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Abstract

Recently, the interest about the Tate pairing over binary
fields has decreased due to the existence of efficient attacks
to the discrete logarithm problem in the subgroups of such
fields. We show that the choice of fields of large size to make
these attacks infeasible does not lead to a degradation of the
computation performance of the pairing. We describe and
evaluate by simulation an implementation of the Tate pair-
ing that allows to achieve good timing results, comparable
with those reported in the literature but with a higher level
of security.

1. Introduction

Nowadays there are many pairing based cryptosystems that
are gaining an increasing interest. Most of them are identity-
based cryptosystems [18], such as the encryption scheme of
Boneh-Franklin [4], the key-agreement protocol of Smart
[19], the digital signature scheme of Hess [10] and the sign-
cryption scheme of McCullagh-Barreto [13]. Other exam-
ples are the tripartite Diffie-Hellmann protocol of Joux [11]
and the short signature scheme of Boneh et al. [5].

Pairing computation is the most time consuming task in
such cryptosystems. Of the Weil [14] and Tate [3] pairing,
the latter is theoretically more efficient than the former [7].
In order to obtain an appealing cryptographic application it
is important to develop an optimized implementation of the
Tate pairing without affecting its security level.

In this paper we present some results about an imple-
mentation of the Tate pairing over supersingular curves in
characteristic 2, with a set of security conditions stronger
than those presented in the literature [7]. We show and dis-
cuss a combination of techniques to provide a comparable
timing despite the higher security level we achieve.

It is widely known that binary extension fields are par-
ticular indicated for embedded devices and for hardware
implementations thanks to their properties, but it is even a
general belief that discrete logarithm problem is simpler in

GF(2n) than GF(p) with comparable multiplicative group
order. This consideration has discouraged the research in the
field of Tate pairing over GF(2n). We would like to demon-
strate that using a field of 1800 bits, which should grant a se-
curity at least comparable to RSA 1024, the performances
obtained on a Pentium III can be considered satisfactory.
This result is important for embedded system since most of
the time the secure communication is composed by two de-
vices, a network server generally based on PC like architec-
ture and an embedded system.

Our results demonstrate that the server side perfor-
mances does not suffer of high degradation due to the in-
crease of field size. This should open the research on
the embedded system side where GF(2n) will demon-
strate all its potential.

The paper is organized as follows. Section 2 provides
background notions about Tate pairing. Section 3 summa-
rizes the security of pairing based cryptosystems built on
supersingular elliptic curves over F2m and shows some tech-
niques to improve the computation performance of Tate
pairing algorithms. Section 4 presents timing results and
finally Section 5 gives conclusions. In Appendix A we
present some formulas for the computation of the Tate pair-
ing when elliptic curve points are represented in Affine co-
ordinates [9].

2. Preliminaries on Tate Pairing

For cryptographic purposes it is assumed a definition of Tate
pairing as that showed in [7, 3]. Let E be a supersingular el-
liptic curve defined over a finite field Fq and consider the
l-torsion points subgroup, with l prime and l | #E(Fq); let k
be the minimum integer such that all the l-torsion points of
the curves have coefficients in the extension field Fqk , with
l | qk− 1. Given two points P,Q ∈ E(Fq)[l], the Tate pair-
ing is defined as a rational function fP over the points of the
curve such that its divisor is ( fP) = l(P)− l(OE), and such
that it maps curve points to the l-th roots of the unity sub-
group µl ⊂ F∗qk .

〈., .〉 : E(Fq)[l]×E(Fq)[l]→ µl ;
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〈P,Q〉= fP(φ(Q))(q
k−1)/l

In order to have a non-trivial value (〈P,Q〉 6= 1) it is neces-
sary to pair two linearly independent points. For this pur-
pose, in the definition of the pairing it was used a distor-
tion map φ(·) [20] that exists only for supersingular ellip-
tic curves. The distortion map grants that points P, φ(Q)
are linearly independent so that they do not map to 1 when
used to evaluate the pairing function. The properties that
make the Tate pairing useful to define a number of crypto-
graphic primitives are the following:

Well-defined:
〈OE ,Q〉= 1∀Q∈ E(Fq)[l]; 〈P,OE〉= 1∀P∈ E(Fq)[l].

