
An O(bn2) Time Algorithm for Optimal Buffer Insertion with b

Buffer Types ∗

Zhuo Li
Dept. of Electrical Engineering

Texas A&M University
College Station, Texas 77843, USA.

zhuoli@ee.tamu.edu

Weiping Shi
Dept. of Electrical Engineering

Texas A&M University
College Station, Texas 77843, USA.

wshi@ee.tamu.edu

Abstract

Buffer insertion is a popular technique to reduce the in-
terconnect delay. The classic buffer insertion algorithm of
van Ginneken has time complexity O(n2), where n is the
number of buffer positions. Lillis, Cheng and Lin extended
van Ginneken’s algorithm to allow b buffer types in time
O(b2n2). For modern design libraries that contain hun-
dreds of buffers, it is a serious challenge to balance the
speed and performance of the buffer insertion algorithm.

In this paper, we present a new algorithm that computes
the optimal buffer insertion in O(bn2) time. The reduction
is achieved by the observation that the (Q, C) pairs of the
candidates that generate the new candidates must form a
convex hull. On industrial test cases, the new algorithm is
faster than the previous best buffer insertion algorithms by
orders of magnitude.

1. Introduction

Delay optimization techniques for interconnect are in-
creasingly important for achieving timing closure of high
performance designs. One popular technique for reducing
interconnect delay is buffer insertion. A recent study by
Saxena et al. [10] projects that 35% of all cells will be
intra-block repeaters for the 45 nm node. Consequently, al-
gorithms that can efficiently insert buffers are essential for
the design automation tools.

In 1990, van Ginneken [14] proposed an optimal buffer
insertion algorithm for one buffer type. His algorithm has
time complexity O(n2), where n is the number of candi-
date buffer positions. Lillis, Cheng and Lin [7] extended
van Ginneken’s algorithm to allow b buffer types in time

∗ This research was supported by the NSF grants CCR-0098329, CCR-
0113668, EIA-0223785, ATP grant 512-0266-2001.

O(b2n2). Recently, Shi and Li [11] presented a new algo-
rithm with time complexity O(n log n) for 2-pin nets, and
O(n log2 n) for multi-pin nets, for one buffer type. Several
works have built upon van Ginneken’s algorithm and its ex-
tension for multiple buffer types to include wire sizing [7],
simultaneous tree construction [8, 6, 5, 9, 15], noise con-
straints [2] and resource minimization [7, 13].

Modern design libraries may contain hundreds of differ-
ent buffers with different input capacitances, driving resis-
tance, intrinsic delay, power level, etc. If every buffer avail-
able for the given technology is supplied, it is stated in
[3] that the current algorithms could possibly take days or
even weeks for large designs since all these algorithms are
quadratic in terms of b. Alpert et. al. [3] studied how to re-
duce the size of the buffer library with a clustering algo-
rithm. Though the buffer library size is reduced, the solu-
tion quality is often degraded accordingly.

In this paper, we propose a new algorithm that performs
optimal buffer insertion with b buffer types in O(bn2) time.
Our speedup is achieved by the observation that the can-
didates that generate new buffered candidates must lie on
the convex hull of (Q, C). Experimental results show that
our algorithm is significantly faster than previous best algo-
rithms.

Section 2 formulates the problem. Section 3 describes
the new algorithm. Simulation results are given in Section 4
and conclusions are given in Section 5.

2. Preliminary

A net is given as a routing tree T = (V, E), where
V = {s0} ∪ Vs ∪ Vn, and E ⊆ V × V . Vertex s0 is the
source vertex and also the root of T , Vs is the set of sink ver-
tices, and Vn is the set of internal vertices. Each sink ver-
tex s ∈ Vs is associated with sink capacitance C(s) and
required arrival time RAT (s). A buffer library B contains
different types of buffers and its size is represented by b. For

1530-1591/05 $20.00 © 2005 IEEE

each buffer type Bi ∈ B, the intrinsic delay is K(Bi), driv-
ing resistance is R(Bi), and input capacitance is C(Bi). A
function f : Vn → 2B specifies the types of buffers al-
lowed at each internal vertex. Each edge e ∈ E is associ-
ated with lumped resistance R(e) and capacitance C(e).

