Functional Equivalence Checking for Verification of
Algebraic Transformations on Array-Intensive Source Code

K.C. Shashidhdr?2, Maurice Bruynoogh& Francky Catthods2 and Gerda Jansséns
linteruniversitair Micro-Elektronica Centrum (IMEC) vzw, geldreef 75, B-3001 Heverlee, Belgium
2Faculteit Toegepaste Wetenschappen, Katholieke Unieérseuven, Belgium
{kodambal, catthoor}@imec.be, {maurice,gerda}@cs.kuleuven.ac.be

Abstract and verifying that they preserve the functional equivadenc

Development of energy and performance-efficient embedthis implies arex post factsolution that requires a program
ded software is increasingly relying on application of com-eduivalence checking tool. Our work addresses this require
plex transformations on the critical parts of the sourceeod Ment. Since, in general, the program equivalence problem
Designers applying such nontrivial source code transforma is undecidable, we target the most important transformatio
tions are often faced with the problem of ensuring functiona@pplied on a decidable, and yet relevant, class of programs.
equivalence of the original and transformed programs. Cur- Code transformations considered.We are interested in
rently they have to rely on incomplete and time-consumingerification of source code transformations that reduce the
simulation. Formal automatic verification of the transf@dh accesses to the data memory hierarchy. Broadly, there are
program against the original is instead desirable. Thisigal two kinds of such transformations viglobal loop transfor-
for equivalence checking tools similar to the ones avagabl mationsand global data-flow transformationsGlobal loop
for comparing digital circuits. We present such a tool to eom transformations are applied to reorder and restructure the
pare array-intensive programs related through a combimati for-loops in the complete program in order to minimize the
of important global transformations like expression prgpa data transfers between different layers of the hierarchiynby
tions, loop and algebraic transformations. When the transJroving the temporal and spatial locality of the accesseal da
formed program fails to pass the equivalence check, the todPn the other hand, global data-flow transformations are ap-
provides specific feedback on the possible locations ofsrro plied either to remove repeated computation or to break bot-

tlenecks caused by data-flow dependencies in the program.
1 Introduction They comprise oexpression propagationthat introduce or

Source code transformations come into play in situationgliminate temporary variables that hold intermediate eslu
where a designer wants much better optimizations than thosgdglobal algebraic transformationthat take advantage of
a compiler can provide. Such a situation is common for de@lgebraic properties of the operators in transforming tie-d
signers of mobile computing and communicating Systemsﬂow. The need for verification support for these transfor-
They are required to program complex signal processing aimations is rather high because they invariably involvererro
gorithms for complex platform architectures and yet meefrone manipulation of the index expressions of the arraly var
stringent constraints on the energy consumption and perfobles, especially when applied manually.
mance of the final implementation. Research has shown that We do not distinguish between the transformations as long
application of source-to-source code transformationsron aas they are only from the above categories. The transformed
original implementation of the algorithm can greatly help i program can be under a combination of the transformations.
meeting such constraints (cf. [3, 4, 5, 13]). The equivalence checking is donbliviousof any informa-

Every stage in an implementation activity brings forth antion about the particular instances of the above transforma
associated verification problem. Source code transformaions that were applied and the order of their application.
tions are no exception. The problem here is to ensure that An example problem. Suppose that we are given pro-
the transformed program preserves the functionality of thgram functions, as in Fig. 1. Expression propagations and
original program. Designers are at present using simulatioloop transformations have been applied on the original-func
of the transformed program to gain confidence in the cortion (a) to obtain (b), and additionally, algebraic tramsefa-
rectness of the transformed program before forwarding it tdions to obtain (c) and (d). The functions, when executed,
the synthesis stage. But simulation is both incomplete anthke inputsA[] andB[], and assign the computed values to
time-consuming. Also, when the transformed program is irnthe elements of the output array variablgl and terminate.
error, it is hard to detect the exact cause with simulationlf we ignore the possibility of overflow in the evaluation of
Clearly, formal automatic verification of the transformedp fixed-point integer expressions, the integer addition ithbo
gram against the original, with support for error diagnessti associative and commutative. Therefore, it is expected tha
is desirable here. A pragmatic approach to this problem i#f the same values are input to the functions, the same val-

to separate the two concerns, viz., applying transformatio ues are assigned to the elements of the output var@iile
1530-1591/05 $20.00 © 2005 IEEE

