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Abstract
Biometrics represent a promising approach for reliable and secure user
authentication. However, they have not yet been widely adopted in em-
bedded systems, particularly in resource-constrained devices such as cell
phones and personal digital assistants (PDAs). In this paper, we investi-
gate the challenges involved in using face-based biometrics for authen-
ticating a user to an embedded system. To enable high authentication
accuracy, we consider robust face verifiers based on principal compo-
nent analysis/linear discriminant analysis (PCA-LDA) algorithms and
Bayesian classifiers, and their combined use (multi-modal biometrics).
Since embedded systems are severely constrained in their processing ca-
pabilities, algorithms that provide sufficient accuracy tend to be compu-
tationally expensive, leading to unacceptable authentication times. On
the other hand, achieving acceptable performance often comes at the
cost of degradation in the quality of results.

Our work aims at developing embedded processing architectures that
improve face verification speed with minimal hardware requirements,
and without any compromise in verification accuracy. We analyze the
computational characteristics of face verifiers when running on an em-
bedded processor, and systematically identify opportunities for acceler-
ating their execution. We then present a range of targeted hardware and
software enhancements that include the use of fixed-point arithmetic,
various code optimizations, application-specific custom instructions and
co-processors, and parallel processing capabilities in multi-processor
systems-on-chip (SoCs).

We evaluated the proposed architectures in the context of open-source
face verification algorithms running on a commercial embedded proces-
sor (Xtensa from Tensilica). Our work shows that fast, in-system veri-
fication is possible even in the context of many resource-constrained em-
bedded systems. We also demonstrate that high authentication accuracy
can be achieved with minimum hardware overheads, while requiring no
modifications to the core face verification algorithms.

1 Introduction
Embedded systems are ubiquitously used to capture, store, manipulate,
and access data of a sensitive nature (e.g., personal appliances such as
cell phones, PDAs, smart cards, portable storage devices), or perform
safety-critical functions (e.g., automotive and aviation electronics, med-
ical appliances). Such systems face some of the most demanding se-
curity concerns. They frequently operate in physically insecure envi-
ronments, while the small form factor of devices such as cell phones
and PDAs lends them to loss and theft. Furthermore, increasing pro-
grammability and networked nature of these devices make them tough
to secure against various software attacks. While recent advances in
embedded system security have addressed issues such as secure commu-
nication, secure information storage, and tamper resistance (protection
from physical and software attacks) [1, 2, 3, 4], objectives such as user-
to-device authentication have often been overlooked, placing a premium
on the overall security of the system.

Currently, most solutions for user authentication use surrogate rep-
resentations of a person’s identity, such as passwords/personal identifi-
cation numbers (prevalent in electronic access control) and token cards
(prevalent in banking, corporate network, and government applications).

�
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These approaches suffer from several drawbacks, including insufficient
security and inconvenience to users [5, 6]. Biometrics, which refer to the
automatic recognition of people based on their distinctive physiological
(e.g., face, fingerprint, iris, retina, hand geometry, voice) and behavioral
(e.g., signature, gait) characteristics, could form a component of effec-
tive user identification solutions, because they intrinsically and reliably
represent the individual’s bodily identity [7]. Biometric characteristics
cannot be lost or forgotten; they are quite difficult to copy, share, and
distribute; and they require the person being authenticated to be physi-
cally present at the time and point of authentication.

In embedded systems such as mobile phones and PDAs, acquisition
of voice and face is naturally possible due to the presence of microphone
and camera. While the accuracy of authentication systems based on face
and voice is lower than alternatives such as fingerprint and iris, voice
and face biometrics come at a significantly lower cost. This prompts
us to investigate their applicability in authenticating users to embedded
systems. In this work, we specifically focus on face verification, and
the challenges associated with their deployment in resource-constrained
embedded systems.

