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Abstract
Development of energy and performance-efficient embed-

ded software is increasingly relying on application of com-
plex transformations on the critical parts of the source code.
Designers applying such nontrivial source code transforma-
tions are often faced with the problem of ensuring functional
equivalence of the original and transformed programs. Cur-
rently they have to rely on incomplete and time-consuming
simulation. Formal automatic verification of the transformed
program against the original is instead desirable. This calls
for equivalence checking tools similar to the ones available
for comparing digital circuits. We present such a tool to com-
pare array-intensive programs related through a combination
of important global transformations like expression propaga-
tions, loop and algebraic transformations. When the trans-
formed program fails to pass the equivalence check, the tool
provides specific feedback on the possible locations of errors.

1 Introduction
Source code transformations come into play in situations

where a designer wants much better optimizations than those
a compiler can provide. Such a situation is common for de-
signers of mobile computing and communicating systems.
They are required to program complex signal processing al-
gorithms for complex platform architectures and yet meet
stringent constraints on the energy consumption and perfor-
mance of the final implementation. Research has shown that
application of source-to-source code transformations on an
original implementation of the algorithm can greatly help in
meeting such constraints (cf. [3, 4, 5, 13]).

Every stage in an implementation activity brings forth an
associated verification problem. Source code transforma-
tions are no exception. The problem here is to ensure that
the transformed program preserves the functionality of the
original program. Designers are at present using simulation
of the transformed program to gain confidence in the cor-
rectness of the transformed program before forwarding it to
the synthesis stage. But simulation is both incomplete and
time-consuming. Also, when the transformed program is in
error, it is hard to detect the exact cause with simulation.
Clearly, formal automatic verification of the transformed pro-
gram against the original, with support for error diagnostics,
is desirable here. A pragmatic approach to this problem is
to separate the two concerns, viz., applying transformations

and verifying that they preserve the functional equivalence.
This implies anex post factosolution that requires a program
equivalence checking tool. Our work addresses this require-
ment. Since, in general, the program equivalence problem
is undecidable, we target the most important transformations
applied on a decidable, and yet relevant, class of programs.

Code transformations considered.We are interested in
verification of source code transformations that reduce the
accesses to the data memory hierarchy. Broadly, there are
two kinds of such transformations viz.,global loop transfor-
mationsandglobal data-flow transformations. Global loop
transformations are applied to reorder and restructure the
for-loops in the complete program in order to minimize the
data transfers between different layers of the hierarchy byim-
proving the temporal and spatial locality of the accessed data.
On the other hand, global data-flow transformations are ap-
plied either to remove repeated computation or to break bot-
tlenecks caused by data-flow dependencies in the program.
They comprise ofexpression propagationsthat introduce or
eliminate temporary variables that hold intermediate values
andglobal algebraic transformationsthat take advantage of
algebraic properties of the operators in transforming the data-
flow. The need for verification support for these transfor-
mations is rather high because they invariably involve error
prone manipulation of the index expressions of the array vari-
ables, especially when applied manually.

We do not distinguish between the transformations as long
as they are only from the above categories. The transformed
program can be under a combination of the transformations.
The equivalence checking is doneobliviousof any informa-
tion about the particular instances of the above transforma-
tions that were applied and the order of their application.

An example problem. Suppose that we are given pro-
gram functions, as in Fig. 1. Expression propagations and
loop transformations have been applied on the original func-
tion (a) to obtain (b), and additionally, algebraic transforma-
tions to obtain (c) and (d). The functions, when executed,
take inputsA[] andB[], and assign the computed values to
the elements of the output array variableC[] and terminate.
If we ignore the possibility of overflow in the evaluation of
fixed-point integer expressions, the integer addition is both
associative and commutative. Therefore, it is expected that,
if the same values are input to the functions, the same val-
ues are assigned to the elements of the output variableC[].
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/* Original function */