/* original function */ /* Transformed function ver 2 */ Translation validation [7, 10] and fractal symbolic anal-
#define N 1024 sdefine N 1024 ysis (FSA) [9], both present methods which show semantic
equivalence of two versions of programs. In the case of the

foo(int Al], int B[], int C]) foo(int Al], int B[], int) .)
e C tmIN . buf (2N - . buf[2°N - former, the comparison is be_tV\{een the source and the target
code. These methods are distinct from ours in that they es-
for(k=0; k<N, k++) for(k=0; k<N, k++) . . .
sl: tnplk] = B[2¢k] + B[K]; ul: buf[Kk] = A[k] + B[K]: sentially try to heuristicallyinfer a sequence of legal trans-
for (k=N k>=1: Kk--) for (KeN. ke<=2*N-2: k+=2) formations that can relate the two programs. Instead, we are
sz bulztkez) = Az g, | UE P S A B able to directly check for equivalence of programs thatare i
for(k=0; k<N, k++) for(k=0; k<N, k++) I 1 -
A T w2 a suitable language class. Also, their methods do not han
} al s c dle algebraic transformations. The work most related ts,our
because we address the same class of programs, is the algo-
/* Transformed function ver 1 */ /* Transformed function ver 3 */
rithm recognition method presented in [2]. Again, algebrai
#aefine N 1024 #aefine N 1024 data-flow transformations are not handled by them. Another
100(‘”‘ AT, int BT, int d1) 100('“‘ ALl int Bl], int d1) distinction is that, all these methods do not stress on debug
int k, tnp[Nl, buf[N; int k, tnp[Nl, buf[2*N]; ging support which is very important in the context of source
for(k=0; k<512; k++) for(k=0; k<=2*N-2; k+=2) code transformations.
tl: ot k] = B[2*k] + B[K]; 1: buf[k] = k] + B[K]; . . .
LK = B2 Bt vis burtid = ALl Bk With respect to the equivalence problem of algebraic ex-
2 et e M ve ot TR pressions, we would like to point out that methods from sym-
if (k <512) i 1 _
TR for (K=0; keN-1: kse2)({ bolic a!gebra do not sufﬁce due to the presence of loop trans
el se v3: K] = buf[K] + buf[K]; formations on array variables. The quest here is for an anal-
ta: k] = (B[2*k] + B[k]) va: Ck+1] = tnp[k+1] . X . . K .
+ buf [K]; + buf [2*k+2] ; ysis that deals with algebraic transformations involvingga
! . ’ . variables in the expressions.
} }

We have presented a preliminary method that checks
Fig. 1: Program functions (a), (b) and (c), equivalent under equivalence under only expression propagations and loop
the considered transformations, compute Vk € [0...N—1]: transformations in [11]. In this paper, based on an improved
Clk] = B[2#k] + B[k] + A[2+k] + A[k]. Program (d) is program representation, we present an extended method that
erroneously obtained. It is inequivalent to them Veven k€ g aple to handle algebraic data-flow transformations, m-co
[0...N—1], where C[k] = A[k] + B[k] + Alk] + B[k], but pipaiion with the other two transformations, in a singlespas
equivalent Yodd k€ [0...N—1].

That is, the functions armput-output equivalentnder the 3 Program Representation

applied transformations. We have developed a tool to check In this section we present a representation that captuees th
such equivalences fully automatically. Because of an errocomputation and the relationships between elements of arra
neous transformation, (d) is not equivalent to (a), (b) and (variables in the program. The representation is possildie on

It is helpful if the reason for nonequivalence of the funatio when the programs belong to a class that we describe first.
can be ascertained and debugged. To this end, our tool pr

vides diagnostics when it fails to show an equivalence. %'l Class of allowed programs

The class of programs that we consider is based on the re-

2 Related Work curring features in signal processing programs, and thié ava

Motivated by pragmatics, we are interested in a fully auto-ability of some tools (mentioned below) to convert programs
matic, push-button style, a posteriori solution. This prdes that are not in the class. We assume that a program is first
discussion of the vast research on formal verification of thesubject to a source-to-source code preprocessing phase in o
transformation tool or the library of transformations. der to ensure that the original program has the properties of

