
Optimization of Regular Expression Pattern Matching Circuits on FPGA

Cheng-Hung Lin, Chih-Tsun Huang, Chang-Ping Jiang, and Shih-Chieh Chang
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

Abstract

Regular expressions are widely used in Network
Intrusion Detection System (NIDS) to represent patterns of
network attacks. Since traditional software-only NIDS
cannot catch up to the speed advance of networks, many
previous works propose hardware architectures on FPGA
to accelerate attack detection. The challenge of hardware
implementation is to accommodate the regular expressions
to FPGAs of the large number of attacks. Although the
minimization of logic equations has been studied
intensively in the CAD area, the minimization of multiple
regular expressions has been largely neglected. This paper
presents a novel architecture allowing our algorithm to
extract and share common sub-regular expressions.
Experimental results show that our sharing scheme
significantly reduces the area of regular expression
circuits.

1. Introduction

Regular expressions are widely used in Network
Intrusion Detection System (NIDS) to represent network
attack patterns. The NIDS is used to recognize and detect
network attacks, especially in the application layer, that
general firewalls cannot find. As soon as any malicious
packet is matched to an attack pattern, the NIDS notifies
the system and takes the appropriate actions. Due to the
rapid increase of network attacks and data traffic,
traditional software-only NIDS, which sequentially
matches input packets against attack patterns, may be too
slow for networking needs.

 In contrast to software-only NIDS, many studies
[1][2][3][4][5] proposed hardware architectures for
accelerating attack detection. These hardware architectures
are mostly implemented in FPGA because FPGA allows
for updating new attacks patterns. Sidhu and Prasanna [1]
proposed to construct an NFA (Nondeterministic Finite
Automaton) from a regular expression to perform string
matching. Hutchings, Franklin and Carver [2] developed a

module generator that combined common prefixes to
reduce FPGA area. In contrast to NFA approaches, a
content matching server [3] was developed to
automatically generate Deterministic Finite Automatons
(DFAs) to search for regular expressions. Based on the
Knuth-Morris-Pratt (KMP) algorithm, Baker and Prasanna
[4] proposed a linear-array, pipelined, two-comparators
and buffered string-matching architecture that provided
instantaneous reconfiguration and better scalability.

One of the main challenges of hardware implementation
is to accommodate the large number regular expressions to
FPGAs. Most previous works proposed novel architectures
that translated each regular expression pattern to one
circuit module. Then, input strings are fed into
corresponding circuit modules of all regular expressions in
parallel to detect all attacks. However, one to one hardware
implementation of a regular expression can lead to
cost-inefficient designs that cannot deal with the
ever-increasing bandwidth and number of attacks.
Therefore, it is important to develop new methodology to
minimize large multiple regular expressions. Although the
minimization of logic equations has been studied
intensively in the CAD area, there is very little research in
the minimization of multiple regular expressions.

The following example illustrates the difficulty of
minimizing regular expressions. Consider two simple
regular expression patterns “PassWinDirUserGate” and
“PassSysDirNetGate.” Figure 1 shows a simplified regular
expression circuit where the top five blocks match the first
pattern and the bottom five blocks match the second
pattern. Each block compares a substring and asserts the
output signal once the substring matches the desired
pattern. For example, the first block (highlighted)
compares the pattern “Pass.” Once the first block succeeds
in matching, the following block is activated by triggering
the control signal “en.” It is easy to find that both “Pass”
blocks can be shared, as shown in Figure 2 [2]. Although
the common infix sub-pattern “Dir” exists, the
corresponding hardware blocks cannot be shared directly,
as they are in Figure 3. Because the block “Dir” can be
triggered either by “Win” or “Sys,” the string
“PassSysDirUserGate” may wrongly be recognized as a
match at the output of the top block.

