where P, C, K
and {V 1,V 2, . . . ,V m} represent literals corresponding to plaintext,
ciphertext, secret key, and all the m internal variables, respectively.
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Fig. 1. High-level view of the proposed SAT-based framework

We constrain the formula based on known plaintext/ciphertext
values, i.e., by setting the plaintext and ciphertext literals in the for-
mula to their observed values (i.e., (P1,C1),(P2,C2), . . . ,(Pn,Cn)).
This is done by concatenating multiple CNF formulae where each
one is constrained on one known plaintext/ciphertext pair, i.e.,
Ψ(P1,C1,K,V 1,V 2, . . . ,V m) ∧ Ψ(P2,C2,K,V 1,V 2, . . . ,V m) ∧ . . . ∧
Ψ(Pn,Cn,K,V 1,V 2, . . . ,V m) (n ≥ 1). The next step exploits the
side-channel information collected using techniques described in
Section II. Here, we further constrain the formula based on the
intermediate variable values observed from the side-channel (i.e.,
{V j

1 },{V j
2 }, . . . ,{V j

n } where set {V j
i } represents the values of the

intermediate variables of the algorithm observed for pair (Pi,Ci)).
This is represented in the formula as, Ψ(P1,C1,K,{V j

1 },{V j
1 }c)∧

Ψ(P2,C2,K,{V j
2 },{V j

2 }c,)∧ . . .∧Ψ(Pn,Cn,K,{V j
n },{V j

n }c) ({V j
n }c

represents the set of intermediate variables other than {V j
n } which

remains unassigned). It is worth mentioning that all the constraints
in the formula are with respect to the same secret key, K. Note that
the encoding shown in the figure assumes that a block cipher is used.
For other modes (chaining or feedback modes), the feedback in the
algorithm is represented by constraining the values of appropriate
variables (e.g., initialization vector (IV)) in adjacent copies to be
the same. The resulting Boolean formula is given as an input to the

SAT solver. The SAT solver can terminate its search for a literal
assignment with one of the following outcomes:

• SAT: A satisfying assignment is found. The key value, K,
can be output by identifying the values assigned to literals
corresponding to the key bits in the assignment.

• UNSAT: There is no satisfying assignment for the Boolean
formula. Assuming the Boolean formulation is correct, this
implies an error in the values of the plaintext-ciphertext or
the intermediate variables encoded in the formula. Hence,
we backtrack, re-encode the formula with correct values, and
repeat the search for an assignment.

• TIMEOUT: The solver is unable to find either a satisfying
assignment or prove no such assignment exists for the formula
within a reasonable time or memory, and therefore aborts. The
time and memory limits in our experiments were usually on the
order of 2000 seconds and 2 GB, respectively. In this case, an
iterative loop of modifying the side-channel information (either
adding more variables to or replacing variables in the set of
intermediate variables whose values were used as side-channel
information) can be used until the solver gives a deterministic
output (SAT or UNSAT) or an upper limit on the number of
loop iterations is reached.

B. Boolean formulation of a cryptographic algorithm
In this paper, we limit our investigation to symmetric algo-

rithms [30]. Encryption/decryption in symmetric algorithms consist
of multiple iterations of a round transformation, each of which is
parameterized on a different key (termed round key). Round key
generation (also known as key expansion) refers to the process of
generating round keys from the secret key. Thus, the operation of a
symmetric algorithm is divided into two parts: round key generation
and encryption/decryption process. Therefore, the Boolean formula
of a cryptographic algorithm should include both key generation
and encryption/decryption operations. We demonstrate this using
DES and 3DES. Since 3DES is a simple extension of DES, we
focus on the latter.