Undecidability of the program equivalence problem en-this clasdeforebeginning to apply the code transformations.
forces that any effort start by defining a decidable class oRestriction of programs to this class is primarily to ease th
programs that is of interest. Hence, the problem has been adnalyses required to identify optimization opportunitesl
dressed by various researchers for different programedassapply transformations. Apparently, what eases transforma
with different applications in mind. Without enumeratiriget tions also eases their verification.
methods, to the best of our knowledge, none of the meth- The following properties distinguish the clads: Single-
ods is able to show equivalence of program functions as imssignment formPrograms have been converted to a form
our example, in a scalable way. The problem we address ikalled thedynamiesingle assignment form) where every
distinct by its central requirement to represent and mainta memory location is written only once (methods exist to au-
the relationships among elements of the array variabldsin t tomate this, for example, [6]);] Static control-flow Data-
programs in closed form. Unrolling deeply nested loops withdependentshile-loops have been converted for-loops
large bounds is clearly infeasible for real-life signalgeses- with worst-case bounds by moving the conditions inside
ing programs. To add to this, algebraic transformation$ wil the loops, and the data dependefntconditions are simple
require a prohibitive search for normalization on the ulesbl enough to be handled by if-conversioris; Affine indices
statements. Hence, we restrict our discussion of relatell wo All expressions in the index and the loop bounds are either
to methods that do not propose unrolling of loops. affine or piece-wise affine, arid No pointer referencesro-

grams have been converted to a form where all references twdes correspond to the output and the input variables, re-
the memory are with explicit indexing (for example, using aspectively, of the program function. The rest of the vaegabl
method as in [12]). nodes in the\DDG are intermediate variables.
3.2 Array data dependence graphs I_ntermedigte varialple redgction_. For a give_n path, reduc-
. . . tion of an intermediate variable is an operation that we gse a
Given that a program has the above mentioned properties, yimitive in our method. This involves updating the depen-
we can extract the complete data-flow in the program. Th'%ency mapping from the predecessor variable node to the in-

extracted data-flow can be represented in the form d@ran o magiate variable node being reduced. The new dependency
ray data dependence grapfabe). It is a directed graph, ah5ing will then be from the predecessor variable node to

where, nodgs rgpresent the varlable.smrdjrrencesofoper- the successor variable node on the path in question. This is
ators/functions in the program functions, and edges reptes p.i0q by the composition of the two mappings.

the data dependencgn the direction opposite to thigow of For example, let us consider reduction of the intermediate
data). For example, Fig. 2 gives t®DGs of the program variable nodemp on the leftmost path (path 1) in th®DG of
functions in Fig. 1. The edges outgoing from operator nodeshe original function (a) from the output varialtiéo the input

are labeled by thpositionof the operand for the computation \ariaples, thatis,[¢ =% + % tmp °% + 1. B 1. The

and the thick edges outgoing from the variables are labgled bpredecessor variable nodetap is ¢ and the successor vari-
the labels of assignment statements where they are definedable node i8. Reducingtmp on the path involves updating
the dependency mapping froomo tmp (Mc tnp) iNto depen-
dency mapping front to B (MC~1->B)' It is computed as below,
wherex is the natural join operation on two relations [8] and
D:={[k]|0< k< 1024A k € Z}.

M MC,trnp X thP,B1
= {[K— [K|keD} x {[k —[2K|keD}

= {[K— [2K|keD}.

c-5B

On a given path, if all the intermediate variables between th
current variable and the output variable are reduced, we ob-
tain theoutput-current mappingWhen the current variable
is an input variable, this mapping gives the relation betwee
the elements of the output variable to the elements of the in-
put variable for that path. Then it is called thatput-input
mappingfor that path of computation.

In the example path we mentioned abowep is the only
intermediate variable, hence the output-input mappingto
to B for that path is just the MLB that was computed above.

4 Algebraic Transformations
b d Algebraic data-flow transformations take advantage of the
Fig. 2: The ADDGs of the program functions in Fig. 1. properties of the operators or user-defined functions ardt mo