Non-degeneracy:
∀P ∈ E(Fq)[l]\{OE}, ∃Q ∈ E(Fq)[l] s.t. 〈P,Q〉 6= 1.

Bilinearity:
∀ P,Q,R ∈ E(Fq)[l], 〈P + R,Q〉 = 〈P,Q〉 · 〈R,Q〉 and
〈P,Q+R〉= 〈P,Q〉 · 〈P,R〉.

As showed by Algorithm 2.1, a method to compute the pair-
ing function is given by Miller’s algorithm, which uses a
double-and-add strategy with some extra computation due
to the construction and evaluation of the rational function
given by the straight line gU,V : l1y + l2x + l3 = 0 with
li ∈ Fq, i = 1,2,3 passing through the elliptic curve points
U and V . Algorithm 2.1 is one of the possibility for calcu-
lating the Tate Pairing, recently it has been publish a vari-
ant called etha Pairing [2]. The two solutions are compara-
ble in term of number of finite field operations.

Algorithm 2.1: Miller’s algorithm to compute the Tate
pairing [3].

Input: q, k, t = dlog2(l)e, l = (lt−1, . . . , l0)2;
P,Q ∈ E(Fq)[l]

Output: 〈P,Q〉= fP(φ(Q))
qk−1

l ∈ F∗qk

begin1

f ← 12

V ← P3

for i← t−2 down to 0 do4

f ← f 2 ·gV,V (φ(Q))5

V ← 2V6

if li = 1 and i 6= 0 then7

f ← f ·gV,P(φ(Q))8

V ←V +P9

endif10

endfor11

f ← f
qk−1

l12

return f13

end14

3. Efficient and Secure Implementation

In this paper we consider the Tate pairing defined over the
following supersingular elliptic curves:

Eb : y2 + y = x3 + x+b over F2m

with k = 4, b ∈ {0,1}, m odd whose orders are:

#Eb(F2m) = 2m +1+(−1)b
√

2m+1 m≡ 1,7 (mod 8)
#Eb(F2m) = 2m +1− (−1)b

√
2m+1 m≡ 3,5 (mod 8) (1)

and the distortion map [3] is given in Table 1:

Map Parameters
s4 + s = 0

φ : (x,y) 7→ (x+ s2,y+ sx+ t) t2 + t + s6 + s2 = 0

with s, t ∈ F24m

Table 1. Distortion map for curves Eb(F2m).

3.1. Security Assumptions

In this section we summarize the security conditions neces-
sary to set up a pairing over the curve Eb(F2m). It is impor-
tant to consider possible attacks to the Elliptic Curve Dis-
crete Logarithm Problem (ECDLP) and make them infeasi-
ble. For our explanation consider the following ECDLP in-
stance: U,V ∈ Eb(F2m)[l], with U = r ·V and r ∈ Z∗l . The
Pohlig-Hellman algorithm [16] reduces the computation of
r to the calculus of r modulo each prime factor of l and then,
using the CRT, recovers the value of r. Thus, it is custom-
ary to choose l prime. Looking both at the l-torsion points
subgroup on the curves and at the subgroup of the l-th roots
of unity in F∗24m , an algorithm to solve the discrete loga-
rithm problem is the Pollard-ρ [17], which makes use of√

πl/2 group operations. To make this attack infeasible, it
is advisable to take the integer l as long as at least 160 bits
[1]. Moreover, according to Gaudry et al. [8], in the case of
curves defined over binary fields, the ECDLP can be solved
even faster if the value of m admits a small factor, thus m
should be chosen to be a prime number. Obviously, in or-
der to avoid that the subgroup of the l-th roots of unity is
embedded in some subfield of F24m , the following condi-
tion must be fulfilled [1]: ∀d | 4m, l - 2d −1, with d < 4m.
The case of interest for us complies with this condition. Fi-
nally, the existence of attacks in the multiplicative subgroup
of F∗24m , as for instance the index-calculus [6], makes it nec-
essary [12, 15] to adopt an extension degree 4m in the inter-
val [1500, 2000]. This should give a security comparable at
least with a 1024-RSA cryptosystem.



