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Abstract 

Regular expressions are widely used in Network 
Intrusion Detection System (NIDS) to represent patterns of 
network attacks. Since traditional software-only NIDS 
cannot catch up to the speed advance of networks, many 
previous works propose hardware architectures on FPGA 
to accelerate attack detection. The challenge of hardware 
implementation is to accommodate the regular expressions 
to FPGAs of the large number of attacks. Although the 
minimization of logic equations has been studied 
intensively in the CAD area, the minimization of multiple 
regular expressions has been largely neglected. This paper 
presents a novel architecture allowing our algorithm to 
extract and share common sub-regular expressions. 
Experimental results show that our sharing scheme 
significantly reduces the area of regular expression 
circuits.  

1. Introduction 

Regular expressions are widely used in Network 
Intrusion Detection System (NIDS) to represent network 
attack patterns. The NIDS is used to recognize and detect 
network attacks, especially in the application layer, that 
general firewalls cannot find. As soon as any malicious 
packet is matched to an attack pattern, the NIDS notifies 
the system and takes the appropriate actions. Due to the 
rapid increase of network attacks and data traffic, 
traditional software-only NIDS, which sequentially 
matches input packets against attack patterns, may be too 
slow for networking needs. 

 In contrast to software-only NIDS, many studies 
[1][2][3][4][5] proposed hardware architectures for 
accelerating attack detection. These hardware architectures 
are mostly implemented in FPGA because FPGA allows 
for updating new attacks patterns.  Sidhu and Prasanna [1] 
proposed to construct an NFA (Nondeterministic Finite 
Automaton) from a regular expression to perform string 
matching. Hutchings, Franklin and Carver [2] developed a 

module generator that combined common prefixes to 
reduce FPGA area. In contrast to NFA approaches, a 
content matching server [3] was developed to 
automatically generate Deterministic Finite Automatons 
(DFAs) to search for regular expressions. Based on the 
Knuth-Morris-Pratt (KMP) algorithm, Baker and Prasanna 
[4] proposed a linear-array, pipelined, two-comparators 
and buffered string-matching architecture that provided 
instantaneous reconfiguration and better scalability.  

One of the main challenges of hardware implementation 
is to accommodate the large number regular expressions to 
FPGAs. Most previous works proposed novel architectures 
that translated each regular expression pattern to one 
circuit module. Then, input strings are fed into 
corresponding circuit modules of all regular expressions in 
parallel to detect all attacks. However, one to one hardware 
implementation of a regular expression can lead to 
cost-inefficient designs that cannot deal with the 
ever-increasing bandwidth and number of attacks. 
Therefore, it is important to develop new methodology to 
minimize large multiple regular expressions. Although the 
minimization of logic equations has been studied 
intensively in the CAD area, there is very little research in 
the minimization of multiple regular expressions.  

The following example illustrates the difficulty of 
minimizing regular expressions. Consider two simple 
regular expression patterns “PassWinDirUserGate” and 
“PassSysDirNetGate.” Figure 1 shows a simplified regular 
expression circuit where the top five blocks match the first 
pattern and the bottom five blocks match the second 
pattern. Each block compares a substring and asserts the 
output signal once the substring matches the desired 
pattern. For example, the first block (highlighted) 
compares the pattern “Pass.” Once the first block succeeds 
in matching, the following block is activated by triggering 
the control signal “en.” It is easy to find that both “Pass” 
blocks can be shared, as shown in Figure 2 [2]. Although 
the common infix sub-pattern “Dir” exists, the 
corresponding hardware blocks cannot be shared directly, 
as they are in Figure 3. Because the block “Dir” can be 
triggered either by “Win” or “Sys,” the string 
“PassSysDirUserGate” may wrongly be recognized as a 
match at the output of the top block. 
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In this paper, we present a novel architecture which 
allows our algorithm to extract and share as many common 
sub-regular expressions as possible. Additionally, in order 
to construct the regular expression patterns of Snort [6] 
and Trend Micro, we develop five basic NFA components 
to support Perl-compatible regular expressions (PCRE). 
We obtain a significant area reduction on both patterns. 
For Snort patterns, our experimental results show 48% in 
area reduction on average. We also obtain 20% in area 
reduction on average in the patterns of Trend Micro. The 
paper is organized as follows: Section 2 introduces the 
regular expressions for attacks’ description. Then, Section 
3 demonstrates our sharing scheme. Section 4 
demonstrates the hardware implementation and finally, 
experimental results and conclusions are given in Sections 
5 and 6, respectively. 