DES takes a 64-bit plaintext and a 64-bit secret key to produce
a 64-bit ciphertext. Fig. 2(a) shows the round key generation
operation. The bits of the 64-bit secret key, K, are permuted using a
permutation function, P1. P1 also removes the 8 parity bits (located
at bit positions 8, 16, 24, 32, 40, 48, 56 and 64), leaving a 56-bit
output. The 56-bit value is rotated by a fixed offset, and passed
through another permutation function, P2, to produce a round key.
The rotate offset is different for each round (denoted by <<1, <<2,
..., <<16 in Fig. 2(a)). P2 chooses 48 bits at pre-determined bit
indices from the rotated 56-bit value, and permutes them. Thus, 16
distinct 48-bit round keys are generated from the 64-bit secret key.

Encryption in DES is done by iterating the plaintext 16 times
through a round transformation where a distinct round key is used
for each round. Fig. 2(b) shows the operations of a DES round
transformation. Input to round i is split into two 32-bit halves: left
half (Li) and right half (Ri). Ri is transformed by the F function
whose other input is the round key, Ki. The output of the F function
is XORed with Li to produce a 32-bit output, Louti. Louti and Ri
become the right (Ri+1) and left (Li+1) halves of the next round,
respectively. Fig. 2(c) expands the F function (in round i) into its
constituent operations. The 32-bit right half, Ri, is expanded into a
48-bit value, ERi, by passing it through the expansion permutation,
E. ERi is XORed with the 48-bit round key, Ki, to produce Sini.
The 48-bit value, Sini, is split into eight six-bit vectors which are
input to eight distinct S-boxes (S1, S2,.., S8). An S-box performs a
table-lookup with pre-computed values and takes a six-bit input to
produce a four-bit output. The four-bit outputs of the eight S-boxes
are combined to form a 32-bit value, Souti. The bits of Souti are
permuted by permutation, P, to produce Pi, the 32-bit output of the
F function.

Obtaining the Boolean formulation for DES round key generation
is straightforward. The bits of the 64-bit secret key are permuted
and rotated to obtain the round keys. Therefore, for each round,
we pre-compute the bit indices (of the secret key) which form the
corresponding round key. For example, the round key for round
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Fig. 2. Functional view of DES encryption: (a) round key generation, (b) round transformation, and (c) F function used in the round transformation

five is formed by putting the 19th bit of the secret key as the first
bit of the round key, 60th bit as the second bit, 43th bit as the
third bit, and so on. Thus, based on this pre-computed bit index
mapping between the secret key and round keys, the appropriate
secret key literals can be used in the round transformation. The
Boolean formulation of DES encryption requires us to deal with
three types of logic functions, i.e., XOR, table lookup and permute.
Given any logic function, F(.), its corresponding Boolean formula
can be derived using the following logical relation:

(Z = F(.)) ≡ (Z → F(.))(F(.) → Z) (1)

≡ (Z +F(.))(F(.)+Z) (2)

Assuming F(.) and F(.) are in the product-of-sum form, the above
expression can be expanded into a Boolean formula using the logic
relation, (a + bc) = (a + b)(a + c). The Boolean formulas of the
logic functions in a DES round can be obtained as follows:

• XOR: The Boolean formula representing the XOR of two
vectors can be obtained by the conjunction of the Boolean
formula representing the XOR of individual bits. Let zi =
xi ⊕ yi, where xi and yi are the ith input bits, and zi the
ith output bit. The Boolean formula, Φi, representing this
operation can be derived as follows:

Φi = (zi +(xi ⊕ yi))(zi +(xi ⊕ yi))
= (zi +(xi + yi)(xi + yi))(zi +(xi + yi)(xi + yi))
= (zi + xi + yi)(zi + xi + yi)(zi + xi + yi)(zi + xi + yi)

• Permutation: The permutation functions, E and P (Fig. 2(c)),
rearrange their input bits at the output (E also duplicates some
of the input bits). If the jth input bit x j is assigned to the
ith output bit zi, then the corresponding Boolean formula is
given by (zi +x j)(zi +x j). We get the Boolean formula for the
permutation function by the conjunction of formulae for all the
output bits.

