Refinement Maps for Efficient Verification of Processor Models*

Panagiotis Manolios
College of Computing
Georgia Tech, Atlanta, GA 30318

Abstract

While most of the effort in improving verification times
for pipeline machine verification has focused on faster de-
cision procedures, we show that the refinement maps used
also have a drastic impact on verification times. We intro-
duce a new class of refinement maps for pipelined machine
verification, and using the state-of-the-art verification tools
UCLID and Siege we show that one can attain several or-
ders of magnitude improvements in verification times over
the standard flushing-based refinement maps, even enabling
the verification of machines that are too complex to other-
wise automatically verify.

1. Introduction

We show that the refinement maps used for pipelined ma-
chine verification can have a drastic impact on verification
time and therefore should be studied as first-class objects.
In this paper, we describe a new class of refinement maps
that can provide several orders of magnitude improvements
in verification times over the standard flushing-based refine-
ment maps. Our refinement maps are based on flushing and
commitment, two well-known refinement maps. The idea
with flushing is that partially completed instructions are
made to complete without fetching any new instructions.
The idea with commitment is that partially completed in-
structions are invalidated and the programmer visible com-
ponents are rolled back to correspond with the last commit-
ted instruction. Our refinement maps use the commitment
approach on the latches at the front of the pipeline and the
flushing approach on the latches at the end of the pipeline.
This essentially decomposes the verification problem into
two smaller problems, each half as complex as the original
problem. However, since verification times grow exponen-
tially in the size of the problem, this leads to drastic verifi-
cation time improvements.
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We automatically and efficiently verify the pipelined ma-
chines described in this paper by showing that they have
exactly the same infinite executions as the machines de-
fined by the corresponding instruction set architectures,
up to stuttering. This is accomplished by constructing a
WEB-refinement proof, which implies that the pipelined
machine satisfies exactly the same CTL* \ X properties sat-
isfied by the instruction set architecture [10]. Thus, we ver-
ify both safety and liveness properties of the pipelined ma-
chine models we study. Automation is attained by express-
ing the WEB-refinement proof obligation in the logic of
Counter arithmetic with Lambda expressions and Uninter-
preted functions (CLU), which is a decidable logic [3]. We
use the tool UCLID [8] to transform the CLU formula into
a CNF (Conjunctive Normal Form) formula, which we then
check with the SAT solver Siege [12].

We now selectively review previous work on pipelined
machine verification that is directly related to our work.
Burch and Dill showed how to automatically compute the
abstraction function using flushing [4] and gave a deci-
sion procedure for the logic of uninterpreted functions with
equality and Boolean connectives. Another, more efficient
decision procedure was given in [2]. The work was fur-
ther extended in [3], where a decision procedure for the
CLU logic that exploits optimized encoding schemes [15]
is given. The decision procedure is implemented in UCLID,
which has been used to verify out-of-order microproces-
sors [8] and which we use to verify the models presented
in this paper. The notion of correctness for pipelined ma-
chines that we use was first proposed in [9], and is based
on WEB-refinement [10]. The first proofs of correctness for
pipelined machines based on WEB-refinement were carried
out using the ACL2 theorem proving system [6, 7]. The ad-
vantage of using a theory of refinement over using the Burch
and Dill notion of correctness, even if augmented by a “live-
ness” criterion, is that deadlock may avoid detection with
the Burch and Dill approach [9], whereas it follows directly
from the WEB-refinement approach that deadlock (or any
other liveness problem) is ruled out. In [11], it is shown
how to automatically verify safety and liveness properties of
pipelined machines using WEB-refinement. Theorem prov-
ing approaches include [13, 14, 5].



The paper is organized as follows. In Section 2, we pro-
vide an overview of refinement based on WEBS, the theory
upon which our correctness proofs depend. In Section 3, we
describe the pipelined machines we use in the paper and
how we model the novel aspects of these machines using
UCLID. In Section 4, we present experimental data mea-
suring verification time and related statistics for the stan-
dard refinement maps. In Section 5, we propose our new
refinement maps and analyze their performance experimen-
tally. Everything required to reproduce our results, e.g., ma-
chine models, correctness statements, CNF formulas, etc.,
is available upon request. Conclusions and an outline of fu-
ture work appear in Section 6.