2. Regular expressions for attacks’ description 

Regular expressions are a common way to express attack 
patterns. In Snort, two types of regular expression are used 
to describe attack patterns. The first type defines exact 
string patterns such as Backdoor’s pattern, "Ahhhh My 
Mouth Is Open.” In Snort, about 87% of rules belong to 
this type. The second type consists of meta-characters such 
as anchor (^ and $), alternation (|), and quantifier (* 
and ?). For example, the rule for detecting the Oracle Web 
Cache attack is written as  
alert tcp any -> (pcre:"^GET[^s]{432} ";…).  
The string “^GET[^s]{432}” in the “pcre” field 
represents a complex pattern where “^” denotes “the 
beginning of a line”, and the “GET [^s]{432}” denotes 
that the successive 432 characters after “GET” cannot 
contain “s.” The Snort has about 1,777 rules for detecting a 
variety of attacks and probes, such as buffer overflows, 
stealth port scans, CGI attacks, SMB probes, and OS 
fingerprinting attempts. 

3. Minimization of regular expression circuits 

In the introduction, we describe the difficulty of sharing 
infix sub-pattern where the common sub-pattern occurs in 
the middle of a pattern. Similarly, we cannot directly share 
postfix sub-pattern where the common sub-pattern occurs 
at the tail of a pattern. If the two outputs, match1 and 
match2, of the original circuit are merged directly, the 
circuit cannot differentiate the pattern being matched from 
the other whenever the match out is asserted.  

In order to solve the problems caused by directly sharing 
infix and postfix, we propose a new architecture that can 
memorize the path that the trigger signal passes through. 
Under specific constraints, our approach supports the 
sharing of common infix and postfix sub-patterns. In 
addition, the proposed architecture is not only fit for the 
exact string matching, but also the complex regular 
expression patterns composed of meta-characters. The new 
architectures for sharing infix, postfix, and prefix are 
described as follows. 

Given m regular expressions, R1,R2,…, Rm, and assuming 
that all of them have the infix common sub-pattern, Rc, the 
m regular expressions can be represented as R1preRcR1post , 
R2preRcR2post,…, and RmpreRcRmpost , where the suffixes, pre- 
and post-, denote the prefix and postfix, respectively. To 
resolve the two problems caused by directly sharing 
common infix and postfix sub-patterns, we propose a 
novel sharing architecture in Figure 4 that allows the 
common sub-pattern Rc to be shared.  

Pass 

Figure 3. An erroneous implementation to share infix 
Dir 

Payload Input 

Dir Win 

Sys 
en  o 

en  o en  o en  o en o  en  o 

en o  en  o 

1 

Figure 2. Sharing prefix common sub-patterns 

Win Dir User Gate 

Payload Input 

en  o en  o en  o 
Pass 

Sys Dir Net Gate 
en  o en  o en  o match2 

match1 

en  o 

1 en  o 

Pass 

Figure 1. Original circuits 

Win Dir User Gate 

match2 

en  o match1 en  o en  o en  o en  o 

Pass Sys Dir Net Gate 
en  o en  o en  o en  o en  o 

1 

1 

Payload Input 

en  o 

User 
match1 

Gate 

match2 
Net Gate 



In Figure 4, two additional circuit blocks are inserted. 
The switch module is used to memorize where the trigger 
signal comes from, and then output control signals to 
DeMux (De-Multiplexer) to guide the output of Rc to the 
correct postfix circuit. If R1pre is matched, the output signal 
of Rc will pass to R1post. Similarly, if R2pre is matched, only 
R2post can be activated after Rc is matched. By this new 
architecture, the output of the common infix sub-pattern 
can be passed to the appropriate postfix circuit, preventing 
from the problem caused by directly sharing infix 
sub-pattern. Similarly, this new architecture can support 
the sharing of the common postfix sub-patterns. This can 
be done easily if all or some of the postfixes are eliminated 
in Figure 4.  