3-9810801-0-6/DATE06 © 2006 EDAA

In this paper, we present a novel architecture which
allows our algorithm to extract and share as many common
sub-regular expressions as possible. Additionally, in order
to construct the regular expression patterns of Snort [6]
and Trend Micro, we develop five basic NFA components
to support Perl-compatible regular expressions (PCRE).
We obtain a significant area reduction on both patterns.
For Snort patterns, our experimental results show 48% in
area reduction on average. We also obtain 20% in area
reduction on average in the patterns of Trend Micro. The
paper is organized as follows: Section 2 introduces the
regular expressions for attacks’ description. Then, Section
3 demonstrates our sharing scheme. Section 4
demonstrates the hardware implementation and finally,
experimental results and conclusions are given in Sections
5 and 6, respectively.

2. Regular expressions for attacks’ description

Regular expressions are a common way to express attack
patterns. In Snort, two types of regular expression are used
to describe attack patterns. The first type defines exact
string patterns such as Backdoor’s pattern, "Ahhhh My
Mouth Is Open.” In Snort, about 87% of rules belong to
this type. The second type consists of meta-characters such
as anchor (^ and $), alternation (|), and quantifier (*
and ?). For example, the rule for detecting the Oracle Web
Cache attack is written as
alert tcp any -> (pcre:"^GET[^s]{432} ";…).
The string “^GET[^s]{432}” in the “pcre” field
represents a complex pattern where “^” denotes “the
beginning of a line”, and the “GET [^s]{432}” denotes
that the successive 432 characters after “GET” cannot
contain “s.” The Snort has about 1,777 rules for detecting a
variety of attacks and probes, such as buffer overflows,
stealth port scans, CGI attacks, SMB probes, and OS
fingerprinting attempts.

3. Minimization of regular expression circuits

In the introduction, we describe the difficulty of sharing
infix sub-pattern where the common sub-pattern occurs in
the middle of a pattern. Similarly, we cannot directly share
postfix sub-pattern where the common sub-pattern occurs
at the tail of a pattern. If the two outputs, match1 and
match2, of the original circuit are merged directly, the
circuit cannot differentiate the pattern being matched from
the other whenever the match out is asserted.

In order to solve the problems caused by directly sharing
infix and postfix, we propose a new architecture that can
memorize the path that the trigger signal passes through.
Under specific constraints, our approach supports the
sharing of common infix and postfix sub-patterns. In
addition, the proposed architecture is not only fit for the
exact string matching, but also the complex regular
expression patterns composed of meta-characters. The new
architectures for sharing infix, postfix, and prefix are
described as follows.

Given m regular expressions, R1,R2,…, Rm, and assuming
that all of them have the infix common sub-pattern, Rc, the
m regular expressions can be represented as R1preRcR1post ,
R2preRcR2post,…, and RmpreRcRmpost , where the suffixes, pre-
and post-, denote the prefix and postfix, respectively. To
resolve the two problems caused by directly sharing
common infix and postfix sub-patterns, we propose a
novel sharing architecture in Figure 4 that allows the
common sub-pattern Rc to be shared.

Pass

Figure 3. An erroneous implementation to share infix
Dir

Payload Input

Dir Win

Sys
en o

en o en o en o en o en o

en o en o

1

Figure 2. Sharing prefix common sub-patterns

Win Dir User Gate

Payload Input

en o en o en o
Pass

Sys Dir Net Gate
en o en o en o match2

match1

en o

1 en o

Pass

Figure 1. Original circuits

Win Dir User Gate

match2

en o match1 en o en o en o en o

Pass Sys Dir Net Gate
en o en o en o en o en o

1

1

Payload Input

en o

User
match1

Gate

match2
Net Gate

In Figure 4, two additional circuit blocks are inserted.
The switch module is used to memorize where the trigger
signal comes from, and then output control signals to
DeMux (De-Multiplexer) to guide the output of Rc to the
correct postfix circuit. If R1pre is matched, the output signal
of Rc will pass to R1post. Similarly, if R2pre is matched, only
R2post can be activated after Rc is matched. By this new
architecture, the output of the common infix sub-pattern
can be passed to the appropriate postfix circuit, preventing
from the problem caused by directly sharing infix
sub-pattern. Similarly, this new architecture can support
the sharing of the common postfix sub-patterns. This can
be done easily if all or some of the postfixes are eliminated
in Figure 4.