#define N 1024

foo(int A[], int B[], int C[])
{
    int k, tmp[N], buf[2*N];

    for(k=0; k<N; k++)
s1:  tmp[k] = B[2*k] + B[k];
 
    for(k=N; k>=1; k--)
s2:  buf[2*k-2] = A[2*k-2] 
                       + A[k-1];
    for(k=0; k<N; k++)
s3:  C[k] = tmp[k] + buf[2*k];
}

/* Transformed function ver 2 */

#define N 1024

foo(int A[], int B[], int C[])
{
    int k, buf[2*N];

    for(k=0; k<N; k++)
u1:  buf[k] = A[k] + B[k];

    for(k=N; k<=2*N-2; k+=2)
u2:  buf[k] = A[k] + B[k];

    for(k=0; k<N; k++)
u3:  C[k] = buf[k] + buf[2*k];

}

/* Transformed function ver 1 */

#define N 1024

foo(int A[], int B[], int C[])
{
    int k, tmp[N], buf[N];

    for(k=0; k<512; k++)
t1:  tmp[k] = B[2*k] + B[k];
 
    for(k=0; k<N; k++){
t2:  buf[k] = A[2*k] + A[k];
     if (k < 512)
t3:    C[k] = tmp[k] + buf[k];
     else
t4:    C[k] = (B[2*k] + B[k]) 
                      + buf[k];
    }

}

/* Transformed function ver 3 */

#define N 1024

foo(int A[], int B[], int C[])
{
    int k, tmp[N], buf[2*N];

    for(k=0; k<=2*N-2; k+=2)
v1:  buf[k] = A[k] + B[k];

    for(k=1; k<N; k+=2)
v2:  tmp[k] = A[k] + B[k];

    for(k=0; k<N-1; k+=2){
v3:  C[k] = buf[k] + buf[k];
v4:  C[k+1] = tmp[k+1] 
                 + buf[2*k+2];  
    }

}

a

db

c

Fig. 1: Program functions (a), (b) and (c), equivalent under
the considered transformations, compute ∀k ∈ [0. . .N− 1] :
C[k] = B[2*k] + B[k] + A[2*k] + A[k]. Program (d) is
erroneously obtained. It is inequivalent to them ∀even k ∈
[0. . .N−1], where C[k] = A[k] + B[k] + A[k] + B[k], but
equivalent ∀odd k ∈ [0. . .N−1].

That is, the functions areinput-output equivalentunder the
applied transformations. We have developed a tool to check
such equivalences fully automatically. Because of an erro-
neous transformation, (d) is not equivalent to (a), (b) and (c).
It is helpful if the reason for nonequivalence of the function
can be ascertained and debugged. To this end, our tool pro-
vides diagnostics when it fails to show an equivalence.

2 Related Work
Motivated by pragmatics, we are interested in a fully auto-

matic, push-button style, a posteriori solution. This precludes
discussion of the vast research on formal verification of the
transformation tool or the library of transformations.

Undecidability of the program equivalence problem en-
forces that any effort start by defining a decidable class of
programs that is of interest. Hence, the problem has been ad-
dressed by various researchers for different program classes
with different applications in mind. Without enumerating the
methods, to the best of our knowledge, none of the meth-
ods is able to show equivalence of program functions as in
our example, in a scalable way. The problem we address is
distinct by its central requirement to represent and maintain
the relationships among elements of the array variables in the
programs in closed form. Unrolling deeply nested loops with
large bounds is clearly infeasible for real-life signal process-
ing programs. To add to this, algebraic transformations will
require a prohibitive search for normalization on the unrolled
statements. Hence, we restrict our discussion of related work
to methods that do not propose unrolling of loops.

Translation validation [7, 10] and fractal symbolic anal-
ysis (FSA) [9], both present methods which show semantic
equivalence of two versions of programs. In the case of the
former, the comparison is between the source and the target
code. These methods are distinct from ours in that they es-
sentially try to heuristicallyinfer a sequence of legal trans-
formations that can relate the two programs. Instead, we are
able to directly check for equivalence of programs that are in
a suitable language class. Also, their methods do not han-
dle algebraic transformations. The work most related to ours,
because we address the same class of programs, is the algo-
rithm recognition method presented in [2]. Again, algebraic
data-flow transformations are not handled by them. Another
distinction is that, all these methods do not stress on debug-
ging support which is very important in the context of source
code transformations.