Following previous researchers [14, 7, 9, 15, 1], we use
the Elmore delay for the interconnect and the linear delay
for buffers. For each edge e = (vi, vj), signals travel from
vi to vj . The Elmore delay of e is

D(e) = R(e)
(

C(e)
2

+ C(vj)
)

,

where C(vj) is the downstream capacitance at vj . For any
buffer type Bi at vertex vj , the buffer delay is

D(vj) = R(Bi) · C(vj) + K(Bi),

where C(vj) is the downstream capacitance at vj . When a
buffer Bi is inserted, the capacitance viewed from the upper
stream is C(Bi).

For any vertex v ∈ V , let T (v) be the subtree down-
stream from v, and with v being the root. Once we decide
where to insert buffers in T (v), we have a candidate α for
T (v). The delay from v to sink s ∈ T (v) under α is

D(v, s, α) =
∑

e=(vi,vj)

(D(vi) + D(e)),

where the sum is over all edges e in the path from v to s. If
vi is a buffer in α, then D(vi) is the buffer delay. If vi is not
a buffer in α, then D(vi) = 0. The slack of v under α is

Q(v, α) = min
s∈T (v)

{RAT (s)− D(v, s, α)}.

Buffer Insertion Problem: Given routing tree T =
(V, E), sink capacitance C(s) and RAT (s) for each sink
s, capacitance C(e) and resistance R(e) for each edge e,
possible buffer position f , and buffer library B, find a can-
didate α for T that maximizes Q(s0, α).

The effect of a candidate to the upstream is described
by slack Q and downstream capacitance C [14]. Define
C(v, α) as the downstream capacitance at node v under
candidate α. For any two candidates α1 and α2 of T (v),
we say α1 dominates α2, if Q(v, α1) ≥ Q(v, α2) and
C(v, α1) ≤ C(v, α2). The set of nonredundant candidates
of T (v), which we denote as N(v), is the set of candidates
such that no candidate in N(v) dominates any other candi-
date in N(v), and every candidate of T (v) is dominated by
some candidates in N(v). Once we have N(s0), the can-
didate that gives the maximum Q(s0, α) can be found eas-
ily. The number of total nonredundant candidates is at most
n+1 for one buffer type and bn+1 for b buffer types [14, 7],
where n is the number of candidate buffer positions.

3. New Algorithm

The previous best algorithm for multiple buffer types by
Lillis, Cheng and Lin consists of three major operations:
1) adding buffers at a buffer position in O(b2n) time, 2)
adding a wire in O(bn) time, and 3) merging two branches
in O(bn1 + bn2) time, where n1 and n2 are the numbers
of buffer positions in the two branches. As a result, their
algorithm has time complexity O(b2n2). In this section,
we show that the time complexity of the first operation,
adding buffers at a buffer position, can be reduced to O(bn),
and thus our algorithm can achieve total time complexity
O(bn2).

Assume we have computed the set of nonredundant can-
didates N(v1) for T (v1), and now reach a buffer position
v, see Fig. 1. Wire (v, v1) has 0 resistance and capacitance.
Define Pi(α) as the slack if we add a buffer type Bi at v for
any candidate α in N(v1):

Pi(α) = Q(v1, α) − R(Bi) · C(v1, α) − K(Bi). (1)

If we do not insert any buffer at v, then every candidate
for T (v1) is a candidate for T (v). If we insert a buffer at v,
then for every buffer type B i, i = 1, 2, . . . , b, there will be
a new candidate βi:

Q(v, βi) = max
α∈N(v1)

{Pi(α)},
C(v, βi) = C(Bi).

Note that some of the new candidates βi could be redun-
dant. The algorithm of Lillis, Cheng and Lin takes O(b2n)
time to generate all βis and O(b2n) time to insert nonredun-
dant ones into the list of nonredundant candidates N(v1).

T(v1)
v1v

Figure 1. T (v) consists of buffer position v
and T (v1).

We show how to generate all βis in O(bn) time. Since
all candidates discussed in this section are in N(v1), we
will write Q(α) for Q(v1, α), and C(α) for C(v1, α). Sup-
pose buffers in the buffer library are sorted according to its
driving resistance R(Bi) in non-increasing order, R(B1) ≥
R(B2) ≥ · · · ≥ R(Bb). If some buffer types are not al-
lowed at v, we simply omit them without affecting the rest
of the algorithm. For any buffer type B i ∈ B, define the
best candidate for Bi as the candidate αi ∈ N(v1) such
that αi maximizes Pi(α) among all candidates of N(v1).
If there are multiple α’s that maximize Pi(α), the one with
minimum C(α) is chosen.