Still, the new architecture has two constraints, which
disallow certain special types of sharing. Common
sub-pattern satisfies the following constraint cannot be
shared by using the sharing architecture shown in Figure 4.
Taking two regular expressions with a common sub-pattern
Rc for example in Figure 5, the switch module behaves as a
JK flip-flop. The two constraints are described as follows.

Constraint 1: For the m regular expressions in Figure 4,
{R1preRcR1post, R2preRcR2post, …, RmpreRcRmpost}, the prefix
Rjpre cannot be null for mj ...1∈ .

Proof: Omitted.

For example, given two patterns, “abcdefgh” and
“defpq,” there exists a common sub-pattern “def,” but it
cannot be shared by directly applying our new architecture.
In Figure 5, our architecture applies a constant 1 at the
input of the highlighted OR gate. However, this will cause
the match output of block “def” always pass to block “pq.”
Therefore, in this special case, we will skip the sharing of
sub-pattern “def.”

Constraint 2: For the m regular expressions in Figure 4,
{R1preRcR1post, R2preRcR2post, …, RmpreRcRmpost}, the Rc cannot
be shared if Rjpre⊂RkpreRc, jk ≠∀ , k, j∈1…m.

Proof. Omitted.

For example, given two patterns, “abcdefgh” and
“dedefpq,” there exists a common sub-pattern “def.” But in
this case, our sharing architecture cannot be applied. As
Figure 6 is shown, the block “de” is a sub-pattern of the
block “abcdef.” Suppose a string “abcdefgh” is fed, the
trigger signal should be guided from the block “abc”
through the block “def,” to the block “gh,” and then
match1 should be asserted. But actually it fails because the
outputs of the JK flip flop will be complemented when the
string “abcde” is fed and the string “abcdefgh” will be
missed. Again, when this special condition is recognized,
our algorithm will skip the sharing to prevent an erroneous
result.

Figure 6. Example of constraint 2

J Q’
K Q

abc
def gh

pq

en o

en o match1 1 en o

de1 en o

Switch Module

DeMux

en o match2

Payload Input

Figure 5. An example of constraint 1

abc

1
def gh

pq

en o

1 en o

J Q’
K Q

DeMux

Switch Module
J K Q Q’
1 0 1 0
0 1 0 1
0 0 No Change
1 1 Complement

Payload Input

…

Figure 4. Sharing scheme for infix and postfix

DeMux

Switch Module

R1pre

R2pre

Rmpre

Rc

m

R1post

R2post

Rmpost

1 en o

1 en o

1 en o

en o en o match2

en o matchm

Payload Input

en o match1

en o match1

en o match2

4. Hardware implementation

4.1. Regular expression module generator

We develop a regular expression module generator that
can explore the sharing of common prefix, infix and
postfix sub-patterns. The flow diagram of our generator is
shown in Figure 7. In the first stage, we obtain regular
expression patterns from the pattern database. Then,
common prefix sub-patterns are shared directly. After that,
we recursively extract one common infix or postfix
sub-pattern which has the largest sharing gain defined as
follows. The sharing gain of a common sub-pattern is
defined to be the number of characters in the sub-pattern
multiplies by the number of regular expressions having the
sub-pattern. For example, three regular expressions,
“1Common1”, “2Common2”, and “3Common3” have the
common sub-pattern “Common.” The sharing gain of the
common sub-pattern is 18=6*3 because “Common” has 6
characters and the number of regular expressions is 3. In
our experiment, because sharing also has hardware
overhead, we heuristically restrict the number of characters
of a common sub-pattern to be more than two. The process
of sharing continues until no common sub-pattern can be
shared. Note that a shared common sub-pattern must
succeed in passing the constraints described in Section 3.
In the final stage, we generate the Verilog HDL code of the
shared architecture.