3.2. Encoding of the Subgroup Order l

In order to simplify the computation of Algorithm 2.1 it is
possible to represent the subgroup order l in NAF [9]. In
this case, when a digit li of the representation of l is equal
to ±1 and i 6= 0 it is necessary to compute the operations
in the if branch of such algorithm (lines between 7 and 10),
but when li =−1 it is necessary to consider the point−P in-
stead of P. It is possible to prove the correctness of this idea
by Miller’s theorem and by the fact that denominators such
as gP,−P(φ(Q)) can be discarded thanks to the final expo-
nentiation [3].

3.3. Extension Field Arithmetic

Regarding the way to implement the arithmetic operations
among elements of the extension fields F24m , we chose to
follow the results showed in [7]. The extension field is iso-
morphic to a tower of 2 quadratic extensions of F2m such
that F24m ∼= F((2m)2)2 .

Precisely, let F = F2m , then F1 = F [x]/(x2 + x + 1) ∼= F22m

and F((2m)2)2 = F1[y]/(y2 +(x+1)y+1)∼= F24m . A generic

element of F24m is represented as (dx+c)y+(bx+a), where
a,b,c,d ∈ F2m . This solution provides a computational cost
of 9 multiplications or of 4 squarings in the base field F2m ,
for one multiplication or for one squaring in F24m , respec-
tively.

3.4. Elliptic Curve Point Representation

It is important to identify the coordinates system to repre-
sent the elliptic curve points P and V in Algorithm 2.1, re-
quiring as few operations in F2m as possible. Notice that
in the for loop of such algorithm two operations are per-
formed simultaneously: “double-and-add” of the point P
and the iterative evaluation of fP(φ(Q)). We merge these
two operations in order to minimize the number of re-
quested operations in the base field F2m . We consider
[9] Affine coordinates (x,y) and three types of Projec-
tive coordinates (X ,Y,Z): Standard, where the correspond-
ing affine point is (X/Z,Y/Z); Jacobian, correspond-
ing to (X/Z2,Y/Z3); and Lopez-Dahab, corresponding
to (X/Z,Y/Z2). Furthermore, when projective coordi-
nates are used, the point P(XP,YP,ZP) always has coor-
dinate ZP = 1, because this choice allows to avoid a few
operations in F2m .

In order to show results, we conceive the for loop di-
vided into two parts: a “double step” and an “add step”.
The costs of all representations, expressed in terms of the
operations of F2m , are summarized in Table 2 (I, M, S de-
note respectively 1 inversion, 1 multiplication and 1 squar-
ing in the base field). The coordinate systems Affine V1

and Affine V2 perform the doubling of a point in a differ-
ent way (explicit formulas are presented in Appendix A).
It is also important to observe that using the specific dis-
tortion map presented in Table 1, the coordinates xφ(Q) and
yφ(Q) of φ(Q) ∈ Eb(F((2m)2)2)[l] exhibit the following struc-
ture:

xφ(Q) = (0x+0)y+(1x+a) with a ∈ F2m

yφ(Q) = (1x+0)y+(bx+ c) with b,c ∈ F2m

There are coefficients equal to 0 and 1 that allow to sim-
plify some calculations in Miller’s algorithm. For example,
the multiplication of elements of F2m by xφ(Q) or yφ(Q) needs
respectively one and two multiplications. The results pre-
sented in Table 2 take into consideration these observations.