 

Still, the new architecture has two constraints, which 
disallow certain special types of sharing. Common 
sub-pattern satisfies the following constraint cannot be 
shared by using the sharing architecture shown in Figure 4. 
Taking two regular expressions with a common sub-pattern 
Rc for example in Figure 5, the switch module behaves as a 
JK flip-flop. The two constraints are described as follows.  

Constraint 1: For the m regular expressions in Figure 4, 
{R1preRcR1post, R2preRcR2post, …, RmpreRcRmpost}, the prefix 
Rjpre cannot be null for mj ...1∈ .  

Proof: Omitted. 

For example, given two patterns, “abcdefgh” and 
“defpq,” there exists a common sub-pattern “def,” but it 
cannot be shared by directly applying our new architecture. 
In Figure 5, our architecture applies a constant 1 at the 
input of the highlighted OR gate. However, this will cause 
the match output of block “def” always pass to block “pq.” 
Therefore, in this special case, we will skip the sharing of 
sub-pattern “def.”   

 

Constraint 2: For the m regular expressions in Figure 4, 
{R1preRcR1post, R2preRcR2post, …, RmpreRcRmpost}, the Rc cannot 
be shared if Rjpre⊂RkpreRc, jk ≠∀ , k, j∈1…m. 

Proof. Omitted. 

For example, given two patterns, “abcdefgh” and 
“dedefpq,” there exists a common sub-pattern “def.” But in 
this case, our sharing architecture cannot be applied. As 
Figure 6 is shown, the block “de” is a sub-pattern of the 
block “abcdef.” Suppose a string “abcdefgh” is fed, the 
trigger signal should be guided from the block “abc” 
through the block “def,” to the block “gh,” and then 
match1 should be asserted. But actually it fails because the 
outputs of the JK flip flop will be complemented when the 
string “abcde” is fed and the string “abcdefgh” will be 
missed. Again, when this special condition is recognized, 
our algorithm will skip the sharing to prevent an erroneous 
result. 

 

 

 

Figure 6. Example of constraint 2 
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4. Hardware implementation  

4.1. Regular expression module generator  

We develop a regular expression module generator that 
can explore the sharing of common prefix, infix and 
postfix sub-patterns. The flow diagram of our generator is 
shown in Figure 7. In the first stage, we obtain regular 
expression patterns from the pattern database. Then, 
common prefix sub-patterns are shared directly. After that, 
we recursively extract one common infix or postfix 
sub-pattern which has the largest sharing gain defined as 
follows. The sharing gain of a common sub-pattern is 
defined to be the number of characters in the sub-pattern 
multiplies by the number of regular expressions having the 
sub-pattern. For example, three regular expressions, 
“1Common1”, “2Common2”, and “3Common3” have the 
common sub-pattern “Common.” The sharing gain of the 
common sub-pattern is 18=6*3 because “Common” has 6 
characters and the number of regular expressions is 3. In 
our experiment, because sharing also has hardware 
overhead, we heuristically restrict the number of characters 
of a common sub-pattern to be more than two. The process 
of sharing continues until no common sub-pattern can be 
shared. Note that a shared common sub-pattern must 
succeed in passing the constraints described in Section 3. 
In the final stage, we generate the Verilog HDL code of the 
shared architecture.  