Lemma 1 For any two buffer types Bi and Bj , where i >
j, let their best candidates be αi and αj , respectively. Then
we must have C(αi) ≥ C(αj).

Proof: From the definition of αi, we have Pi(αi) ≥ Pi(αj)
and Pj(αj) ≥ Pj(αi). Consequently,

Q(αi) − Q(αj) ≥ R(Bi) · (C(αi) − C(αj)),
Q(αj) − Q(αi) ≥ R(Bj) · (C(αj) − C(αi)).

Therefore, (R(Bi) − R(Bj))(C(αi) − C(αj)) ≤ 0.
Since i > j, R(Bj) ≥ R(Bi). If R(Bj) > R(Bi),

C(αi) ≥ C(αj). If R(Bj) = R(Bi), then it is easy to get
Pi(αi) = Pi(αj) and Pj(αj) = Pj(αi). From the defini-
tion, when there are multiple α’s that maximize Pi(α), the
one with minimum C(α) is chosen. Thus αi and αj should
be the same candidate, which means C(αi) = C(αj).

Lemma 1 implies that the best candidates α1, . . . , αb for
buffer types B1, . . . , Bb are in increasing order of C. How-
ever, this is not enough for an O(bn2) time algorithm. In the
following, we define the concept of convex pruning, which
is important in generating new candidates βi’s.

Convex pruning: Let α1, α2 and α3 be three nonredun-
dant candidates of T (v1) such that C(α1) < C(α2) <
C(α3). If

Q(α2) − Q(α1)
C(α2) − C(α1)

<
Q(α3) − Q(α2)
C(α3) − C(α2)

, (2)

then we prune candidate α2.
Convex pruning can be explained by Figure 2. Consider

Q as the Y -axis and C as the X-axis. Then the set of nonre-
dundant candidate N(v1) are a set of points in the two-
dimensional plane. Candidate α2 in the above definition is
shown in Figure 2(a), and is pruned in Figure 2(b). Call
the candidates after convex pruning M(v1). It can be seen
that N(v1) is a monotonically increasing sequence, while
M(v1) is a convex hull.

C

Q

C1 C2C3

Q1

Q2

Q3

Pruned

(a)

C

Q

C1 C3 C4

Q1

Q3

Q4

(b)

C4

Q4

Figure 2. (a) Nonredundant candidates N(v1)
on (Q, C) plane. (b) Nonredundant candidates
M(v1) after convex pruning.

Function ConvexPruning performs convex pruning
for any list of nonredundant candidates sorted in increas-
ing Q and C order. The following C code defines the data
structure for each candidate in the list:

typedef struct Candidate {
float Q, C;
struct Candidate *next, *prev;

// double link list
} Candidate;

Let the candidate with minimum C be α1. We add a
dummy candidate (−∞, C(α1)) pointed by header to
simplify the algorithm. Function LeftTurn checks if a1,
a2 and a3 form a left turn on the plane. It is the same as
the condition in Eq. (2).

void ConvexPruning(Candidate *header)
{

Candidate *a1, *a2, *a3;

a1 = header;
a2 = a1->next;
a3 = a2->next;

while (a3 != NULL) {
if (LeftTurn(a1, a2, a3)) {

// prune a2 and move backward
free(a2);
a1->next = a3;
a3->prev = a1;
a2 = a1;
a1 = a1->prev;

} else {
// move forward
a3 = a3->next;
a2 = a2->next;
a1 = a1->next;

}
}

}

Lemma 2 Given any set of k nonredundant candi-
dates sorted in increasing Q and C order, function
ConvexPruning performs convex pruning in O(k) time.

Proof: This procedure is known as Graham’s scan in com-
putational geometry [4]. It finds the convex hull of a set of
points in sorted order in linear time.

It is well known that a set of points form a convex hull if
and only if there are no consecutive α1, α2 and α3 that sat-
isfy Eq. (2). Therefore, ConvexPruning is correct since
it checks all consecutive candidates.