One of the main challenges in deploying robust face verification al-
gorithms comes from the limited processing capabilities of embedded
systems. Since any authentication system involves two phases, namely,
enrollment (when distinguishing characteristics of the user are extracted
and stored as a mathematical model) and verification (when a device
actually verifies the identity of a user against the enrolled model), both
enrollment and verification can be time-consuming when high-accuracy
face verifiers based on PCA-LDA and Bayesian algorithms are used.
Therefore, our objective is to provide accurate and fast authentication
through low-overhead modifications to the embedded SoC architecture.
Our contributions include the following:

� We provide a comprehensive analysis of the computational charac-
teristics of robust face verification algorithms such as PCA-LDA
and Bayesian classifiers, while running on an embedded proces-
sor. We identify performance hotspots and other opportunities for
optimizing their execution.

� Based on our performance analysis, we propose various hard-
ware/software enhancements to improve both enrollment and ver-
ification times. Software enhancements include the conversion of
floating-point to fixed-point arithmetic operations and the use of
code optimizations such as loop unrolling and code re-ordering.
We present hardware optimizations for both uniprocessor and mul-
tiprocessor systems. For uniprocessor embedded systems, we pro-
pose an architecture, wherein the processor is augmented with cus-
tom instructions and/or co-processors to accelerate the core ker-
nels of face authentication. We also address the multiprocessor
embedded SoC scenario, which is beginning to see practical appli-
cation with the emergence of products such as NEC Electronics’s
MP211 application SoC for cell phones. Here, we observe that
the latent parallelism of the architecture can be further exploited
to provide improved authentication times. A specific application
of this architecture is to make the deployment of multi-modal face
biometric solutions (wherein multiple face verification algorithms
are employed to improve authentication accuracy) feasible with
minimum performance penalties.
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� We perform our experimental evaluations in the context
of a testbed featuring a state-of-the-art embedded processor
(Xtensa [8]). We use popular, open-source implementations of
face authentication algorithms and show that both enrollment and
verification times can be sped up significantly with minimal over-
heads, while maintaining good authentication accuracy.

The rest of this paper is organized as follows. Section 2 discusses
related work. Section 3 details the computational characteristics of var-
ious kernels used in face verification. Section 4 presents architectures
for efficient face verification, while Section 5 details the experimental
results. Section 6 concludes.

2 Related Work
In this section, we briefly survey work related to face verification on
embedded systems.

Face verification and/or recognition (matching image data to one or
more persons in a database) is a well-researched problem, and various
techniques (geometric, template, hybrid, 2-D or 3-D, etc.) have been
proposed in the literature. Of these, PCA or the most expressive fea-
tures method [9], LDA or Fisherfaces method [10, 11], independent
component analysis (ICA) approach [12], elastic bunch graph matching
(EBGM) method [13], Bayesian classifiers [14], etc., have been widely
recognized as effective techniques for performing face verification or
recognition. A detailed survey of many of these techniques can be found
in [15, 16].

Researchers have traditionally focused on improving the accuracy of
face recognition systems. While solutions have thus emerged for over-
coming specific problems such as illumination, face expression varia-
tions, noise in the image data, etc., very little attention has been paid
to the question of improving the efficiency of these systems. This is
becoming a major concern, especially since face verification solutions
are being considered for deployment in battery-powered embedded sys-
tems. One such effort is described in [17], wherein, a novel architec-
ture is proposed that exploits the presence of an embedded FPGA in the
SoC to accelerate various image and speech processing kernels. Other
works focus on tuning the image pre-processing and face recognition
algorithms to the needs of the end system. For example, various algo-
rithmic design considerations have been made in [18] in order to reduce
the complexity of face recognition. Commercially, various face verifi-
cation (recognition) solutions are emerging for mobile devices. These
include products such as the OKAO face recognition sensor [19] and
FaceIt ARGUS for Motorola’s cell phones [20]. The effectiveness of
these solutions has not yet been widely studied/reported.

Another important trend is the usage of multiple biometrics (mul-
timodal biometrics) to improve the authentication capabilities of face
verification systems. Recent studies such as [21] use speaker identifi-
cation to augment face verification in the context of a handheld device.
The framework, however, completely relies on the transmission of im-
age and audio data to an external server, so that the computational re-
quirements of supporting multi-modal authentication on a PDA can be
circumvented.

3 Computational Characteristics of Face
Verification

In this section, we analyze the computational characteristics of two of
the most robust face authentication algorithms: PCA-LDA and Bayesian
based (Sections 3.1 and 3.2, respectively). We also examine a multi-
modal system that combines these algorithms (Section 3.3).