Coordinates system Double step Add step

Affine V1 8M+6S 1I+9M+1S

Affine V2 7M+8S 1I+9M+1S

Projective (X/Z,Y/Z) 15M+10S 20M+3S

Jacobian (X/Z2,Y/Z3) 16M+12S 20M+5S

Lopez-Dahab (X/Z,Y/Z2) 16M+10S 19M+5S

Table 2. Cost of the for loop in Miller’s algo-
rithm with different point representations.

Notice that it is necessary to choose the best representation
according to the specific implementation. Precisely, know-
ing the computation times of the operations in the base field
it is possible to calculate the ratios I/M and S/M and there-
fore express the costs of the “double” and “add” steps of Ta-
ble 2 in terms of the number of multiplications in F2m . Then,
knowing the number of non-zero digits in the representa-
tion adopted for the integer l (e.g. NAF or else), the number
of required “add” steps is automatically determined. With
all this information it is possible to express the cost of each
representation in terms of multiplications in the base field
and thus to identify the most convenient representation tech-
nique.

Notice that it is possible to limit the number of ”add”
steps choosing a subgroup order and its representation such
that l presents a low Hamming weight. In these cases the
”add” steps are performed rarely, thus the computational
cost of the Algorithm 2.1 becomes dominated by the ”dou-
ble” steps. This justifies the choice of Affine coordinates
versus Projective ones, since Projectives require almost a
number of multiplications equal to 15 versus the 7 required
by Affine. In most practical implementations the follow-
ing inequality S/M< 0.5 holds, and it can be easily seen



from Table 2 that the coordinate system Affine V2 is al-
ways preferable to the coordinate system Affine V1.

It is possible that the order of the torsion group can
be chosen equal to the order of the elliptic curve, say l =
E(F2m), and as far as the value of m is concerned it ought to
be a prime such that the Hamming weight of the order l en-
coded in Non Adjacent Form (NAF) is minimized.

3.5. Final Exponentiation

In the case of our interest, at the end of the computation of
the Tate pairing there is the exponentiation f (24m−1)/l , with
f ∈ F((2m)2)2 . When the number of curve points #Eb(F2m)

is a prime, the order l of the l-torsion subgroup is equal
to #Eb(F2m) and in this circumstance it is possible to have
also a fast final exponentiation. The following factorization
is valid:
(24m−1) = (22m−1)(2m +1−

√
2m+1)(2m +1+

√
2m+1),

hence #Eb(F2m) | (24m−1) (see (1) for #Eb(F2m) values).
In these cases the exponent (24m− 1)/l provide a NAF

representation with only 6 digits equal to±1. Notice that us-
ing NAF it is requested the knowledge of f−1 in exponenti-
ation, but such inversion can be performed only once at the
beginning of the exponentiation phase. In addition, observ-
ing the representation of such exponents, it is trivial to ver-
ify that window techniques for exponentiation do not give
any speed up and therefore this efficient solution does not
need memory to store pre-computed values. We point out
that it is possible to execute the for loop of Algorithm 2.1
considering the number of curve points #Eb(F2m) instead of
the subgroup order l also when l < #Eb(F2m) (see [7]). Also
in these cases the exponent is (24m− 1)/#Eb(F2m) and the
solution explained above is still applicable.

4. Timing Results

We have implemented the Tate pairing using the improve-
ments presented above and choosing its parameters accord-
ing to the security conditions presented in Section 3.1. In
fact we have selected the curve E1(F2m) with m = 457 and
such that l = #E1(F2457) is also a prime of 457 bits. We
have used f (x) = x457 + x16 + 1 as irreducible polynomial
to generate the field F2457 . We have developed a software li-
brary implementing all the operations required for the com-
putation of the Tate pairing; all the code was written in C,
compiled with Microsoft Visual C++ V6.0 and simulations
were performed on a Pentium III working at 1 GHz. With
our implementation we obtain the ratios I/M= 52.36 and
S/M= 0.12, while adopting the representation in NAF of
the subgroup order l, it is easy to see that only one “add”
step is required; from these considerations and according to
Table 2, Affine V2 was found to be the best coordinate sys-
tem for the representation of elliptic curve points. In Table

3 we compare our result to those by Galbraith et al. [7] and
by Barreto et al. [3] over binary fields (also their simula-
tions are on Pentium III 1 GHz).