• S-box: The S-boxes are the only non-linear functions in the
DES algorithm. An S-box maps a 6-bit input to a 4-bit output.
This enables us to enumerate the behavior of an S-box using
a truth table, and use a logic minimizer tool to obtain logic
expressions for each of the four outputs in terms of the six
inputs. Using the logic expressions, Boolean formulas can be
derived for each of the four output bits (using the logic relation
described in Equation (1)). The formula for a single output bit
comprises 34 clauses. Conjunction of the Boolean formulae of
the four output bits gives the formula for the S-box, i.e., 136
clauses.

3DES is computed by using three iterations of the DES algorithm
using different keys for each iteration. It consists of DES encryption
with key k1, followed by DES decryption with key k2, and finally
DES encryption with key k3. Operations in DES decryption are
similar to DES encryption except that the order of the round keys

TABLE I
RESULTS OF THE BOOLEAN FORMULATION

Algorithm Literals Clauses

DES 6904 35232
3DES 20328 104928
AES 10240 542432

is reversed, i.e., we use the 16th round key first, and go down
to the first one. Thus, 3DES effectively uses a 192-bit key for
encryption. The Boolean formula for 3DES is derived by conjoining
Boolean formulae for DES encryption, DES decryption, and DES
encryption with different key literals. Table I summarizes the literals
and clauses present in the Boolean formulae for three popular
cryptographic algorithms. DES, 3DES and AES. We provide results
for a 128-bit key AES for comparison purposes.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the results of our side-channel attack
method for DES and 3DES. We studied the efficacy of all the
intermediate variables in DES regarding their ability to enable our
technique to compute the secret key. Our exhaustive studies show
that knowledge of certain sets of intermediate variables allows our
technique to successfully determine the secret key. We refer to
these sets of variables as enabling sets. We present some rules that
invariably describe how the enabling sets for the DES algorithm
can be formed. Thus, all the enabling sets can be enumerated
by iterating through these rules. These rules also hold for 3DES
where they are applied separately to its three DES segments. We
performed all our experiments on a PC with a 1.6 GHz Pentium
processor and a 512MB RAM running Debian Linux OS. We used
the MiniSAT SAT solver from Chalmers University [18], since it
has been benchmarked to be one of the best performing publicly
available SAT solvers (http://www.satlive.org). However,
similar results were also obtained using other state-of-the-art solvers
such as zChaff [17]

A. Cryptanalysis of DES
We present the rules characterizing the enabling sets of DES with

the help of Fig. 3. This figure shows four consecutive rounds in the
DES algorithm (indices i, i+1, i+2, i+3, i+4 indicate rounds).
The variables in an enabling set are encapsulated within this four-
round DES structure wherever this structure might occur within the
16 rounds of the DES algorithm, i.e., i ∈ {1,2, ..,13}. The rules are
enumerated below:

1) Forward L-L path: A lower-round L value separated from a
higher-round one by a single XOR operation, and the R value
adjacent to the lower-round L form an enabling set. In Fig. 3,
{Li,Li+2,Ri} forms an enabling set according to this rule.

2) Forward R-L path: A lower-round R value separated from
a higher-round L by a single XOR operation, and the L value



adjacent to the lower-round R form an enabling set. By this
rule, {Ri,Li+3,Li} is an enabling set.

3) Reverse R-L path: A higher-round R value separated
from a lower-round L value by a single XOR operation,
and the L value adjacent to the R form an enabling set.
{Ri+4,Li+3,Li+4} becomes an enabling set according to this
rule.

4) Reverse L-L path: A higher-round L value separated from
a lower-round L by a single XOR operation, and the R value
adjacent to the higher-round L form an enabling set. Based
on this rule, {Li+4,Li+2,Ri+4} becomes an enabling set.

5) Two-XOR path: A lower-round L separated from a higher-
round L by two XOR operations, and the R values ad-
jacent to these L values form an enabling set. Therefore,
{Li,Ri,Li+4,Ri+4} becomes an enabling set.