2. Refi nement

Pipelined machine verification is an instance of the re-
finement problem: given an abstract specification, S, and a
concrete specification, I, show that | refines (implements) S.
In the context of pipelined machine verification, the idea is
to show that MA, a machine modeled at the microarchitec-
ture level, a low level description that includes the pipeline,
refines ISA, a machine modeled at the instruction set archi-
tecture level. A refinement proof is relative to a refinement
map, r, a function from MA states to ISA states. The re-
finement map shows us how to view an MA state as an ISA
state, e.g., the refinement map has to hide the MA compo-
nents (such as the pipeline) that do not appear in the ISA.

What exactly do we mean when we say MA refines ISA?
We mean that the two systems are stuttering bisimilar: for
every pair of states w, s such that w is an MA state and
s = r(w), we have that for every infinite path o starting at
s, there is a “matching” infinite path o starting at w, and
conversely. That o and & “match” implies that applying r
to the states in o results in a sequence that is equivalent
to o up to finite stuttering (repetition of states). Stuttering
is a common phenomenon when comparing systems at dif-
ferent levels of abstraction, e.g., if the pipeline is empty,
MA will require several steps to complete an instruction,
whereas ISA completes an instruction during every step. Of
course, reasoning about infinite paths is difficult to auto-
mate, and in [10], WEB-refinement, an equivalent formu-
lation is given that requires only local reasoning, involving
only MA states, the ISA states they map to under the refine-
ment map, and their successor states.

In [11], it is shown how to automate the proof of WEB-
refinement in the context of pipelined machine verification.
The idea is to strengthen, thereby simplifying, the WEB-
refinement proof obligation; the result is a CLU-expressible
formula that guarantees that the two machines satisfy the
same formulas expressible in the temporal logic CTL*\ X,
over the state components visible at the instruction set ar-
chitecture level. CTL* \ X is a very expressive temporal

logic, allowing one to express both safety and liveness prop-
erties. The CLU-expressible formula that implies WEB-
refinement follows, where rank is a function that maps
states of MA into the natural numbers.

(WweMA 1 s=r(w) A u=ISA-step(s) A
v=MA-step(w) A u#r(v
= s=r(v) A rank(v) <rank(w))

In the formula above s and u are ISA states, and w and v
are MA states; | SA- st ep is a function corresponding to
stepping the ISA machine once and MA- st ep is a func-
tion corresponding to stepping the MA machine once. The
proof obligation relating s and v is the safety component,
and the proof obligation that rank(v) < rank(w) is the live-
ness component.

3. Processor Modeling and Verifi cation

We use as benchmarks for our experiments various com-
plex pipelined machines whose modeling and verification
is described in this section. The base processor model is
a 6 stage pipelined machine with the following stages: in-
struction fetch (IF), instruction decode (ID), execute (EX),
data memory access (M1 and M2), and write back (WB).
We implement the following instruction types: ALU in-
structions with register-register and register-immediate ad-
dressing modes, loads, stores, and branches. We further
extend this base processor model with features such as a
pipelined fetch stage, an instruction queue (holding up to
3 instructions), direct mapped instruction and data caches,
and a write buffer. The model has a simple branch predic-
tion scheme that always predicts taken. A pipelined ma-
chine containing all of the above features is shown in Fig-
ure 1.

The modeling of pipelined machines using UCLID
is well documented. Here we focus on the new fea-
tures we have modeled, which include the write buffer
and the direct mapped instruction and data caches. The in-
struction cache is modeled using three memory elements
| Cache-Val i d, | Cache- Tag, and | Cache- Bl ock
that take the index as input and return a Boolean value indi-
cating if the entry in the instruction cache is valid, the tag,
and the data block, respectively. Three uninterpreted func-
tions Getlndex, GetTag, and GetBlockOffset take the pro-
gram counter as input, and return the index, tag, and block
offset, respectively. Another uninterpreted function Select-
Word is used to extract the instruction from the data block.
The instruction memory is modeled as a lambda expres-
sion that takes 2 arguments, an index and a tag, and returns
a block of data. This way of modeling the instruction mem-
ory allows us to match the contents of the instruction
memory and the instruction cache.
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Figure 1. High-level organization of pipelined machine model.