 

4.2. Basic components of NFA approach 

Figure 4 demonstrates our sharing architecture, of which 
each block can be constructed by the basic four NFA 
components, single-character matcher, union (|), 
concatenation, and Kleene-star (*), proposed by Sidhu and 
Prasanna [1]. The single-character matcher is used to 
match single character. In order to support Perl-compatible 
regular expressions (PCRE), we also develop five 
additional meta-character components, including 
any-character matcher (.), complementing-character 
matcher (^), question mark (?) quantifier, plus quantifier 
(+), and dollar sign anchor ($) (see Figure 8). The 
any-character matcher is used to match any input character 
(see Figure 8 (a)). The complementing-character matcher 
is used to match the characters outside of a range by 
complementing the set (see Figure 8 (c)). Similarly, given 
a regular expression, R, R? matches any string composed 
of zero or one occurrences of R (see Figure 8 (b)); R+ 
matches any string composed of one or more occurrences 
of R (see Figure 8 (d)). The dollar sign anchor ($) is used 
to match the end of a line, of which the ASCII code is 
hexadecimal 0D or 0A (see Figure 8 (e)). Most of the 
regular expression patterns in the Snort and Trend Micro 
pattern databases can be constructed with these basic 
components. For example, the NFA circuit constructed 
form the regular expression, ab?‧[^c]d+, is shown in 
Figure 9.  
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5. Experimental results 

We implement the algorithm shown in Figure 7 and 
apply to the regular expression patterns from Snort and an 
industry company, Trend Micro. The results are compared 
with the approach of sharing only common prefixes as in 
[2]. Table 1 lists the experimental results on seven Snort 
rule sets. The area comparison is made with all circuits 
being synthesized by the commercial tool, Xilinx ISE7.1i, 
where the target FPGA is Xilinx Virtex XCV2000E 
consisting of 19,200 slices. 

We perform experiments on seven sets of regular 
expressions from Snort and three sets from Trend Micro. 
The name of the set, the number of patterns, and the 
number characters are shown in the 1st, 2nd and 3rd columns, 
respectively. For each set of regular expressions, we first 
construct an NFA circuit for a regular expression pattern 
and then put all the NFA circuits in parallel. The resulting 
area is shown in the 4th column. We then apply the 
approach of sharing common prefixes to the same rule set. 
The area and the percentage of improvement are shown in 
the following two columns, respectively. Finally, we apply 
our sharing scheme to the same rule set and report the area 
and the percentage of improvement in the last two columns. 
For example, the area to implement the Snort Oracle rule 
set, which has 138 patterns with 4,674 characters, is 3,060 
slices (see the 1st row of Table 1). The area reduces to 
2,011 slices after applying the technique of sharing 
common prefixes. The area reduction is 34%, as compared 
with the original design. Using our sharing scheme, the 
area to implement the same rule set is 912 slices. And the 
area reduction achieves 70%. 

Table 1: The comparison among different approaches on Snort rule sets 

Original Design Sharing Prefix [2] Our Sharing Scheme 
Rule Set # of Patterns # of Characters Area 

(Slices) 
Area  

(Slices) 
Area reduction. 

(%) 
Area  

(Slices) 
Area Reduction 

(%) 

Oracle 138 4,674 3,060 2,011 34% 912 70% 

Backdoor 57 599 355 343 3% 315 11% 

Sql 44 1,089 714 442 38% 365 49% 

Web-iis 113 2,047 1,362 1,213 11% 932 32% 

Web-php 115 2,455 1,683 1,397 17% 887 47% 

Web-misc 310 4,711 2,906 2,506 14% 1,789 38% 

Web-cgi 347 5,339 3,092 2,548 18% 1,667 46% 

Total 1,124 20,914 13,172 10,460 21% 6,867 48% 

Figure 9: Implementation of NFA for ab?‧[^c]d+
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Table 2: The comparison among different approaches on industrial rule sets 

Original Design Sharing Prefix [2] Our Sharing Scheme 
Rule Set # of Patterns # of Characters Area 

(Slices) 
Area  

(Slices) 
Area reduction. 