3.1 PCA-LDA
PCA-LDA based authentication employs PCA to minimize the dimen-
sionality of the face image, while using LDA to find a subspace that
minimizes differences between various images of the same user and em-
phasizing differences with images of other individuals. Authentication
proceeds according to the overall flow chart shown in Figure 1 in two
phases (i) a one-time enrollment or training phase, and (ii) the actual
authentication or verification phase, which occurs whenever the user
presents himself/herself to the device.
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Figure 1: Flowchart of PCA-LDA based authentication
During enrollment, X number of images of the user is taken and pre-

sented to the algorithm. Each image is then enhanced and standardized
to an N � M size, using the image enhancement (IE) step shown in the
figure (discussed later). These are then used in combination with an ex-
isting impostor image database (containing say Y number of images) to
derive the statistical features that are characteristic of the user images.
The main steps of subspace derivation include: (E1) Computing a mean
subtracted image matrix V , where each column of V represents the dif-
ference between image data (user or impostor) and the average of all
the user and impostor images’ data. All the user and impostor images
are represented in this matrix, and thus, this matrix will have (X � Y )
columns and N � M rows. (E2) Finding the covariance of matrix V , and
the corresponding eigenvectors and eigenvalues. The eigenvectors cor-
responding to the largest k eigenvalues here constitute the basis of the
PCA subspace. (E3) Projecting the data corresponding to the user and
impostor images on the PCA subspace to derive the corresponding pro-
jection vectors (say vectors U1 �	�	�
��� UX and I1 �	�	�	�	� IY ), each having k
components. (E4) Computing the scatter matrices between projections
of the user images (called within-class scatter matrix SU ) and between
projections of the impostor images (called between-class scatter matrix
SI ). (E5) Finding the eigenvectors of matrix G given by S � 1

U � SI , which
constitutes the basis of the LDA subspace. (E6) Determining the user’s
feature vectors as a projection of vectors (U1 �	�	�
��� UX) on the LDA sub-
space.

Verification of a user’s identity proceeds according to steps V1-V4 in
the figure. We obtain the user’s image, apply the image enhancement
step, and project the resulting images on the PCA and LDA subspaces
to obtain the corresponding feature vector. A distance measure is then
computed between this feature vector and the user’s enrolled feature vec-
tors to yield a matching score. Comparison with a set threshold is then
used to decide the identity of the user.

We analyzed the computational requirements of running the PCA-
LDA based authentication on a 100MHz Xtensa embedded processor.
For our experiments, we used five user images (X=5) and two mean im-
postor images (Y=2) during enrollment, while using one test image for
verification. We found that enrollment takes 26.75 sec., while verifi-
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cation takes 5.21 sec. The profiles for enrollment and verification are
shown in Figures 2 and 3, respectively. They reveal that nearly 85.98%
of enrollment and 88.29% of verification time are spent in the image
enhancement step.

Let us examine the image enhancement step (Figure 1) in more detail.
It includes the following steps. (IE1) Geometric normalization, where a

W � L � image is standardized to an image size of



N � M � . This is done

by first generating a 3 � 3 transform matrix that specifies the amount of
translation, rotation, scaling, and reflection needed. The corresponding
matrix values are derived based on the eye coordinates of the captured
image. Using the transform matrix, the pixels of the source image can
be interpolated to derive the standard size image. (IE2) Image cropping,
where a standard elliptical mask is used to crop the image such that a
selected region of the face (from forehead to chin and cheek to cheek)
remains visible. (IE3) Histogram equalization, where an elliptical mask
is used to equalize the histogram of the unmasked part of the image, and
(IE4) Pixel normalization, where the pixel values are scaled to have a
mean of 0 and a standard deviation of 1.