The distinction when compared to a standard data depeﬁf—y the data-flow such that the semantics of the original func
dence graph is that, in aDDG, the data dependence, denotedtion are preserved (modulo overflow). The algebraic transfo
by a reverse directed edge, refers not just to a single valughations are not restricted to the expression in a statereint,
but to aset of values Since the program is required to be in can have a global scope. This can be seen in our simple ex-
single-assignment form, the values are guaranteed to be agmple in Fig. 1, where the algebraic transformations agdplie
signed to different elements of the array variable defined iron (a) to obtain (c) and (d) are across expressions of maltipl
the statement. The dependence relation between the setsgfsignment statements at an algorithmic level. AbBgs of
values of defined variables and the operand variables is givehe functions, as shown in Fig. 2, also reflect this.
by Fhe so-callediependency mappingsne for each oper_and Typically, most of such global transformations just rely on
variable of the statement. For example, for the statert@int the associativity and/or commutativity properties of tie o

g?oemogﬂn[?ltgj?hc;'gpst(: E] t:ﬁdt}’\rlgn?fffegdt%q% rsns c%pr:gﬁ VIZ- erators like addition and multiplication on a fixed-pointata

are as defined below, whebe— {[K] |1 < k < 1024 k € Z}. type .Iike integer. Hence in what fqllows, we restrict ogr-dis
cussion to only these transformations. Other algebraip-pro
Mpusa, = {X —[x=2k—2ry=2k—2AkeD} erties related to identity, inverse, distributivity anchiation
Mouzs, = {X—[|x=2k—2Ay=k—1AkeD}. of constants are less common in practice and can be handled

in a way similar to what we present.
When there are multiple occurrences of a variable inthe same The effect of such algebraic transformations onAanG
statement we distinguish them with subscripts denoting the is shown in Fig. 3, where, operators, is associative is
position as operands. In abDG, the root nodes and the leaf commutative and is both commutative and associative.

node must be reached next on the othBbG, possibly af-

pL p2 p2 pl ter a sequence of intermediate variable reductions. Wheneve

- multiple outgoing branches are present, the paths on the two
! I ADDGs are paired for further traversal. If the branching is at

(b, Conmutati vty an operator node, the paths with the same labels on the out-

going edges on either side are paired. If the branching is at
an intermediate variable, the pairing is based on the output
current mapping. At any given point during the traversa, th

p4

/"2 P ”\2 /f’}"“ paths already traversed on the thmDGs are both guaranteed
= to have the same operator nodes appearing in the same se-
5 guence on them. This implies that, when a path ends at a leaf
(¢) Combination of associativity and commtativity node, the same computation is guaranteed on the correspond-
Fig. 3: Effect of algebraic transformations on an ADDG. ing paths traversed in the twDGs. This satisfies the first

part of the sufficient condition.

When the output-current mappings are updated at the leaf
nodes on the two corresponding paths we have their output-
input mappings. The second part of the condition is satisfied
when they are checked to be identical. This implies that cor-
responding paths supply the same operators with the same
values in any execution of the function. When the traversal
has exhausted all the paths, satisfying the sufficient ¢iondi
for each path, the twaDDGs, hence the two programs, are
both guaranteed to apply the same computation on the same

Associativity. As shown in Fig. 3(a), the end-nodes are re-
grouped with respect to the chain®fnodes (thessociative
chain) by the associative transformation, while maintaining
their order.

CommutativityAs shown in Fig. 3(b), the effect of a commu-
tative transformation is to permute the positions of thejout
ing edges of they-node.

Combination of associativity and commutativits shown

in Fig. 3(c), the effect of the transformation is to maintdia
same end-nodes with any possible treezefiodes between input values and hence assign the same output values.
them and the roa®-node.

. For example, consider thedDGs of functions (a) and (b)
The designers, based on the knowledge of the overall COM- Eio 2 where (b) has been obtained by applying only ex-
putation, are often able to apply algorithmic or big-stem- g % Y applying only

formations. For example, as can be seen fromahees in pression propagations and loop transformations. Therd are
Fig. 2 the.transformed f,unctions (¢) and (d) are the resuIPathS in total from the output variabdeto the input variables

S . . . in (a). Butin (b), assignment @is distributed among state-
of several applications of the basic algebraic transfoionat .
S ; mentst3 andt4, as a result, it has 8 paths. For both (a) and
above. Here, the transformation is motivated by the observ

.) g a(b), if we number the paths from left to right, the traversal
tion that they perfornN/2 integer additions less when com- . ! .
pared to functions (a) and (b) (i.eN3-5N/2). corresponds, path 1 in (a) to paths 1 and 5 in (b), path 2 in (a)

to paths 2 and 6 in (b) and so on. This satisfies first part of
5 Equivalence Checking Method the sufficient condition since corresponding paths aredoun