With respect to the equivalence problem of algebraic ex-
pressions, we would like to point out that methods from sym-
bolic algebra do not suffice due to the presence of loop trans-
formations on array variables. The quest here is for an anal-
ysis that deals with algebraic transformations involving array
variables in the expressions.

We have presented a preliminary method that checks
equivalence under only expression propagations and loop
transformations in [11]. In this paper, based on an improved
program representation, we present an extended method that
is able to handle algebraic data-flow transformations, in com-
bination with the other two transformations, in a single pass.

3 Program Representation
In this section we present a representation that captures the

computation and the relationships between elements of array
variables in the program. The representation is possible only
when the programs belong to a class that we describe first.

3.1 Class of allowed programs
The class of programs that we consider is based on the re-

curring features in signal processing programs, and the avail-
ability of some tools (mentioned below) to convert programs
that are not in the class. We assume that a program is first
subject to a source-to-source code preprocessing phase in or-
der to ensure that the original program has the properties of
this classbeforebeginning to apply the code transformations.
Restriction of programs to this class is primarily to ease the
analyses required to identify optimization opportunitiesand
apply transformations. Apparently, what eases transforma-
tions also eases their verification.

The following properties distinguish the class:① Single-
assignment form: Programs have been converted to a form
(called thedynamic-single assignment form) where every
memory location is written only once (methods exist to au-
tomate this, for example, [6]);② Static control-flow: Data-
dependentwhile-loops have been converted tofor-loops
with worst-case bounds by moving the conditions inside
the loops, and the data dependentif-conditions are simple
enough to be handled by if-conversions;③ Affine indices:
All expressions in the index and the loop bounds are either
affine or piece-wise affine, and④ No pointer references: Pro-



grams have been converted to a form where all references to
the memory are with explicit indexing (for example, using a
method as in [12]).

3.2 Array data dependence graphs
Given that a program has the above mentioned properties,

we can extract the complete data-flow in the program. This
extracted data-flow can be represented in the form of anar-
ray data dependence graph(ADDG). It is a directed graph,
where, nodes represent the variables andoccurrencesof oper-
ators/functions in the program functions, and edges represent
thedata dependence(in the direction opposite to theflow of
data). For example, Fig. 2 gives theADDGs of the program
functions in Fig. 1. The edges outgoing from operator nodes
are labeled by thepositionof the operand for the computation
and the thick edges outgoing from the variables are labeled by
the labels of assignment statements where they are defined.
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Fig. 2: The ADDGs of the program functions in Fig. 1.

The distinction when compared to a standard data depen-
dence graph is that, in anADDG, the data dependence, denoted
by a reverse directed edge, refers not just to a single value,
but to aset of values. Since the program is required to be in
single-assignment form, the values are guaranteed to be as-
signed to different elements of the array variable defined in
the statement. The dependence relation between the sets of
values of defined variables and the operand variables is given
by the so-calleddependency mappings, one for each operand
variable of the statement. For example, for the statements2 in
the original function (a), the two dependency mappings viz.,
frombuf[] to the firstA[] and frombuf[] to the secondA[]
are as defined below, whereD := {[k] |1≤ k≤ 1024∧ k∈ Z}.

Mbuf,A1 := {[x] → [y] |x = 2k−2 ∧ y = 2k−2 ∧ k∈ D}

Mbuf,A2 := {[x] → [y] |x = 2k−2 ∧ y = k−1 ∧ k∈ D}.

When there are multiple occurrences of a variable in the same
statement we distinguish them with subscripts denoting their
position as operands. In anADDG, the root nodes and the leaf

nodes correspond to the output and the input variables, re-
spectively, of the program function. The rest of the variable
nodes in theADDG are intermediate variables.
Intermediate variable reduction. For a given path, reduc-
tion of an intermediate variable is an operation that we use as
a primitive in our method. This involves updating the depen-
dency mapping from the predecessor variable node to the in-
termediate variable node being reduced. The new dependency
mapping will then be from the predecessor variable node to
the successor variable node on the path in question. This is
obtained by the composition of the two mappings.