We need an invariant stating that valid instruction cache
entries should be consistent with those in the instruction
memory. We also prove that the instruction cache invari-
ant is inductive, i.e., we prove that if the invariant holds for
an arbitrary pipelined machine state, it also holds for any
successor state.

The data cache is direct mapped and is similarly mod-
eled. Writes to the data memory are write-through and up-
date the data cache. An inductive invariant similar to the in-
struction cache is required for the data cache, stating that
all the valid entries in the data cache are consistent with the
data memory.

The write buffer is implemented as a queue and has 4
entries. Each entry has a data part, an address part, and a
valid bit. Store instructions do not update the data mem-
ory directly, but write to the tail of the write buffer queue.
The head of the write buffer queue is read and used to up-
date the data memory. Reads from the data memory have
to take into account the valid entries in the write buffer, as
the write buffer has the most recent data values. Among the
write buffer entries, priority is given to the entries closer
to the tail. We require an inductive invariant for the write
buffer establishing that if we update the data memory with
all the valid entries in the write buffer, then we obtain the
memory we would have obtained if a write buffer were not
used. That is, if D is the data memory and U is the mem-
ory state obtained after updating all the valid write buffer
entries to D, then U = R, where R is a memory that is simi-
lar to D except that store instructions directly update R (in-
stead of going through the write buffer).

4. Refi nement Maps

Burch and Dill proposed the use of flushing to automat-
ically define the refinement map used to establish the cor-
rectness of pipelined machines [4]. The idea with flushing
is that partially executed instructions in the pipeline latches

are made to complete and update the programmer visible
components, without fetching any new instructions. The
programmer visible components for the pipelined machine
models we consider include the program counter, the regis-
ter file and the data memory. Once the pipeline is flushed, all
the pipeline latches are invalid and the resulting state is an
instruction set architecture (ISA) state. The Burch and Dill
approach did not consider liveness, but in our context a rank
function is needed and we define it as the number of steps
required to fetch and complete a new instruction. Note that
the presence of branch prediction makes this a non-trivial
function.

The commitment approach can be thought of as the dual
of flushing, as partially executed instructions are invalidated
instead of being flushed, and the programmer visible com-
ponents are rolled back to correspond to the last commit-
ted instruction. We use history variables [1] to simplify the
definition of this refinement map. Also, we need an induc-
tive invariant that we call the “Good MA” invariant, which
states that the contents of the latches have to be consistent
with memory. The rank function for the commitment ap-
proach is defined as the number of steps required to com-
mit an instruction. This is a trivial function, as it is essen-
tially the number of consecutive invalid latches starting at
the end of the pipeline.

We used both the flushing and the commitment approach
to verify the pipelined machines described in Section 3. For
all experimental results presented in this paper, we used the
UCLID decision procedure (version 1.0) coupled with the
siege SAT solver [12] (variant 4), using a 3.06 GHz Intel
Xeon, with an L2 cache size of 512 KB.

Table 1 shows the verification times and related statistics
for the various processor models. The names in the “Pro-
cessor” column start with a “C” or “F”, indicating whether
commitment or flushing is used. Next, a number indicating
the number of stages is given. Finally and optionally, the let-
ters “17, “D”, and “W” indicate the presence of an instruc-



Verification Times (sec)

Processor | CNF Vars UCLID | Total
Cé 12,328 2 36
cél 31,347 5 61
C6ID 52,077 9 105
CeIDW 75,494 13 164
C7 13,290 2 31
C7IDW 101,065 22 264
C8 14,094 2 32
c8Ibw 127,637 24 407
C9 15,208 3 24
CoIDW 159,441 31 582
C10 17,115 3 33
c1ol 76,418 21 1,826
C101D 128,102 26 2,038
C10IDW 195,159 45 2,388
F6 40,083 6 19
F6l 66,843 11 25
F6ID 110,181 20 72
F6IDW 120,343 23 97
F7 53,441 9 137
F71IDW 218,572 79 400
F8 95,456 15 597
F8IDW 316,217 115 1,812
F9 143,954 24 2,163
FOIDW 452,124 181 7,711
F10 198,222 34 5481
F10l 291,492 58 6,689
F101D 572,063 151 Fail
F10IDW 605,734 170 Fail

Table 1. Verification statistics for various
pipelined machine models.

tion cache, data cache, and write buffer, respectively. The
Siege running times can be obtained by subtracting the to-
tal time from the UCLID time. A “Fail” entry indicates that
Siege failed on the problem (by immediately reporting that
the problem is too complex and quiting).