The method shows equivalence of the original and thavithout any mismatch. It can also be checked that the updated
transformed program functions by checking a sufficient conOutput-input mappings on all pairs of corresponding pates a
dition. The condition is that, in th&DDGs extracted from the ~ideéntical. For instance, for path 1 in (a) and (b), we have the
two program functions, every corresponding data deperedendollowing identical mappings.

paths have identicdl computatiorand output-input map- Moy © M1 < {K —[2]|0<k<5l2nke Z}
pings The method checks these two parts of the sufficient Note that since the branching @tin (b) divides the ele-
condition based on a traversal of the tARDGs. ments ofC into two groups of assignments, output-input map-

We first briefly explain the basic method that is able to haning is split for all paths of both (a) and (b). The remaining
dle only expression propagations and loop transformations Pairs of output-input mappings on the corresponding paths
Section 5.1. In Section 5.2, we extend it to handle algebrai@re similarly identical. This satisfies the second part ef th
transformations along with the other two transformations. ~ Sufficient condition.

5.1 Basic method 5.2 Extended method
Central to our equivalence checking issgnchronized Let us now consider the situation when algebraic transfor-
depth-first traversalof the two ADDGs. The traversal be- mations are allowed. As discussed in Section 4, they may
gins from each of the corresponding root nodes (output varishuffle the paths and/or redistribute some operator nodes.
ables with same names) and proceeds in lock-step on the twlearly, the traversal as described above will not suffige an
ADDGs. Initially the output-current mapping is set to identity more. For example, consider theDGs (a) and (c) in Fig. 2,
mapping from an output variable to itself, for all its elertsen where (c) has been obtained by additionally applying alge-
When an intermediate variable is encountered on the pathraic transformations. In path 1 of the tWbDGs, a mismatch
in either of the twa\DDGs, it is reduced and the output-current occurs upon reaching the input variable (leaf node) which is
mappings are updated for each of the outgoing paths in the in the originalADDG (a), whereas it i4\ in the transformed
sub4DDG rooted at the node being reduced. When an operADDG (c). The mismatch prevents the equivalence proof of
ator node is reached on one of thigDGs, the same operator program pairs under algebraic transformations.

In order to handle algebraic transformations, the traver-
sal has to do additional work to know which paths to pair
up. This requires that upon reaching an operator which per-
mits algebraic transformations, a specific normal form be es
tablished before continuing the traversal. Such a normaliz
tion relies on two operations vizflatteningand matching
invoked depending on the properties that hold for the oper-
ator. When the operator is associative, flattening is invokedig. 5: The ADDGs of functions (a) and (c) after flattening.
and when the operator is commutative, matching is invokedThe check reveals that the following equalities hold, where
When the operator is both associative and commutative, a flab := {[k]|0 < k < 1024A k € Z}.
tening operation is followed by a matching operation.

a

Flattening for an associative operator. Suppose that an Meop & Mozp & {[K—[2ke D}
associative operatof(is reached on afDDG. The flattening Moy & Mexg < {[—[K|keD}
operation involves a lookahead traversal of the sDb& of My, € Moy, © {[k—[2keD}
the associative chain rooted at tfsenode. It constructs an Mys, © °M.w, < {[k—[klkeD}
ordered list of nodes such that each node in the list is eitheric 1ociits in the matching(p.2), (d,%). (.y). (5. w)}.

a leaf node or the first node for an outgoing path which is ar]—|ere, a leaf node has been reached now on each of the paths

operator node different from. Any |ntermed|atg variables and there exists an identical output-input mapping on tite co
that exist on the path between the nodes in the list and the ro?esponding paths of the twadDGs. Our sufficient condition
@-node are reduced. The effect of flattening is that it brings, o efore implies that they are eduivalent

all operands of the chain to the same level as successor nodes.l.O summarize, with the help of the flattening and matching