For example, let us consider reduction of the intermediate
variable nodetmp on the leftmost path (path 1) in theADDG of
the original function (a) from the output variableC to the input
variableB, that is,[ C

s3
−→ +

1
−→ tmp

s1
−→ +

1
−→ B ]. The

predecessor variable node totmp is C and the successor vari-
able node isB. Reducingtmp on the path involves updating
the dependency mapping fromC to tmp (MC,tmp) into depen-
dency mapping fromC to B (M

C
1
 B

). It is computed as below,
whereon is the natural join operation on two relations [8] and
D := {[k] |0≤ k < 1024∧ k∈ Z}.

M
C

1
 B

:= MC,tmp on Mtmp,B1

:= {[k] → [k] |k∈ D} on {[k] → [2k] |k∈ D}

:= {[k] → [2k] |k∈ D}.

On a given path, if all the intermediate variables between the
current variable and the output variable are reduced, we ob-
tain theoutput-current mapping. When the current variable
is an input variable, this mapping gives the relation between
the elements of the output variable to the elements of the in-
put variable for that path. Then it is called theoutput-input
mappingfor that path of computation.

In the example path we mentioned above,tmp is the only
intermediate variable, hence the output-input mapping fromC

to B for that path is just the M
C

1
 B

that was computed above.

4 Algebraic Transformations
Algebraic data-flow transformations take advantage of the

properties of the operators or user-defined functions and mod-
ify the data-flow such that the semantics of the original func-
tion are preserved (modulo overflow). The algebraic transfor-
mations are not restricted to the expression in a statement,but
can have a global scope. This can be seen in our simple ex-
ample in Fig. 1, where the algebraic transformations applied
on (a) to obtain (c) and (d) are across expressions of multiple
assignment statements at an algorithmic level. TheADDGs of
the functions, as shown in Fig. 2, also reflect this.

Typically, most of such global transformations just rely on
the associativity and/or commutativity properties of the op-
erators like addition and multiplication on a fixed-point data-
type like integer. Hence in what follows, we restrict our dis-
cussion to only these transformations. Other algebraic prop-
erties related to identity, inverse, distributivity and evaluation
of constants are less common in practice and can be handled
in a way similar to what we present.

The effect of such algebraic transformations on anADDG

is shown in Fig. 3, where, operators,⊕ is associative,⊗ is
commutative and~ is both commutative and associative.
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Fig. 3: Effect of algebraic transformations on an ADDG.

Associativity. As shown in Fig. 3(a), the end-nodes are re-
grouped with respect to the chain of⊕-nodes (theassociative
chain) by the associative transformation, while maintaining
their order.
Commutativity.As shown in Fig. 3(b), the effect of a commu-
tative transformation is to permute the positions of the outgo-
ing edges of the⊗-node.
Combination of associativity and commutativity.As shown
in Fig. 3(c), the effect of the transformation is to maintainthe
same end-nodes with any possible tree of~-nodes between
them and the root~-node.

The designers, based on the knowledge of the overall com-
putation, are often able to apply algorithmic or big-step trans-
formations. For example, as can be seen from theADDGs in
Fig. 2, the transformed functions (c) and (d) are the result
of several applications of the basic algebraic transformations
above. Here, the transformation is motivated by the observa-
tion that they performN/2 integer additions less when com-
pared to functions (a) and (b) (i.e., 3N−5N/2).

5 Equivalence Checking Method
The method shows equivalence of the original and the

transformed program functions by checking a sufficient con-
dition. The condition is that, in theADDGs extracted from the
two program functions, every corresponding data dependence
paths have identical① computationand② output-input map-
pings. The method checks these two parts of the sufficient
condition based on a traversal of the twoADDGs.

We first briefly explain the basic method that is able to han-
dle only expression propagations and loop transformationsin
Section 5.1. In Section 5.2, we extend it to handle algebraic
transformations along with the other two transformations.