To analyze the time complexity, consider the num-
ber of forward and backward moves. Each time

ConvexPruning moves backward, it deletes a can-
didate. Therefore, there can be at most k backward moves.
The number of forward moves is the size of the list plus the
number of backward moves. Therefore the number of for-
ward moves is at most 2k. Hence the time complexity is
O(k).

Lemma 3 For any buffer type Bi ∈ B, its best can-
didate αi that maximizes Pi(α) is not pruned by
ConvexPruning.

Proof: Consider any candidate γ ∈ N(v1) with C(γ) >
C(αi). According to the definition of αi, we have Pi(αi) ≥
Pi(γ). Therefore,

Q(γ) − Q(αi) ≤ R(Bi) · (C(γ) − C(αi)),
Q(γ) − Q(αi)
C(γ) − C(αi)

≤ R(Bi).

Similarly for any candidate η ∈ N(v1) with C(η) < C(αi),
we have

Q(αi) − Q(η) ≥ R(Bi) · (C(αi) − C(η)),
Q(αi) − Q(η)
C(αi) − C(η)

≥ R(Bi).

Therefore,

Q(αi) − Q(η)
C(αi) − C(η)

≥ Q(γ) − Q(αi)
C(γ) − C(αi)

,

where η is any candidates with C(η) < C(αi), and γ is any
candidates with C(γ) > C(αi). According to the definition
of convex pruning, αi is not pruned.

Lemma 4 Let the set of nonredundant candidates af-
ter ConvexPruning be M(v1) and assume M(v1) are
sorted in increasing Q and C order. Consider any three can-
didates η, α, γ in M(v1), such that C(η) < C(α) < C(γ).
For any buffer type Bi ∈ B, if Pi(η) ≥ Pi(α), then
Pi(η) ≥ Pi(γ); if Pi(γ) ≥ Pi(α), then Pi(γ) ≥ Pi(η).

Proof: From the definition of convex pruning, we have

Q(γ) − Q(α)
C(γ) − C(α)

≤ Q(α) − Q(η)
C(α) − C(η)

.

If Pi(η) ≥ Pi(α), then

Q(α) − Q(η)
C(α) − C(η)

≤ R(Bi),

Q(γ) − Q(α)
C(γ) − C(α)

≤ R(Bi),

Q(α) − R(Bi) · C(α) ≥ Q(γ) − R(Bi) · C(γ),
Pi(α) ≥ Pi(γ).

Therefore, Pi(η) ≥ Pi(γ). Similarly, if Pi(γ) ≥ Pi(α),
then

Q(γ) − Q(α)
C(γ) − C(α)

≥ R(Bi),

Q(α) − Q(η)
C(α) − C(η)

≥ R(Bi),

Q(α) − R(Bi) · C(α) ≥ Q(η) − R(Bi) · C(η)
Pi(α) ≥ Pi(η).

Therefore, Pi(γ) ≥ Pi(η).

Lemma 4 implies that for any buffer type B i, if candidate
α maximizes Pi(α) among its previous and next consecu-
tive candidates in M(v1), then α maximizes Pi(α) among
all candidates in M(v1).

Function AddBuffer identifies αi from N(v1) and
generates new candidates βi, i = 1, . . . , b. Nonredundant
candidates in N(v1) are stored in increasing C order us-
ing a double link list pointed by header. Buffer types are
sorted in non-increasing driver resistance order and stored
in array B. Function P(i, a) computes Pi(α) as defined
in Eq. (1).

Candidate *AddBuffer(Candidate *header)
{

Candidate *a1, *a2;
Candidate *beta[];
int i;

ConvexPruning(header);

a1 = header;
a2 = a1->next;
for (i = 1; i <= BUF_LIB_SIZE; i ++) {

while (a2 != NULL) {
if (P(i, a1) < P(i, a2)) {

a1 = a1->next;
a2 = a1->next;

} else
break;

}

// generate new candidate beta_i
beta[i]->Q = P(i, a1);
beta[i]->C = B[i]->C;

}

sort beta’s in nondecreasing C order;
return beta’s;

}

Theorem 1 If v is a buffer position, wire (v, v1) is a wire
with zero resistance and capacitance, nonredundant candi-
dates of N(v1) are stored in increasing Q and C order, then

function AddBuffer generates all new candidates βi from
N(v1) in O(bn) time.