Figure 2 shows how verification times vary as we first
increase the length of the pipeline and then add an instruc-
tion cache, a data cache, and a write buffer. First, note that
there are important differences between the flushing and
commitment approaches. As a function of the length of the
pipeline, verification times based on flushing grow expo-
nentially, whereas verification times based on commitment
are much more stable, e.g., for machine 10, the commitment
refinement map leads to verification times that are about 166
times faster than verification times using flushing.

A key observation from the results in Table 1 and Fig-
ure 2 is the general rule of thumb that verification times
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Figure 2. Verification times obtained by first
increasing the length of the pipeline and then
adding an instruction cache, a data cache,
and a write buffer.

grow exponentially as the number of stages in the pipeline
(its length) increases or as the number of state variables per
stage increases (the pipeline width), as happens when we
add the instruction and data caches and write buffer. These
results are not so surprising when we consider that the num-
ber of symbolic simulation steps required by the flushing
approach depends on the length of the pipeline, and the in-
variant required for the commitment approach also depends
on the complexity (width) of the pipeline. These observa-
tions give rise to the idea of an intermediate refinement map
that uses flushing to deal with the width and commitment to
deal with the depth. We explore this idea in more detail in
the next section.

5. Intermediate Refi nement Maps

In this section, we propose the idea of intermediate re-
finement maps that partially flush and partially commit.
Flushing a stage of the pipeline implies that we also flush
later stages; similarly, committing a stage of a pipeline im-
plies that we commit previous stages. Therefore, the inter-
mediate refinement maps are obtained by selecting a stage
of the pipeline and committing all stages up to and includ-
ing it and flushing all later stages. Since the intermediate
refinement maps are just based on commitment and flush-
ing, they are quite easy to define.

Based on the above considerations, we define a set of in-
termediate refinement maps for NBP, a 10-stage machine
that has an instruction queue, an instruction cache, a data
cache, a write buffer, and a branch predictor that makes arbi-
trary choices. Note that NBP is more complex than 10IDW
(see Table 1), which only has a simple branch predictor that



. Verification Times (sec)
Refinement Map | CNF Vars UCLID | Tota]
IRO 729,285 153 Fail
IR1 507,790 94 34,913
IR2 382,970 62 11,631
IR3 276,001 44 5,553
IR4 183,236 28 3,626
IR5 100,746 14 7,451
IR9 253,461 34 234,440

Table 2. Verification statistics for a 10-stage
pipeline machine with branch prediction, an
instruction cache, a data cache, and a write
buffer using various refinement maps.

always predicts taken. The refinement maps are IRO, ...,
IR9, where IRi commits the first i latches of the pipeline and
flushes the remaining latches. For example, IR0, IR5, and
IR9 correspond to pure flushing, commiting all latches be-
fore the decode stage, and pure commitment, respectively.
Since we are proving that the pipelined machines sat-
isfy the same safety and liveness properties as their corre-
sponding instruction set architecture models, we also have
to define rank functions. For refinement map IRi we de-
fine the rank function r anki to return a pair of natural
numbers: the first is the commitment component, com-
puted by r ankic, and the second is the flushing compo-
nent, computed by r ankis . These two functions are essen-
tially the standard rank functions used for flushing and com-
mitment [11]: r ankic returns the number of steps required
for a new instruction to reach latch i+ 1, the first flushed
latch, while r anki; returns the number of steps required to
fetch and complete a new instruction for a machine that con-
sists of the latches after latch i, i.e., the flushed latches. The
less-than ordering on r anki is the component-wise order.
Table 2 and Figure 3 show the verification times we ob-
tain as we apply the various intermediate refinement maps
to NBP. Note that the Y-axis in Figure 3 uses a logarithmic
scale. The refinement map for IR9 is the standard commit-
ment map and leads to a verification time of 234,440 sec-
onds. The refinement map for IR0 is the standard flushing
map and Siege is not able to handle the SAT instance gener-
ated by UCLID for IRO. Thus, in Figure 3, the verification
time for IR0 is extrapolated, using Table 1 as a guide, and is
shown as a dotted line. As i increases from 0 to 4, the ver-
ification times for IRi decrease at an exponential rate, with
IR4 being about 64 times faster than IR0. After this point,
verification times increase, as the time for IR5 shows.
There are several factors that account for the verifica-
tion time improvements. First, by using the commitment ap-
proach for the latches up to the instruction queue, we effec-
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Figure 3. Verification times for a 10-stage pro-
cessor model with an instruction cache, a
data cache, and a write buffer using various
refinement maps.