5.1 Basic method
Central to our equivalence checking is asynchronized

depth-first traversalof the two ADDGs. The traversal be-
gins from each of the corresponding root nodes (output vari-
ables with same names) and proceeds in lock-step on the two
ADDGs. Initially the output-current mapping is set to identity
mapping from an output variable to itself, for all its elements.

When an intermediate variable is encountered on the path
in either of the twoADDGs, it is reduced and the output-current
mappings are updated for each of the outgoing paths in the
sub-ADDG rooted at the node being reduced. When an oper-
ator node is reached on one of theADDGs, the same operator

node must be reached next on the otherADDG, possibly af-
ter a sequence of intermediate variable reductions. Whenever
multiple outgoing branches are present, the paths on the two
ADDGs are paired for further traversal. If the branching is at
an operator node, the paths with the same labels on the out-
going edges on either side are paired. If the branching is at
an intermediate variable, the pairing is based on the output-
current mapping. At any given point during the traversal, the
paths already traversed on the twoADDGs are both guaranteed
to have the same operator nodes appearing in the same se-
quence on them. This implies that, when a path ends at a leaf
node, the same computation is guaranteed on the correspond-
ing paths traversed in the twoADDGs. This satisfies the first
part of the sufficient condition.

When the output-current mappings are updated at the leaf
nodes on the two corresponding paths we have their output-
input mappings. The second part of the condition is satisfied
when they are checked to be identical. This implies that cor-
responding paths supply the same operators with the same
values in any execution of the function. When the traversal
has exhausted all the paths, satisfying the sufficient condition
for each path, the twoADDGs, hence the two programs, are
both guaranteed to apply the same computation on the same
input values and hence assign the same output values.

For example, consider theADDGs of functions (a) and (b)
in Fig. 2, where (b) has been obtained by applying only ex-
pression propagations and loop transformations. There are4
paths in total from the output variableC to the input variables
in (a). But in (b), assignment toC is distributed among state-
mentst3 andt4, as a result, it has 8 paths. For both (a) and
(b), if we number the paths from left to right, the traversal
corresponds, path 1 in (a) to paths 1 and 5 in (b), path 2 in (a)
to paths 2 and 6 in (b) and so on. This satisfies first part of
the sufficient condition since corresponding paths are found
without any mismatch. It can also be checked that the updated
output-input mappings on all pairs of corresponding paths are
identical. For instance, for path 1 in (a) and (b), we have the
following identical mappings.

aM
C

1
 B

⇔ bM
C

1
 B

⇔{[k] → [2k] |0≤ k < 512∧ k∈ Z}

Note that since the branching atC in (b) divides the ele-
ments ofC into two groups of assignments, output-input map-
ping is split for all paths of both (a) and (b). The remaining
pairs of output-input mappings on the corresponding paths
are similarly identical. This satisfies the second part of the
sufficient condition.

5.2 Extended method
Let us now consider the situation when algebraic transfor-

mations are allowed. As discussed in Section 4, they may
shuffle the paths and/or redistribute some operator nodes.
Clearly, the traversal as described above will not suffice any-
more. For example, consider theADDGs (a) and (c) in Fig. 2,
where (c) has been obtained by additionally applying alge-
braic transformations. In path 1 of the twoADDGs, a mismatch
occurs upon reaching the input variable (leaf node) which is
B in the originalADDG (a), whereas it isA in the transformed
ADDG (c). The mismatch prevents the equivalence proof of
program pairs under algebraic transformations.



In order to handle algebraic transformations, the traver-
sal has to do additional work to know which paths to pair
up. This requires that upon reaching an operator which per-
mits algebraic transformations, a specific normal form be es-
tablished before continuing the traversal. Such a normaliza-
tion relies on two operations viz.,flatteningand matching,
invoked depending on the properties that hold for the oper-
ator. When the operator is associative, flattening is invoked
and when the operator is commutative, matching is invoked.
When the operator is both associative and commutative, a flat-
tening operation is followed by a matching operation.