Proof: Let the set of nonredundant candidates af-
ter ConvexPruning be M(v1). From Lemma 3, we
know that all best candidates αi’s are in M(v1). From
Lemma 1 and Lemma 4, starting from the first candi-
dates in M(v1), function AddBuffer can find all βis in
the increasing order of i.

Now consider the time complexity. Function
ConvexPruning takes O(bn) time according to
Lemma 2. The for loop takes O(bn + b) = O(bn) time.
It takes only O(b log b) time to sort the entire buffer li-
brary in terms of the input capacitance C(B i), and estab-
lish the order from buffer index i to the order in C(B i).
Each time function AddBuffer is called, the new candi-
dates βi’s can be sorted in nondecreasing C order by using
the index in O(b) time.

Theorem 2 Given a set of O(bn) nonredundant candidates
sorted in increasing Q and C order, all b new candidates
βi’s can be inserted in O(bn) time.

Proof: Since βi’s are in the nondecreasing order of ca-
pacitance C(βi) and the given set of nonredundant candi-
dates are in nondecreasing order of C(α), it takes O(bn) +
O(b) = O(bn) time to merge the two sorted lists.

Since the operation of adding a buffer is reduced to
O(bn) time from Theorem 1 and 2, it is easy to see that
buffer insertion with b buffer types can be done in worst
case time O(bn2) with our new algorithm.

4. Simulation

Both the algorithm of Lillis et al. [7] and the new algo-
rithm are implemented in C and run on a Sun SPARC work-
stations with 400 MHz and 2 GB memory. The device and
interconnect parameters are based on TSMC 180 nm tech-
nology. We have 4 different buffer libraries, with the size
8, 16, 32 and 64 respectively. R(B i) is chosen from 180
Ω to 7000 Ω, C(Bi) is chosen from 0.7 fF to 23 fF, and
K(Bi) is chosen from 29 ps to 36.4 ps. The sink capaci-
tances range from 2 fF to 41 fF. The wire resistance is 0.076
Ω/µm and the wire capacitance is 0.118 fF/µm. Table 1
shows for large industrial circuits, the new algorithm is up
to 11 times faster than Lillis’ algorithm. The memory usage
is not shown in the table, but there is only almost 2% mem-
ory overhead due to the double linked list used by the new
algorithm. When b is small, O(bn2) algorithm has a little
time overhead compared to Lillis’ algorithm. due to func-
tion ConvexPruning.

Fig. 3 shows the time complexity curve of two algo-
rithms for the net with 1944 sinks and 33133 buffer posi-
tions with respect to the size of buffer library b. In the fig-

ure, the y axis is normalized to the running time of the case
when the buffer library size is 8. Though the worst case time
complexity of Lillis’ algorithm is quadratic in terms of b, it
behaves more like a linear function of b, as observed in [3].
The time complexity curve of our algorithm is also linear,
but has a much smaller slope.

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

Buffer Library Size

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

O(bn2)
O(b2n2)

Figure 3. Comparison of normalized running
time with respect to buffer library size among
two algorithms. Number of sink is 1944 and
number of buffer positions is 33133.

Fig. 4 shows the time complexity curve of the two algo-
rithms for the net with 1944 sinks, with respect to the num-
ber of buffer positions n. The buffer library size is 32. In
the figure, the y axis is normalized to the running time of
the case with 1943 buffer positions. We can see that while
Lillis’ and our algorithms both behave quadratically, our al-
gorithm shows much slower growing trend since the op-
eration of adding a buffer becomes more dominant among
three major operations when n increases.

5. Conclusion

We presented a new algorithm for optimal buffer inser-
tion with b buffer types of worst case time O(bn2). This is
an improvement of the previous best O(b2n2) algorithm [7].
Simulation results show our new algorithm is significantly
faster than O(b2n2) algorithms for large industrial circuits
with large buffer libraries. Our algorithm can also be ap-
plied to reduce buffer cost. We leave the details to the jour-
nal version.

References

[1] C. Alpert and A. Devgan. Wire segmenting for improved
buffer insertion. In DAC, pages 588–593, 1997.

[2] C. J. Alpert, A. Devgan, and S. T. Quay. Buffer insertion for
noise and delay optimization. In DAC, pages 362–367, 1998.