?r]: the roote(pa—node. F'gt'] 4 dlI:just_rat?; th. The Io_rder n t‘g.h'cz operations, the synchronized traversal can be continuttd wi
€ operands are reached during the traversalis maintaned o e pairing of the branching paths at the operatorstwhi

labeling the edges accordingly. permit algebraic transformations. On each path, the tsaver

leaf nodes or operator-nodes culminates at the mat_ching Ieaf_qodgs, at which poin_t, the
second part of the sufficient condition is checked. Thahis, t
\ / output-input mapping computed on the path to that input vari
only oo o4 able during the traversal must be identical to the one on the
;8- nodes or —> corresponding path on the oth&dDG. If this check fails, the
variabl es traversal stops, reporting a failure and generating distite
If it succeeds, the traversal continues until all the paftib®
Fig. 4: lllustration of the flattening operation. ADDGs are exhausted.
Matching for a commutative operator. Suppose that Before concluding, a brief remark is in order related to

a commutative operatorz() is reached on both theppgs, ~ Presence of any cycles in apDG. A cycle implies that the
Since any permutation of the outgoing edgeszefiodes on data-flow hasrecurrences that is, a set of statements that
the two ADDGs is a valid transformation, the labels on them réad values (possibly computed from values) written by
are of no consequence in pairing the corresponding pathgh_emselves in earlier iterations. The mgthod eff|.c.|entlalsle
The correct pairing is then provided by the matching operWith cycles by employing the computation wansitive clo-
ation. Separately on both ti@DGs, the subADDG rooted at ~ Sureof the total dependence mapping of the cycle. This is
the ®-node is traversed and any intermediate variables thaf®Mputable only under certain conditions that usually fiold
are present are recursively reduced until all the success®pOSt real-life programs that we have checked on.

nodes of thex-node are either leaf nodes or operator nodesg \ferification and Debugging

This yields two lists of successor nodes, one for eG. Our prototype transformation verification tool implements
If the lists have unique nodes, then the pairing of the pathg,e scheme shown in Fig. 6. The tool accepts original and
is one-to-one. Otherwise, if the non-unique nodes are iNPUyansformed functions in the C language. Our sufficient con-
variables, output-input mappings are checked to pair them. gition assumes that the code is correctly scheduled. There-
the non-unique nodes are operators, a lookahead traversalghye, it is required to check separately that all the reads fo
recursively employed to reveal more successor nodes until ggjyes follow their writes, that is, the def-use order isreor

unique pairing is obtained. _ _ in the two programs. This can be checked by standard array
Going back to our example function pair (a) and (C), Weqata fiow analysis (cf. [1]). If the order is correct, the ltoo

see that the first operator starting from the output variablee)(,[r‘,;m,[SADDGS based on a source code analysis. The equiv-

is an addition operator. Therefore the flattening operation .
is applied at the node. This results in thedGs shown in alence checker takes the&EDGs and applies the method we

Fig. 5. A subsequent matching operation here has to ded}aveé presented. It relies on thev®cA calculator [8] for
with the non-unique input variables as the successor nodegn efficient implementation of all the required operations o
NodesB andA each appear twice as successor nodes on eadfteger sets and tuple relations. If the checking succeeds,
of the ADDGs. This requires that the matching be estab-the two program functions are guaranteed to be functionally
lished by checking the output-input mappings to the nodesequivalent. If it fails, it generates error diagnostics.

We have earlier reported verification times taken by our
tool that implemented the basic method to be in the order of
only few seconds [11]. In experiments with the new tool im-
plementing the extended method, on realistic examples in-
volving algebraic transformations, we have observed neo sig
nificant degradation in performance. On problem instances

that we experimented on, where we used source codes whose
control complexity and\DDG sizes were comparable to real-
life application kernels, verification consistently tookss
than 100 seconds on a desktop. This shows that our veri-
_ fication tool can be conveniently used to increase designer
Fent "G agnostos ———| productivity while applying source code transformations.
Fig. 6: The verification and debugging scheme. 7 Conclusions

6.1 Error diagnostics _ _ _ We have presented a verification tool as required by de-
~ The simplest case of an error is when there is a mismatchjgners applying source code transformations on signal pro
in the expected operator node or the leaf node. The informasessing programs. The tool is fully automatic, fast and able
tion about the mismatch and the statement number is OUtngO provide useful error diagnostics. It is based on equivzde

which suffices to correct the error. The more complicate . P
errors involve the index expression. For example, we erarlie.ChQ(:kmg of the original and the transformed programs and

mentioned that function (d) is in error. Let us see the diggno is able t‘? handle important tran;formations |i|_<e exprassio
tics generated for it. Itis similar to (c), but has the assignt ~ Propagations, loop and algebraic transformations thae hav
to C interleaved among statements andv4. Therefore flat- been widely reported in the literature. Allowing algebraic
teningADDG of function (d) results in the sand®DG as shown transformations has significantly increased the class @f pr
in Fig. 5(c), for each of the two branchesatAs explained grams that can be shown equivalent by the tool and hence its
earlier, the presence of non-unique leaf nodes requirds thapplicability in practice.

the matching, between the flattengdDGs (a) and (d), be

based on the dependency mappings. The matching succeegisknowledgment. The authors gratefully thank anonymous

for two paths, viz.{(q,X), (s,w)}, but fails for the other two referees for their detailed constructive comments.
paths, viz.{(p,z),(r,y)}. This is shown below.