Finite Field F2m Timing

F2457 30.61

F2241 in [7] 32.5

F2283 in [7] 57.19

F2271 in [3] 23

Table 3. Comparison of the times of the com-
putation of the Tate pairing (in ms) over bi-
nary fields, on a P III at 1 GHz.

Notice that all the timings are comparable though our Tate
pairing algorithm is defined over a finite field of about dou-
ble size with respect to [3, 7]. This could be imputable to
the several optimizations that we apply altogether; further-
more papers [3, 7] do not specify anything about the rep-
resentation adopted both for the subgroup order l and for
the curve points. In addition, thanks to the greater size of
m (i.e. the field size) we provide a higher level of security.
In fact, an efficient way to attack pairing based cryptosys-
tems over binary fields is given by the index-calculus attack
for the discrete logarithm problem in F∗24m [l]. But we have
shown that it is possible to double the field size, thus reduc-
ing the effectiveness of such an attack, while maintaining
the same time performance with respect to literature solu-
tions using smaller fields.

5. Conclusions

This paper summarizes a methodology to select parame-
ters for implementing the Tate pairing using supersingu-
lar curves over binary fields, Eb(F2m). We have reviewed
some criteria to select the most convenient coordinate sys-
tem to represent the points of the curve; how to manage the
l-torsion subgroup order l efficiently, to minimize the num-
ber of operations in the inner loop of Miller’s Algorithm
and, at the same time, to reduce the computational cost of
the final exponentiation; we observed that with a fixed class
of curves and an appropriate field representation, the corre-
sponding distortion map exhibits a form yielding some sav-
ings in terms of arithmetic operations among the elements
of the base field.

It is commonly accepted that a cryptosystem that em-
ploys a Tate pairing over a binary field F2m with an embed-
ding degree k = 4 must use a field size such that 4m ≈ 1000
to grant a security level equivalent to 1024-RSA. The im-
plementation described in this paper shows that the use of



a field size greater than the examples exhibited in the lit-
erature does not penalize the timing performance. The re-
sults contained in this paper prove that our implementation
has a computational time comparable to the most efficient
implementations reported in the literature [3, 7], that how-
ever are less secure than ours because they use substantially
smaller base fields. In light of this, we point out that also
the Tate pairing over binary fields may be an effective solu-
tion for implementing paring based cryptosystems, particu-
larly for embedded system where large prime fields are dif-
ficultly managed.
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A. Operations in Miller’s Algorithm us-
ing Affine Coordinates

In Algorithm 2.1 it is performed the “double and add” of
point P ∈ Eb(F2m) and the iterative evaluation of fP(φ(Q)).

Merging these two operations and considering Affine
coordinates to represent elliptic curve points we obtain
the following formulas, where V,Q ∈ Eb(F2m) and φ(Q) ∈
Eb(F24m ). For the “double” step:

λ = x2
V +1

x2V = λ2

y2V = λ(x2V + xV )+ yV +1 (V1)
y2V = y4

V + x4
V (V2)

gV,V (φ(Q)) = λ(xφ(Q) + xV )+(yφ(Q) + yV )

Notice that there are no inversions in F2m for the “double”
step in the Affine system. For the “add” step it holds:

λ = yV +yP
xV +xP

xV+P = λ2 + xV + xP
yV+P = λ(xV+P + xP)+ yP +1
gV,P(φ(Q)) = λ(xφ(Q) + xP)+(yφ(Q) + yP)
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