We extracted a profile of a single image enhancement run (see Fig-
ure 4). It shows that the dominant function in image enhancement is the
function transformImage used in geometric normalization, which takes
51 � 6% of the time. Nearly 25% of that time is spent in matrix multi-
plication (function MultiplyMatrix), while 19 � 5% of the time is used to
carry out linear interpolation (function InterpLinear). This analysis mo-
tivates us to optimize these functions so as to improve both enrollment
and verification times.
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Figure 4: Function call graph for the image enhancement phase

3.2 Bayesian Authentication
Figure 5 shows the complete flowchart for Bayesian authentication. As
with the PCA-LDA based approach, the authentication process includes
the enrollment and verification phases.

During enrollment, we obtain X images from a user, and use an avail-
able database of Y impostor images. Based on specified parameters N1
and N2, we obtain N1 intrapersonal difference images and N2 inter-
personal difference images (step E1). An intrapersonal image refers to
the difference image between two user images. An interpersonal image
refers to the difference image between a user image and an impostor
image. We then derive the PCA subspaces for the intrapersonal images
and interpersonal images (called intraSubspace S1 and extraSubspace
S2, respectively) (step E2), as explained in Section 3.1.Finally, we com-
pute the mean of the user images (denoted mean image U) and impostor
images (denoted mean image I) (step E3). During verification, we obtain
a test image T from the user, enhance it, and then compute the differ-
ence images given by D1 � T � U and D2 � T � I (step V1). We then
project D1 (D2) on subspaces S1 and S2, and generate the maximum-
likelihood distances C (E) and D (F) (step V2). Next, we compute
distances A � C � D and B � E � F . If B � A � 1 and A is less than a
specified threshold, the user is authenticated (step V3).

We analyzed the computational requirements of running Bayesian au-
thentication on a 100MHz Xtensa embedded processor. For our experi-
ments, we used three user images (X=3) and two mean impostor images
(Y=2) during enrollment, and one test image for verification. We found
that enrollment takes 23.15 sec., while verification takes 6.61 sec. Exe-
cution time profiles reveal that nearly 61.05% of enrollment and 69.59%
of verification time are spent in the image enhancement step, making it
the performance hotspot that must be targeted for optimization.

We also identified opportunities for parallelism in both enrollment
and verification. During enrollment, computation of the PCA subspaces
for the user class (step E2(a)) and impostor class (step E2(b)) are inde-
pendent, time-consuming tasks. Each subspace computation takes 4.34
sec., which can benefit from any parallelism in the underlying architec-
ture. Similarly, during verification, the projection of difference images
D1 and D2 onto the PCA subspaces S1 and S2 can be split into two
parallel tasks. Each task takes nearly 0.62 sec.

Y enhanced 
impostor images

X user 
images

Generate (a) N1 difference images in 
user class, and (b) N2 difference 

images in impostor class 

(a) Find PCA subspace (S1) using 
N1 user class difference images
(b) Find PCA subspace (S2) using 
N2 impostor class difference images

Compute difference images
 (a) D1 = T – U and (b) D2 = T - I 

(a) Project D1 on S1 and S2. Find maximum 
likelihood distances C,D; A = C + D.
(b) Project D2 on S1 and S2. Find maximum 
likelihood distances E,F; B = E + F. 

B/A > 1 and 
A < threshold

?

Authentic test image                     Impostor test image
Yes No

Verification Phase 

Test 
image

Image cropping

Geometric
normalization

Histogram 
equalization

Pixel 
normalization

Im
ag

e 
E

nh
an

ce
m

en
t IE1

IE2

IE3

IE4

X enhanced
 images

Enhanced
test 

image

C
om

pu
te

 m
ea

n 
us

er
 im

ag
e 

U
 a

nd
 

m
ea

n 
im

po
st

or
 im

ag
e 

I

Enrollment Phase 

E1

E2

E3

V1

V2

V3

Mean user image U
Mean impostor 

image I

Figure 5: Flowchart for Bayesian authentication

3.3 Multi-modal Face Biometrics
PCA-LDA and Bayesian face authentication approaches can be com-
bined as a part of a single, multi-modal authentication system, as shown



in Figure 6. Both algorithms then share the user image acquistion and
image enhancement processes during both enrollment and verification.
Verification proceeds by generating matching scores K and B from each
verifier, and fusing them at this level. Score fusion is through a “Simple
Sum of Scores” rule, which can be applied after the individual scores
are normalized. For normalization, we used the tanh normalization
method [22], which has been shown to be highly effective in practice.
The various factors used in the tanh estimator were estimated empiri-
cally, and are shown in the figure. We omit further details for brevity.