tively reduce the depth of the pipeline, thereby avoiding the
exponential penalty incurred by flushing on deep pipelines,
as witnessed in Figures 2 and 3. In addition, by using flush-
ing for the wide, later part of the pipeline, the “Good MA”
invariant required by the commitment approach is greatly
simplified in terms of the complexity of the resulting for-
mulas; the conceptual complexity is about the same. Since
about 90% of the verification effort required by the com-
mitment approach is for proving the “Good MA” invariant,
the savings are substantial. Second, the use of intermedi-
ate refinement maps essentially gives rise to two verifica-
tion problems: one for the part of the machine up to the se-
lected stage and the other for the rest of the machine. By se-
lecting a stage in the middle, the machines are about half
as complex as the initial pipelined machine, but since ver-
ification times are exponential in the size of the machines,
this leads to exponential improvements in verification times.
This explains the U-shaped graph in Figure 3, which takes
its minimal value at IR4 and then increases at IR5.

From the results we obtained in this and the previous
section, we now give some simple guidelines for choosing
refinement maps optimized for reduced verification times.
From the above considerations, this amounts to deciding up
to which stage to use commitment. We suggest choosing
the stage closest to the middle of the pipeline for which the
complexity of the formula corresponding to the “Good MA”
invariant is simple. The reason we suggest a latch some-
where in the middle is that this effectively leads to two veri-
fication problems, one of which is based on flushing and one
on commitment, but as Table 1 and Figure 2 show, verifica-
tion times are exponential in the length of the pipeline; thus,
such a decomposition leads to drastic improvements in ver-



ification times. The reason why we suggest that thought be
given to the complexity of the formula for the “Good MA”
invariant is that the verification time for the commitment ap-
proach is dominated by cost of establishing this invariant.

Finally, we make two further observations. First, most
pipelines have a structure similar to the ones we use in this
paper; thus, we expect our techniques to be widely applica-
ble. Second, we have found that our approach simplifies the
verification effort because if the resulting SAT instance is
satisfiable, it is easy to determine if the problem lies with the
commitment part of the proof or with the flushing part of the
proof. This allows one to more readily identify errors than
if a pure flushing or pure commitment approach is used, as
the counterexamples will involve the whole pipeline, and
will therefore contain many irrelevant details.

6. Conclusion

We have introduced a new class of refinement maps for
pipelined machine verification, and using the state-of-the-
art verification tools UCLID and Siege have shown that one
can attain several orders of magnitude improvements in ver-
ification times over the standard flushing-based refinement
maps, even enabling the verification of machines that are
too complex to otherwise automatically verify. The refine-
ment maps allow us to use the commitment approach —
where partially completed instructions are invalidated and
the programmer visible components are rolled back to cor-
respond with the last committed instruction— on the latches
at the front of the pipeline and the flushing approach —
where partially completed instructions are made to com-
plete without fetching any new instructions— on the latches
at the end of the pipeline. The result is that we are left
with two verification problems, but on machines that are
half as complex as the initial pipelined machine; since ver-
ification times are exponential in the size of the machines,
this leads to drastic improvements in verification times. We
give a simple recipe for defining such refinement maps and
for defining the rank functions needed to establish liveness.
Given our results, it seems worthwhile to further investi-
gate the role of refinement maps on verification times. For
future work, we plan to apply these techniques to a wider
class of pipelined machines.
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