L

L

i+4L R i+4

i+3i+3

RL i+2 i+2

i+1i+1 R

R

L R ii

K

K

K

K i+3
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F
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Fig. 3. DES structure illustrating invariant rules

A minimum of three intermediate variables (rules 1-4) and a
maximum of four (rule 5) are needed to compute the DES secret
key. Special cases arise when index i is 1 or 13. When i is 1,
L1 and R1 (analogs of Li and Ri in Fig. 3) are the left and right
half of the plaintext which is already provided. Thus, according to
rules 1 and 2, we need the knowledge of only one intermediate
variable, either L3 or L4, to compute the secret key. To apply rule
5, we require two intermediate variables, L5 and R5, to extract the
secret key. Similarly, when i is 13, L17 and R17 (analogs of Ri+4
and Li+4 in Fig. 3 since there is no crossover of L and R values
in the last round) are the two halves of the ciphertext which is
known. According to rules 3 and 4, knowledge of either L16 or L15
is required to extract the secret key. To apply rule 5, values of both
L13 and R13 are required. Thus, we see that in special cases, i.e.,
i ∈ {1,13}, the minimum number of intermediate variables required
to compute the DES key reduces to one.

For time efficiency, multiple plaintexts and their corresponding
ciphertexts produced by the same secret key can be encoded into
the Boolean formula. In some cases, this extra information increases
the power of the SAT solving process. Time taken to compute the
secret key as a function of the number of plaintext/ciphertext pair
values encoded into the Boolean formula for rule 3 (L16) and rule
5 ({L5,L6}) enabling sets is shown in Figs. 4 and 5, respectively.
Along with the plaintext/ciphertext pair values, the corresponding
values of variables {L16} and {L5,L6} are also encoded. Fig. 4
shows the time taken to compute the secret key using 2, 4, 8, 16
and 32 plaintext/ciphertext pairs when set {L16} is encoded. The
SAT solver times out when values of only one plaintext/ciphertext
pair is provided. Here, we can see that our technique can compute
the secret key within two seconds when provided with two pairs of
values, and the time taken increases as more pairs are provided. This

observation is true across enabling sets found by rules 1, 2, 3 and 4.
Similarly, Fig. 5 shows the average trend of time taken to compute
the secret key using 1, 2, 4, 8, 16 and 32 plaintext/ciphertext
pairs when set {L5,L6} is encoded. Here, the time taken decreases
as the number of pairs encoded increases from one to four, and
then increases. In general, this observation holds for enabling sets
obtained by rule 5.
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Fig. 4. Time to compute the secret key with the value of variable L16

There are ways in which new enabling sets can be formed by
replacing variables in an enabling set by equivalent ones. Consider
the enabling set produced by rule 1, {Li,Li+2,Ri}. From Fig. 3
we see that variable Li+2 is the same as variable Ri+1. Thus,
{Li,Ri+1,Ri} is also an enabling set. Similarly, a rule 5 enabling
set {Li,Ri,Li+4,Ri+4} is equivalent to {Li,Li+1,Li+4,Li+5}. With
respect to enabling the SAT solver to solve a Boolean formula,
providing the value of variable Ri+1 in Fig. 3 is equivalent to
providing the values of variables Pi, Souti or Sini in the F function
(Fig. 2(b)) of round i. This can be easily explained. For example,
consider the enabling set, {Li,Ri+i,Ri} (which is equivalent to
the rule 1 enabling set, {Li,Li+2,Ri}). Values of Li and Ri+1
enable the SAT solver to find the output of the F function by a
simple backward implication through the round XOR operation.
This derived value can be further back-propagated through the
F function until the output of the XOR operation (inside the F
function) is computed. One input to this XOR can be easily derived
from the forward propagation of Ri, and the other input is the round
key, Ki. Thus, a simple implication will reveal the bits of the round
key. By providing values of Pi, Sini or Souti instead of Ri+1, we
are directly providing the values of the output of the F function,
and obviating the need for the first back implication through the
round XOR. Therefore, variable sets {Li,Pi,Ri}, {Li,Souti,Ri} and
{Li,Sini,Ri} become enabling. In this manner, the collection of
enabling sets can be increased.
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Fig. 5. Time taken to compute the secret key with the values of variables
L5 and L6