In such a system flow, we can clearly identify kernels that are in-
dependent, time-consuming, and hence, parallelizable. Subsequent
to image enhancement, enrollment for PCA-LDA and Bayesian ap-
proaches can occur in parallel. The corresponding computations take
3.75 sec. and 9.35 sec., respectively. Similarly, steps PLV1-PLV2-PLV3
and BV1-BV2-BV3 in verification can occur in parallel [consuming
0.61 sec. and 1.05 sec. (before conversion to fixed-point arithmetic),
respectively].
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4 Architectures for Efficient Face Au-
thentication

In this section, we present various harware/software architectural en-
hancements that optimize the performance of PCA-LDA, Bayesian, and
multi-modal authentication. We describe optimizations relevant to both
uniprocessor and multiprocessor systems. In this context, we use the
generic SoC template shown in Figure 7, which includes two proces-
sors p1 and p2, each with its private memory and communicating us-
ing a shared memory. The processors we consider in our work are the
extensible Xtensa processors, whose instruction set can be customized
to accelerate fine-grained hotspots in the application. Large-granularity
kernels can be accelerated by adding co-processing hardware outside the
processor core.

4.1 Optimizations for Uniprocessor Systems
In this section, we describe the various optimizations used to optimize
the execution of the face verification algorithms given in Section 3 for
a uniprocessor system. Since performance analysis revealed that sig-
nificant portions of execution time are spent in the image enhancement
step, our optimizations target this step (though the software optimiza-
tions were applied to the entire algorithm), and include the following:

� Software optimizations: By examining the performance profiles of
image enhancement at a fine-grained level, we observed that a high
percentage of execution time is spent in 32-bit floating-point oper-
ations. Since the embedded processor does not include a floating-
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fp31 xfrac = SUB(x , FLOOR(x));
fp31 yfrac = SUB(y , FLOOR(y));
double K = fixed_to_float(x);
double L = fixed_to_float(y);
int xLower = INT_FLOOR(K);
int xUpper = INT_CEIL(K);
int yLower = INT_FLOOR(L);
int yUpper = INT_CEIL(L);

fp31 interpLinear(Image img, fp31 x, fp31 y, int c)
{

fp31 valUpper, valLower, value, value1;
valUpper = ADD( MULT(ie(img,xLower,yUpper,c),SUB(FPONE,xfrac)) ,

MULT(ie(img,xUpper,yUpper,c),(xfrac)) );
valLower = ADD( MULT(ie(img,xLower,yLower,c),SUB(FPONE,xfrac)) ,

MULT(ie(img,xUpper,yLower,c),(xfrac)) );
value = MULT(valLower, SUB(FPONE,yfrac));
value1 = MULT(valUpper,yfrac);
return ADD(valeur,valeur1);

}

Part 1

Part 2

Figure 8: Original code of function interpLinear
point unit, and hence, emulates their operations, we transformed
the operations from floating-point to fixed-point arithmetic (the al-
ternative solution of adding a floating-point unit is too expensive
for the gains that can be obtained) and were able to speed the al-
gorithm up to 2.07 sec. (from 4.6 sec.). We found that judicious
use of two representation formats (Q20 and Q16) for fixed-point
arithmetic enabled us to avoid any overflow/underflow problems.
The use of fixed-point operations also enabled us to add custom in-
structions (see hardware optimizations below) that can accelerate
their computation (a property of the Xtensa design process). We
further identified code snippets that were amenable to optimiza-
tions such as loop unrolling and replacement of select divisions
with shift operations. This allowed us to reduce the execution time
to 1.65 sec.