4.2. Basic components of NFA approach

Figure 4 demonstrates our sharing architecture, of which
each block can be constructed by the basic four NFA
components, single-character matcher, union (|),
concatenation, and Kleene-star (*), proposed by Sidhu and
Prasanna [1]. The single-character matcher is used to
match single character. In order to support Perl-compatible
regular expressions (PCRE), we also develop five
additional meta-character components, including
any-character matcher (.), complementing-character
matcher (^), question mark (?) quantifier, plus quantifier
(+), and dollar sign anchor ($) (see Figure 8). The
any-character matcher is used to match any input character
(see Figure 8 (a)). The complementing-character matcher
is used to match the characters outside of a range by
complementing the set (see Figure 8 (c)). Similarly, given
a regular expression, R, R? matches any string composed
of zero or one occurrences of R (see Figure 8 (b)); R+
matches any string composed of one or more occurrences
of R (see Figure 8 (d)). The dollar sign anchor ($) is used
to match the end of a line, of which the ASCII code is
hexadecimal 0D or 0A (see Figure 8 (e)). Most of the
regular expression patterns in the Snort and Trend Micro
pattern databases can be constructed with these basic
components. For example, the NFA circuit constructed
form the regular expression, ab?‧[^c]d+, is shown in
Figure 9.

Obtain regular expressions from the pattern database

Choose a common infix or postfix sub-pattern
with largest sharing gain

Generate Verilog HDL code of the sharing architecture

Figure 7: Flow of regular expression module
generation

Share common prefix sub-patterns

Verify the extracted common
sub-pattern passing the two

constraints

No

Yes

F/F i
clk

Complementing-Character
Comparator

o

(c) Complementing–character (d) Plus quantifier (+)
matcher (^) (dashed box)

R

o1 i1
i o

i o

Text
Input

F/F i
clk

Any-Character
Comparator

Text
Input

o

R

o1 i1
i o

(a) Any-character matcher (•) (b) Question mark (?)
quantifier(dashed box)

i o

5. Experimental results

We implement the algorithm shown in Figure 7 and
apply to the regular expression patterns from Snort and an
industry company, Trend Micro. The results are compared
with the approach of sharing only common prefixes as in
[2]. Table 1 lists the experimental results on seven Snort
rule sets. The area comparison is made with all circuits
being synthesized by the commercial tool, Xilinx ISE7.1i,
where the target FPGA is Xilinx Virtex XCV2000E
consisting of 19,200 slices.

We perform experiments on seven sets of regular
expressions from Snort and three sets from Trend Micro.
The name of the set, the number of patterns, and the
number characters are shown in the 1st, 2nd and 3rd columns,
respectively. For each set of regular expressions, we first
construct an NFA circuit for a regular expression pattern
and then put all the NFA circuits in parallel. The resulting
area is shown in the 4th column. We then apply the
approach of sharing common prefixes to the same rule set.
The area and the percentage of improvement are shown in
the following two columns, respectively. Finally, we apply
our sharing scheme to the same rule set and report the area
and the percentage of improvement in the last two columns.
For example, the area to implement the Snort Oracle rule
set, which has 138 patterns with 4,674 characters, is 3,060
slices (see the 1st row of Table 1). The area reduces to
2,011 slices after applying the technique of sharing
common prefixes. The area reduction is 34%, as compared
with the original design. Using our sharing scheme, the
area to implement the same rule set is 912 slices. And the
area reduction achieves 70%.

Table 1: The comparison among different approaches on Snort rule sets

Original Design Sharing Prefix [2] Our Sharing Scheme
Rule Set # of Patterns # of Characters Area

(Slices)
Area

(Slices)
Area reduction.

(%)
Area

(Slices)
Area Reduction

(%)

Oracle 138 4,674 3,060 2,011 34% 912 70%

Backdoor 57 599 355 343 3% 315 11%

Sql 44 1,089 714 442 38% 365 49%

Web-iis 113 2,047 1,362 1,213 11% 932 32%

Web-php 115 2,455 1,683 1,397 17% 887 47%

Web-misc 310 4,711 2,906 2,506 14% 1,789 38%

Web-cgi 347 5,339 3,092 2,548 18% 1,667 46%

Total 1,124 20,914 13,172 10,460 21% 6,867 48%

Figure 9: Implementation of NFA for ab?‧[^c]d+

a b ‧ ^c d

Match
Output 1

? +

Concatenation

Concatenation

Concatenation

Concatenation

i o i o i o i o i o
clk clk clk clk clk

F/F i
clk

Character Comparator
for ASCII (0D)

Text
Input

o

(e) Dollar sign anchor ($)

F/F i
clk

Character Comparator
for ASCII(0A)

 Text
Input

Figure 8. Logical structures for the proposed
meta-character components

=0A =0D

Payload Input

Table 2: The comparison among different approaches on industrial rule sets

Original Design Sharing Prefix [2] Our Sharing Scheme
Rule Set # of Patterns # of Characters Area

(Slices)
Area

(Slices)
Area reduction.