Flattening for an associative operator.Suppose that an
associative operator (⊕) is reached on anADDG. The flattening
operation involves a lookahead traversal of the sub-ADDG of
the associative chain rooted at the⊕-node. It constructs an
ordered list of nodes such that each node in the list is either
a leaf node or the first node for an outgoing path which is an
operator node different from⊕. Any intermediate variables
that exist on the path between the nodes in the list and the root
⊕-node are reduced. The effect of flattening is that it brings
all operands of the chain to the same level as successor nodes
of the root⊕-node. Fig. 4 illustrates this. The order in which
the operands are reached during the traversal is maintainedby
labeling the edges accordingly.

only
-nodes or

intermediate
variables

  

�

� �

leaf nodes or operator-nodes
different from  

�

Fig. 4: Illustration of the flattening operation.

Matching for a commutative operator. Suppose that
a commutative operator (⊗) is reached on both theADDGs.
Since any permutation of the outgoing edges of⊗-nodes on
the twoADDGs is a valid transformation, the labels on them
are of no consequence in pairing the corresponding paths.
The correct pairing is then provided by the matching oper-
ation. Separately on both theADDGs, the sub-ADDG rooted at
the⊗-node is traversed and any intermediate variables that
are present are recursively reduced until all the successor
nodes of the⊗-node are either leaf nodes or operator nodes.
This yields two lists of successor nodes, one for eachADDG.
If the lists have unique nodes, then the pairing of the paths
is one-to-one. Otherwise, if the non-unique nodes are input
variables, output-input mappings are checked to pair them.If
the non-unique nodes are operators, a lookahead traversal is
recursively employed to reveal more successor nodes until a
unique pairing is obtained.

Going back to our example function pair (a) and (c), we
see that the first operator starting from the output variable
is an addition operator. Therefore the flattening operation
is applied at the node. This results in theADDGs shown in
Fig. 5. A subsequent matching operation here has to deal
with the non-unique input variables as the successor nodes.
NodesB andA each appear twice as successor nodes on each
of the ADDGs. This requires that the matching be estab-
lished by checking the output-input mappings to the nodes.

+

C

B

+

A

p q r s w x y z

BA

Ca c

Fig. 5: The ADDGs of functions (a) and (c) after flattening.

The check reveals that the following equalities hold, where
D := {[k] |0≤ k < 1024∧ k∈ Z}.

aM
C

p
 B

⇔ cM
C

z
 B

⇔ {[k] → [2k] |k∈ D}
aM

C
q
 B

⇔ cM
C

x
 B

⇔ {[k] → [k] |k∈ D}
aM

C
r
 A

⇔ cM
C

y
 A

⇔ {[k] → [2k] |k∈ D}
aM

C
s
 A

⇔ cM
C

w
 A

⇔ {[k] → [k] |k∈ D}

This results in the matching:{(p,z),(q,x),(r,y),(s,w)}.
Here, a leaf node has been reached now on each of the paths
and there exists an identical output-input mapping on the cor-
responding paths of the twoADDGs. Our sufficient condition
therefore implies that they are equivalent.

To summarize, with the help of the flattening and matching
operations, the synchronized traversal can be continued with
a correct pairing of the branching paths at the operators which
permit algebraic transformations. On each path, the traversal
culminates at the matching leaf nodes, at which point, the
second part of the sufficient condition is checked. That is, the
output-input mapping computed on the path to that input vari-
able during the traversal must be identical to the one on the
corresponding path on the otherADDG. If this check fails, the
traversal stops, reporting a failure and generating diagnostics.
If it succeeds, the traversal continues until all the paths of the
ADDGs are exhausted.

Before concluding, a brief remark is in order related to
presence of any cycles in anADDG. A cycle implies that the
data-flow hasrecurrences, that is, a set of statements that
read values (possibly computed from values –) written by
themselves in earlier iterations. The method efficiently deals
with cycles by employing the computation oftransitive clo-
sureof the total dependence mapping of the cycle. This is
computable only under certain conditions that usually holdin
most real-life programs that we have checked on.