� Hardware optimizations (custom instructions): The performance
profile of the image enhancement phase shown in Figure 4 shows
that a significant percentage of execution time is spent in func-
tions interpLinear and histEqualMask (this is true even after the
software optimizations are carried out). Figure 8 shows a code
snippet that outlines the operations performed in function inter-
pLinear. The function takes a pixel of an input image, and outputs
a value for the pixel’s intensity that is interpolated based on the
intensity values of the pixels in its neighbourhood. Logically, the
function consists of two kernels of computation (i) the first part
(labeled Part 1) performs a sequence of subtraction, ceiling, and
floor operations on the input pixel co-ordinates to determine the
pixel’s neighbours, and (ii) the second part (labeled Part 2) is a
series of multiplication-addition operations that computes the de-
sired interpolated intensity value. We can accelerate the perfor-
mance of function interpLinear by executing code snippets Parts
1 and 2 by adding the custom hardware shown in Figure 9 into
the execution stage of the Xtensa processor’s pipeline. At the ap-
plication level, the custom hardware can be accessed through two
new instruction calls: INTERP1 and MULT_TIE. Note that the
MULT_TIE instruction is implemented such that it can be used to



accelerate function histEqualMask as well. In the absence of the
new custom instructions, one call to interpLinear takes 2571 cy-
cles, with 228 and 2343 cycles spent in Parts 1 and 2, respectively.
With the new custom instructions, the computations correspond-
ing to each part of this function execute in one clock cycle. This
custom instruction-based optimization reduces the execution time
of the image enhancement step to 0.97 sec.

� Hardware optimizations (co-processors): Further acceleration is
feasible by using a co-processor that can perform two coarse-
grained tasks in parallel to master processor p1, namely, gener-
ation of the transform matrix (part of steps IE1, IE2) and genera-
tion of the elliptical mask needed by steps IE3 and IE4. Figure 10
shows the timeline of operations for master processor p1 and the
co-processor. A specified address in shared memory, called lock,
guarantees memory consistency between p1 and the co-processor.
While p1 is reading the image from the input file, the co-processor
generates the transform matrix by reading the small portion of the
image needed to determine the eye co-ordinates. Processor p1 can
access the transform matrix only after lock is set to 1. In the mean-
time, the co-processor begins the task of mask generation. The
co-processor implementation reduces processing time of image en-
hancement to 0.565 sec.
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4.2 Optimizations for Multiprocessor Systems
The optimizations described above for uniprocessor systems are also
applicable to multiprocessor systems. In this section, we specifically
consider the two-processor scenario, and detail additional optimizations
that can exploit the available architectural parallelism.

4.2.1 Speeding up Bayesian Authentication
Section 3.2 identified steps in Bayesian enrollment and verification,
which were parallelizable. Figure 11 shows the timeline of operations,
wherein Bayesian verification benefits from executing tasks V1(a) and
V2(a) on one processor, while simultaneously executing tasks V1(b) and
V2(b) on another processor. Processor p1 reads the image and stores
it in shared memory so that it can be accessed by both processors p1
and p2. Maximum-likelihood distance computations can then proceed
in parallel, after which processor p1 decides whether the user is au-
thenticated or not (step V3). Again, synchronization between the two
processors is achieved by setting, reseting, and polling a common mem-
ory location lock. On a single processor, Bayesian verification of an
enhanced test image takes 1.63 sec. (after the uniprocessor software op-
timizations), while Bayesian verification in the two-processor scenario
takes only 0.821 sec.
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Figure 10: Timeline of operations in a uniprocessor system with
a co-processor present
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Figure 11: Bayesian verification in a two-processor system
4.2.2 Multi-modal Biometrics
The coarse-grained parallelism between the two authentication algo-
rithms, as identified in Section 3.3, allows for the implementation of the
scheme outlined in Figure 12. The enhanced test image is read by the
two processors p1 and p2, which will run the PCA-LDA and Bayesian
verification steps. Since processor p1 computes normalized LDA dis-
tances in 0.47 sec., it waits until processor p2 computes the Bayesian
distance. At this point, p2 releases the synchronization variable lock
so that fusion of scores can be performed by p1. Overall, multi-modal
verification on a dual processor takes only 0.824 sec. to complete, while
taking 2 � 062 sec. on a uniprocessor.
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Figure 12: Multi-modal verification in a two-processor system

5 Experimental Results
We next present our experimental results.

Our experimental setup is as follows. We designed our authentica-
tion system using the open-source face recognition software suite pro-
vided by Colorado State University [23]. We used the grayscale FERET
Database provided by NIST [24] for various experiments and the open-
source software XnView [25] for image format conversions.