0 1 2 3 4 5 6 7

x 10
4

0

20

40

60

80

100

120

140

160

180

Buffer Positions

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e
O(bn2)
O(b2n2)

Figure 4. Comparison of normalized running
time with respect to buffer positions among
two algorithms. Number of sink is 1944 and
number of buffer types is 32.

[3] C. J. Alpert, R. G. Gandham, J. L. Neves, and S. T. Quay.
Buffer library selection. In ICCD, pages 221–226, 2000.

[4] R. L. Graham. An efficient algorithm for determining the con-
vex hull of a fiite planar set. Information Processing Letters,
1:132–133, 1972.

[5] M. Hrkic and J. Lillis. Buffer tree synthesis with considera-
tion of temporal locality, sink polarity requirements, solution
cost and blockages. In ISPD, pages 98–103, 2002.

[6] M. Hrkic and J. Lillis. S-tree: a technique for buffered routing
tree synthesis. In DAC, pages 578–583, 2002.

[7] J. Lillis, C. K. Cheng, and T.-T. Y. Lin. Optimal wire siz-
ing and buffer insertion for low power and a generalized de-
lay model. IEEE Trans. Solid-State Circuits, 31(3):437–447,
1996.

[8] J. Lillis, C.-K. Cheng, T.-T. Y. Lin, and C.-Y. Ho. New per-
formance driven routing techniques with explicit area/delay
tradeoff and simultaneous wire sizing. In DAC, pages 395–
400, 1996.

[9] T. Okamoto and J. Cong. Buffered steiner tree construction
with wire sizing for interconnect layout optimization. In IC-
CAD, pages 44–49, 1996.

[10] P. Saxena, N. Menezes, P. Cocchini, and D. A. Kirkpatrick.
Repeater scaling and its impact on CAD. IEEE Trans. CAD,
23(4):451–463, 2004.

[11] W. Shi and Z. Li. A fast algorithm for opitmal buffer inser-
tion. IEEE Trans. CAD, to appear.

[12] W. Shi and Z. Li. An O(nlogn) time algorithm for optimal
buffer insertion. In DAC, pages 580–585, 2003.

[13] W. Shi, Z. Li, and C. J. Alpert. Complexity analysis and
speedup techniques for optimal buffer insertion with mini-
mum cost. In ASPDAC, pages 609–614, 2004.

[14] L. P. P. P. van Ginneken. Buffer placement in distributed RC-
tree network for minimal elmore delay. In ISCAS, pages 865–
868, 1990.

[15] H. Zhou, D. F. Wong, I. M. Liu, and A. Aziz. Simultane-
ous routing and buffer insertion with restrictions on buffer lo-
cations. IEEE Trans. CAD, 19(7):819–824, 2000.

m n b CPU Time (sec) Speed
O(bn2) O(b2n2) [7] -up

336 8 0.08 0.09 1.11
337 16 0.14 0.16 1.14

32 0.23 0.36 1.57
64 0.42 0.91 2.17

5647 8 1.54 2.15 1.40
16 2.11 4.55 2.16
32 2.81 9.99 3.56
64 4.05 22.52 5.56

10957 8 4.56 7.15 1.57
16 6.02 15.74 2.61
32 7.62 34.02 4.46
64 9.98 74.55 7.47

1943 8 0.93 0.90 0.97
1944 16 1.62 1.86 1.15

32 2.78 4.38 1.58
64 4.54 10.71 2.36

33133 8 22.96 38.19 1.66
16 31.97 90.08 2.82
32 40.83 209.82 5.14
64 50.42 457.22 9.07

64323 8 70.23 141.07 2.01
16 95.78 337.97 3.53
32 117.38 755.46 6.44
64 136.85 1596.61 11.67

2675 8 1.16 1.13 0.97
2676 16 2.07 2.38 1.15

32 3.83 5.78 1.51
64 6.18 14.15 2.30

45075 8 27.31 44.29 1.62
16 36.75 98.31 2.68
32 47.8 226.25 4.73
64 64.02 543.45 8.49

87475 8 82.67 163.87 1.98
16 108.16 372.22 3.44
32 134.83 835.04 6.19
64 164.08 1864.08 11.36

Table 1. Simulation results for industrial test
cases, where m is the number of sinks, n is
the number of buffer positions, and b is the li-
brary size.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