(%)
Area

(Slices)
Area Reduction

(%)

Worstcase 173 6,465 5,804 5,653 3% 4,660 20%

Combined 322 12,950 11,034 10,833 2% 8,686 21%

Normal 357 13,152 11,171 10,956 2% 8,953 20%

Total 852 32,567 28,009 27,442 2% 22,299 20%

The traditional technique of sharing common prefixes
can only have 21% of area reduction for Snort rule sets on
average. The proposed approach, however, achieves 48%
of area reduction, which can share common prefixes,
infixes and postfixes efficiently.

In addition, the area reduction becomes less significant
for the industrial rule sets. Table 2 shows the results of
applying different approaches. In this table the area
reduction is only 2% on average when applying the
traditional common prefix sharing. Using our approach,
the improvement on area can achieve 20%. The
experimental results demonstrate the area efficient of our
algorithm for both benchmark rule sets and realistic
industrial rule sets.

6. Conclusion

Regular expressions are widely used in Network
Intrusion Detection System to represent network attack
patterns. To accommodate large number of regular
expressions to FPGAs, area reduction of regular
expression pattern matching circuits is very important. In
this paper, we presented a novel architecture allowing our
algorithm to extract and share common prefix, infix, and
postfix sub-regular expressions. Under specific constraints,
both the common infix and postfix sub-patterns can be
extracted and shared efficiently. Additionally, in order to
support Perl-compatible regular expressions (PCRE), we
also developed five important meta-character components.
An automatic generation tool is also presented to
cost-effectively extract the common sub-pattern for FPGA
implementation. The experimental results show that our
sharing scheme can significantly reduce the area of the
regular expression circuits both for the Snort and industrial
realistic regular expression rule sets.

7. Acknowledgements

The authors would like to thank the following
experts of Trend Micro Inc., Ming Deng (Group Project
Manager), Sarah Chin (Project Manager), Chris Lo (QA
Manager), Vic Lo (Development Manager), Kenneth Kuo
(Development Manager), Viking Ho (Sr. Engineer),
Porpoise Chiang (Project Lead), Ronaldo Mier (QA
Project Lead), and Kent Chiang (Engineer) for their
constructive inputs. This work was supported in part by
NSC under contract 94-2220-E-007-038.

References
[1] R. Sidhu and V. K. Prasanna, “Fast regular expression

matching using FPGAs,” in Proc. of the 9th Annual IEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM '01), Apr. 2001, pp. 227-238.

[2] B.L. Hutchings, R. Franklin and D. Carver, “Assisting
Network Intrusion Detection with Reconfigurable
Hardware,” in Proc. of the10th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM’02), Sep. 2002.

[3] J. Moscola, J. Lockwood, R. P. Loui and M. Pachos,
“Implementation of a Content-Scanning Module for an
Internet Firewall,” in Proc. of the 11th Annual IEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM’03), Apr. 2003.

[4] Z. K. Baker, V. K. Prasanna, “Time and area efficient
pattern matching on FPGAs,” in Proc. of the 2004
ACM/SIGDA 12th international symposium on Field
programmable gate arrays, Feb. 2004, pp. 223-232.

[5] Young H. Cho and William H. Mangione-Smith, “A
Pattern Matching co-processor for Network Security,” in
Proc. of the DAC 2005, June, 2005.

[6] M. Roesch. Snort- lightweight Intrusion Detection for
networks, in Proceedings of LISA99, the 15th Systems
Administration Conference, 1999.

[7] Monther Aldwairi, Thomas Conte, and Paul Franzon,
“Configurable String Matching Hardware for Speeding up
Intrusion Detection,” ACM SIGARCH Computer
Architecture News, vol. 33, No. 1, March 2005.

	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06