- transfornations
original
optional inputs for

def -use focussed checking,
checker operator property

decl arations, etc

transformed
function

def -use
checker

ADDG
extractor

ADDG
extractor

| Equi val ence Checker |

References
(M, e {X—[24}) # (Myz, e {X—X}) [1] R. Allen and K. Kennedy.Optimizing Compilers for Modern
(Mo, & {X—) * (dMC v, & (X — X)) Architectures Morgan Kaufmann Publishers, 2001.
~ ~ [2] D. Barthou, P. Feautrier, and X. Redon. On the equivalence
wherexe {[K|(3j|2j =kA0<k<1023A ke Z)}. The above of two systems of affine recurrence equatioBsh Euro-Par
mismatch in dependency mappings implies that patosdy LNCS2400, pp. 309-313. Springer, 2002.

are in error, which correspond to statememgsand v1 in [3] C. Brandolese et al. The impact of source code transforma-
' tions on software power and energy consumptidournal of

the program text._ The d|agnpst|c points the user to Fhese Circuits, Systems, and Computetd (5):477—502, 2002.

two statements, displays the index expressions of vasable [4] F. catthoor et alCustom Memory Management Methodology:
C, bufz, AandBinthe statements as possible places of er- Exploration of Memory Organization for Embedded Multime-
ror and the difference in the output-input mappings. A fur- dia System DesigrKluwer, 1998.

ther heuristic on this information deduces that variahie, [5] F. Catthoor et al. Data Access and Storage Management for
is common to the two paths and hence its index expression iﬁG] Embedded Programmable Processduwer, 2002.

. - L . P. Feautrier. Array expansionlnternational Conference on
most likely to be in error. This is indeed the case in statémen Supercomputingop. 429-441. ACM, 1988,

v3 of function (d), where, it should have beeaf [2¥k]. [7] B. Goldberg et al. Into the loops: Practical issues in translation
When desired, the designer can also limit the checker to validation for optimizing compilers3rd Compiler Optimiza-

focus on only certain parts of the input programs. This canbe tion Meets Compiler VerificatiQqfENTCS. Elsevier, 2004.

done by specifying the subsets of output and input variables [8] W. Kelly et al. The Omega Calculator and Library, Version

or by declaring a correspondence of intermediate varidbles - '%l-ll\-/?a?gg\f’ v/&’zz&s é%dkec;?r/] S;ﬁj 'e:f;it/ aﬁnglgrﬁbolic analy
Fhe t_vvo programs. This helps not only in red_ucmg the check- sis. ACM TOPLAS25(6):776-813, 2003.

ing time but also in generating better error diagnostics. [10] G. C. Necula. Translation validation for an optimizing com-
6.2 Experience piler. SIGPLAN PLD) pp. 83-95. ACM, 2000.

. . 11] K. C. Shashidhar et al. Automatic functional verification of
The method is based on the depth-first traversal of thé memory oriented global source code transformati8tisHigh

ADDGs r_;md it uses tabling of e_stablished equivalences to avoid | o\ Design Validation and Tegtp 31-36. IEEE, 2003.
reworking on any overlapping sutbDGs. Therefore the [12] R. A. van Engelen and K. A. Gallivan. An efficient algorithm
complexity of traversal is linear in the size of the larger of for pointer-to-array access conversion for compiling and opti-
the twoADDGs. Also, the supposedly expensive operations on mizing DSP applicationsinnovative Archs. for Future Gen.
the integer sets and tuples can be safely assumed to be bound High-Perf. Processors and Systerpp. 80-89. IEEE, 2001.

a4 3] W, Wolf and M. Kandemir. Memory system optimization of
by a small constant as the lengths of the formulae descrlblnB' .
them are usually small enough in practice. embedded softwardlroc. of the IEEE91(1):165-182, 2003.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