B. Cryptanalysis of 3DES
3DES is made up of 48 DES rounds, where rounds 1 to 16

implement DES encryption with key k1, rounds 17 to 32 implement
DES decryption with key k2, and rounds 33 to 48 implement DES



encryption with key k3. Effectively, 3DES has a 192-bit secret key
comprising three 64-bit keys, k1, k2 and k3. The enabling sets for
DES, which are described above, can be extended to 3DES. We get
an enabling set for 3DES by combining the enabling sets of each
of its three constituent DES segments. For the sake of clarity, we
separate the results for 3DES into two classes below - ‘rule 5 3DES
enabling sets,’ and ‘non rule 5 3DES enabling sets’:

• Rule 5 3DES enabling sets: These are obtained by combining
rule 5 enabling sets of the three DES segments, i.e., analogs of
{Li,Ri,Li+4,Ri+4} (Fig. 3) in the three segments. For example,
we can form a rule 5 3DES enabling set by putting together the
following three DES enabling sets, {L9,R9,L13,R13} (for the
first DES segment), {L25,R25,L29,R29} (for the second DES
segment), and {L41,R41,L45,R45} (for the third DES segment).
An interesting example is the one obtained by combining
{L5,R5} (for the first segment), {L21,R21} (for the second
segment) and {L45,R45} (for the third segment). Here, since
L1 and R1 constitute the plaintext, it is sufficient to provide
values of only L5 and R5 for finding the 64-bit secret key of
the first segment. Similarly, since L49 and R49 constitute the
ciphertext, values of L45 and R45 are enough to compute the
64-bit key of the third segment. After finding the key of the
first segment, the SAT solver can compute the outputs of this
segment, L17 and R17 (which are also the inputs to the second
segment), through forward implications. Thus, it is sufficient
to provide only the values of L21 and R21 to compute the 64-
bit key of the second segment (since set {L17,R17,L21,R21}
forms a rule 5 enabling set). Likewise, providing the values of
set {L29,R29} instead of {L21,R21} gives the same result. In
this case, after the SAT solver computes the key of the third
segment, it performs backward implications from the output of
the third segment (which is the ciphertext) to find the inputs
of this segment, L33 and R33 (which are also the outputs of the
second segment). As in the previous case, {L29,R29,L33,R33}
forms a rule 5 enabling set. For rule 5 enabling sets, our
technique could derive the 192-bit 3DES key in 750 seconds
on average (using four plaintext/ciphertext pairs).

• Non rule 5 3DES enabling sets: These are formed by
combining enabling sets obtained by rules 1, 2, 3 and 4 for each
of the three DES segments of 3DES. An interesting example of
this enabling set is obtained by combining rule 1 enabling sets
for the first and second segments, and rule 3 enabling set for the
third segment: {L3} (L1 and R1 are plaintext), {L17,L19,R17},
and {L48} (L49 and R49 are ciphertext). Likewise, 3DES
enabling sets can be obtained by various combinations of
enabling sets for the three DES segments. For non rule 5
enabling sets, our technique could derive the 192-bit 3DES
key in 1165 seconds on average (using four plaintext/ciphertext
pairs).

V. CONCLUSIONS

In this work, we have presented a novel framework for perform-
ing side-channel attacks on cryptographic software. We have argued
and demonstrated the dangers of software side-channels in compro-
mising secret keys. Also, we have developed an automated SAT-
based framework for exploiting the vulnerabilities of the software
side-channel. However, the SAT solver has some limitations, e.g.,
it cannot break the key in cases where the exposed variables are
separated by more than four DES rounds. Based on our experience,
we foresee scope for further research along two directions: a
thorough analysis of the nature of software side-channels and their
prevention, and improving SAT solving techniques with the aim of
enhancing their cryptanalysis capabilities.
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