6 Verification and Debugging
Our prototype transformation verification tool implements

the scheme shown in Fig. 6. The tool accepts original and
transformed functions in the C language. Our sufficient con-
dition assumes that the code is correctly scheduled. There-
fore, it is required to check separately that all the reads for
values follow their writes, that is, the def-use order is correct
in the two programs. This can be checked by standard array
data-flow analysis (cf. [1]). If the order is correct, the tool
extractsADDGs based on a source code analysis. The equiv-
alence checker takes theseADDGs and applies the method we
have presented. It relies on the OMEGA calculator [8] for
an efficient implementation of all the required operations on
integer sets and tuple relations. If the checking succeeds,
the two program functions are guaranteed to be functionally
equivalent. If it fails, it generates error diagnostics.
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6.1 Error diagnostics
The simplest case of an error is when there is a mismatch

in the expected operator node or the leaf node. The informa-
tion about the mismatch and the statement number is output,
which suffices to correct the error. The more complicated
errors involve the index expression. For example, we earlier
mentioned that function (d) is in error. Let us see the diagnos-
tics generated for it. It is similar to (c), but has the assignment
to C interleaved among statementsv3 andv4. Therefore flat-
teningADDG of function (d) results in the sameADDG as shown
in Fig. 5(c), for each of the two branches atC. As explained
earlier, the presence of non-unique leaf nodes requires that
the matching, between the flattenedADDGs (a) and (d), be
based on the dependency mappings. The matching succeeds
for two paths, viz.,{(q,x),(s,w)}, but fails for the other two
paths, viz.,{(p,z),(r,y)}. This is shown below.

(aM
C

p
 B

⇔{[x] → [2x]}) < (dM
C

z
 B

⇔{[x] → [x]})

(aM
C

r
 A

⇔{[x] → [2x]}) < (dM
C

y
 A

⇔{[x] → [x]})

where,x∈ {[k] |(∃ j |2 j = k∧ 0≤ k< 1023∧ k∈Z)}. The above
mismatch in dependency mappings implies that pathszandy
are in error, which correspond to statementsv3 and v1 in
the program text. The diagnostic points the user to these
two statements, displays the index expressions of variables
C, buf2, A andB in the statements as possible places of er-
ror and the difference in the output-input mappings. A fur-
ther heuristic on this information deduces that variablebuf2

is common to the two paths and hence its index expression is
most likely to be in error. This is indeed the case in statement
v3 of function (d), where, it should have beenbuf[2*k].

When desired, the designer can also limit the checker to
focus on only certain parts of the input programs. This can be
done by specifying the subsets of output and input variables,
or by declaring a correspondence of intermediate variablesin
the two programs. This helps not only in reducing the check-
ing time but also in generating better error diagnostics.

6.2 Experience
The method is based on the depth-first traversal of the

ADDGs and it uses tabling of established equivalences to avoid
reworking on any overlapping sub-ADDGs. Therefore the
complexity of traversal is linear in the size of the larger of
the twoADDGs. Also, the supposedly expensive operations on
the integer sets and tuples can be safely assumed to be bound
by a small constant as the lengths of the formulae describing
them are usually small enough in practice.

We have earlier reported verification times taken by our
tool that implemented the basic method to be in the order of
only few seconds [11]. In experiments with the new tool im-
plementing the extended method, on realistic examples in-
volving algebraic transformations, we have observed no sig-
nificant degradation in performance. On problem instances
that we experimented on, where we used source codes whose
control complexity andADDG sizes were comparable to real-
life application kernels, verification consistently took less
than 100 seconds on a desktop. This shows that our veri-
fication tool can be conveniently used to increase designer
productivity while applying source code transformations.

7 Conclusions
We have presented a verification tool as required by de-

signers applying source code transformations on signal pro-
cessing programs. The tool is fully automatic, fast and able
to provide useful error diagnostics. It is based on equivalence
checking of the original and the transformed programs and
is able to handle important transformations like expression
propagations, loop and algebraic transformations that have
been widely reported in the literature. Allowing algebraic
transformations has significantly increased the class of pro-
grams that can be shown equivalent by the tool and hence its
applicability in practice.
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