We evaluated the proposed architectural enhancements in the context
of the Xtensa platform [8]. The base processor considered in our experi-
ments is a five-stage embedded RISC processor, with 32 KB instruction
and data caches. The area of the base processor is 402,667 grids. The



Xtensa software development toolkit was used for cross-compilation, in-
struction set simulation, and profiling. The custom instructions designed
in our work are specified in a hardware description language called Ten-
silica Instruction Extension (TIE), and added to the base processor using
the Xtensa processor generator. In the following subsections, we present
various area and performance results for our architectural modifications,
and also discuss trade-offs between accuracy and performance.

5.1 Performance and Area Results
In Section 4, we presented various software and hardware optimizations
for the uni-modal and multi-modal systems. Figure 13 provides the exe-
cution times at various stages of the optimization process for enrollment
and verification using PCA-LDA and Bayesian algorithms. We can see
that the enrollment and verification phases in PCA-LDA are sped up by
factors of 4.8X and 5.0X, respectively, while enrollment and verifica-
tion in Bayesian are sped up by factors of 2.3X and 3.0X, respectively.
Among the various optimizations, the use of fixed-point arithmetic and
custom instructions provide the best accceleration. In the two-processor
scenario, Bayesian enrollment and verification are further sped up to
7.08 sec. and 1.791 sec., respectively. For the multi-modal scenario, we
found that enrollment and verification times on a two-processor system
can be reduced to 11.38 sec. and 1.794 sec., respectively.

For the image enhancement step, we evaluated the area overhead
of adding custom instructions (INTERP1 and MULT_TIE) to the base
Xtensa processor. The area overhead is 19,386 grids (only 4.81% of the
base processor), where 4 grids are equivalent to one gate using NEC’s
0.18µ CB-12 CMOS standard cell library. We also evaluated the en-
ergy consumption of the image enhancement algorithm running on the
customized processor by applying the energy macro-model proposed
in [26]. The energy consumed is 28.27mJ, thus achieving an energy-
delay product reduction of 5.12X over the base processor core.
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Figure 13: Speedup achieved at each step of the optimization
process

Table 1: Accuracy and performance characteristics
Algorithm #Img EER(%) En. (sec) Ver. (sec) En. (sec) Ver. (sec)

B.O. B.O. A.O. A.O.
PCA-LDA 8 31.2 42.80 5.25 11.98 1.44

7 21.8 37.33 5.23 10.33 1.44
6 23.5 31.84 5.23 8.97 1.44
5 7.6 26.75 5.21 7.57 1.40
4 8.2 21.4 5.21 5.44 1.40

Bayesian 3 7.2 23.15 6.61 6.61 2.59
5 6.3 35.25 13.38 7.63 3.78

Multi-modal 5.8 26.75 11.38 5.65 1.78

5.2 Accuracy and Performance Tradeoffs
For the various authentication algorithms, we computed the false accept
rate (FAR) and false reject rate (FRR) by varying the acceptance thresh-
old. We computed the equal error rate (EER) (the point where FAR
equals FRR) of the system and we found that the use of five user images
for PCA-LDA enrollment yields the best EER (7.6%).

Table 1 summarizes the EERs (column 3) for the various authentica-
tion algorithms (column 1), and the execution times [before optimiza-

tions (B.O.) and after optimizations (A.O.)] for the enrollment and ver-
ification phases (columns 3-6). Column 2 indicates the number of user
images used in enrollment. The results show that we can obtain EERs
of 7 � 6% in PCA-LDA, 6 � 3% in Bayesian, and 5 � 8% in multi-modal sys-
tems with reasonable execution times.

6 Conclusion
In this paper, we introduced various architectural enhancements that en-
able the deployment of uni-modal and multi-modal authentication al-
gorithms. The proposed enhancements include software optimizations,
hardware additions in the form of custom instructions and co-processors,
and exploitation of parallel processors (if available). We evaluated the
proposed enhancements in the context of a commercial embedded proce-
sor, and showed that both enrollment and verification can be performed
efficiently in the system.
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