(%) 
Area  

(Slices) 
Area Reduction 

(%) 

Worstcase 173 6,465 5,804 5,653 3% 4,660 20% 

Combined 322 12,950 11,034 10,833 2% 8,686 21% 

Normal 357 13,152 11,171 10,956 2% 8,953 20% 

Total 852 32,567 28,009 27,442 2% 22,299 20% 

 
 

The traditional technique of sharing common prefixes 
can only have 21% of area reduction for Snort rule sets on 
average. The proposed approach, however, achieves 48% 
of area reduction, which can share common prefixes, 
infixes and postfixes efficiently. 

In addition, the area reduction becomes less significant 
for the industrial rule sets. Table 2 shows the results of 
applying different approaches. In this table the area 
reduction is only 2% on average when applying the 
traditional common prefix sharing. Using our approach, 
the improvement on area can achieve 20%. The 
experimental results demonstrate the area efficient of our 
algorithm for both benchmark rule sets and realistic 
industrial rule sets. 

6. Conclusion 

Regular expressions are widely used in Network 
Intrusion Detection System to represent network attack 
patterns. To accommodate large number of regular 
expressions to FPGAs, area reduction of regular 
expression pattern matching circuits is very important. In 
this paper, we presented a novel architecture allowing our 
algorithm to extract and share common prefix, infix, and 
postfix sub-regular expressions. Under specific constraints, 
both the common infix and postfix sub-patterns can be 
extracted and shared efficiently. Additionally, in order to 
support Perl-compatible regular expressions (PCRE), we 
also developed five important meta-character components. 
An automatic generation tool is also presented to 
cost-effectively extract the common sub-pattern for FPGA 
implementation. The experimental results show that our 
sharing scheme can significantly reduce the area of the 
regular expression circuits both for the Snort and industrial 
realistic regular expression rule sets.  

7. Acknowledgements  

The authors would like to thank the following 
experts of Trend Micro Inc., Ming Deng (Group Project 
Manager), Sarah Chin (Project Manager), Chris Lo (QA 
Manager), Vic Lo (Development Manager), Kenneth Kuo 
(Development Manager), Viking Ho (Sr. Engineer), 
Porpoise Chiang (Project Lead), Ronaldo Mier (QA 
Project Lead), and Kent Chiang (Engineer) for their 
constructive inputs. This work was supported in part by 
NSC under contract 94-2220-E-007-038. 

References 
[1] R. Sidhu and V. K. Prasanna, “Fast regular expression 

matching using FPGAs,” in Proc. of the 9th Annual IEEE 
Symposium on Field-Programmable Custom Computing 
Machines (FCCM '01), Apr. 2001, pp. 227-238.   

[2] B.L. Hutchings, R. Franklin and D. Carver, “Assisting 
Network Intrusion Detection with Reconfigurable 
Hardware,” in Proc. of the10th Annual IEEE Symposium 
on Field-Programmable Custom Computing Machines 
(FCCM’02), Sep. 2002. 

[3] J. Moscola, J. Lockwood, R. P. Loui and M. Pachos, 
“Implementation of a Content-Scanning Module for an 
Internet Firewall,” in Proc. of the 11th Annual IEEE 
Symposium on Field-Programmable Custom Computing 
Machines (FCCM’03), Apr. 2003. 

[4] Z. K. Baker, V. K. Prasanna, “Time and area efficient 
pattern matching on FPGAs,” in Proc. of the 2004 
ACM/SIGDA 12th international symposium on Field 
programmable gate arrays, Feb. 2004, pp. 223-232.    

[5] Young H. Cho and William H. Mangione-Smith, “A 
Pattern Matching co-processor for Network Security,” in 
Proc. of  the DAC 2005, June, 2005. 

[6] M. Roesch. Snort- lightweight Intrusion Detection for 
networks, in Proceedings of LISA99, the 15th Systems 
Administration Conference, 1999.  

[7] Monther Aldwairi, Thomas Conte, and Paul Franzon, 
“Configurable String Matching Hardware for Speeding up 
Intrusion Detection,” ACM SIGARCH Computer 
Architecture News, vol. 33, No. 1, March 2005. 


	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06



