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Abstract

In this paper we describe a fully-automated methodology for for-
mal verification of fused-multiply-add floating point units (FPUs).
Our methodology verifies an implementation FPU against a simple
reference model derived from the processor’s architectural speci-
fication, which may include all aspects of the IEEE specification
including denormal operands and exceptions. Our strategy uses
a combination of BDD- and SAT-based symbolic simulation. To
make this verification task tractable, we use a combination of case-
splitting, multiplier isolation, and automatic model reduction tech-
niques. The case-splitting is defined only in terms of the reference
model, which makes this approach easily portable to new designs.
The methodology is directly applicable to multi-GHz industrial im-
plementation models (e.g., HDL or gate-level circuit representa-
tions) that contain all details of the high-performance transistor-
level model, such as aggressive pipelining, clocking, etc. Experi-
mental results are provided to demonstrate the computational effi-
ciency of this approach.

1 Introduction

Traditionally, industrial floating point units (FPUs) are validated
by simulation, often using targeted techniques such as special-
ized testcase generators [1]. While such approaches are efficient
at exposing many bugs, they are based on incomplete methods
which cannot achieve full coverage, e.g. evaluation of all operand
combinations over all rounding modes and exception states. To
compound the coverage problem, designs face shorter time-to-
market (hence lesser verification time) from generation to gener-
ation, require higher clock speeds thus a larger degree of pipelin-
ing, and acquire additional features such as clock gating for low-
power. Formal and semi-formal verification techniques constitute
an increasingly-prevalent mechanism by which to attempt to close
the coverage gap imposed by simulation. For example, numerous
industrial approaches have proposed the use of a combination of au-
tomatic methods and manual theorem-proving techniques to yield
complete proofs of correctness of FPUs [2, 3, 4].

In this paper, we present an efficient, fully-automated method-
ology for the verification of fused-multiply-add (FMA) FPUs.
This methodology targets exhaustive verification of the complex
dataflow of such FPUs, focusing on the arithmetic correctness of
a single arbitrary instruction. The presented approach compares
the FPU implementation against a simple reference model derived
from the processor’s architectural specification, which may include
all aspects of the IEEE specification such as denormal operands
and exceptions. Our methodology is portable to simulation, em-
ulation, semi-formal, and formal verification frameworks; no cus-
tomized toolset is necessary. To enable formal proofs, we use a
combination of case-splitting and automatic model reduction tech-

niques, and isolate the multiplier for dedicated verification. All
case-splitting is defined in terms of the reference model, ensuring
that this overall methodology, as well as the reference model it-
self, is easily portable to various implementations. The presented
methodology is directly applicable to an HDL or gate-level imple-
mentation model without a need for manual abstraction. Experi-
mental results demonstrate applicability to HDL implementations
of high-performance industrial FPUs which are combinationally-
equivalent to – i.e., share the same state encoding as – the (primarily
custom-designed) transistor-level circuit, as is a common industrial
design style [1]. Coupled with the use of a Boolean equivalence
checker to correlate the HDL implementation against the fabricated
schematics [14], this overall approach enables a seamless proof of
datapath correctness from the transistor schematics all the way up
to the architecture-level specification.

The novel contributions of this paper are the following. First, our
paper is the first to address formal datapath verification of FMA
FPUs using only common automatic verification tools. Second,
ours is the first to address denormal operands and results for FMA
instructions. Third, our methodology is easily portable to new im-
plementations because the portable reference model encompasses
the case splitting strategy. Fourth, our reference model is also
reusable in platforms such as simulation and emulation.

The rest of the paper is organized as follows. Section 2 provides
an overview of our verification framework. Section 3 details the
reference model and Section 4 describes the case-splitting strategy
used to reduce formal complexity. Section 5 provides experimen-
tal results and Section 6 discusses the portability of this method,
in particular to fully IEEE-compliant FPUs. Section 7 discusses
related work. In Section 8, we summarize and conclude the paper.

2 Verification Overview

The FPU under verification supports the double-precision FMA in-
struction and its derivatives as defined in the PowerPC1 architecture
[5]. FMA computes A×B +C on operands A, B, and C. Instruc-
tions such as A × B and A + B are computed as A × B + 0
and A × 1 + B, respectively. All four IEEE rounding modes are
supported. For implementation details on FMA FPUs refer to [6].

For clarity, the discussion in this paper primarily focuses on the
verification of an FPU which produces IEEE-compliant denormal
results, but maps denormal operands to zero. In Section 6 we de-
scribe the extension of our methodology to FPUs which support de-
normal operands. In this paper we do not discuss the details of the
special values NaN and infinity; the cases involving such operands
are discharged trivially by the formal algorithms.

Our verification methodology compares an implementation FPU
against a simple reference model. A driver generates the instruc-
tions (opcodes) and the operands, and dispatches them into both

1PowerPC is a registered trademark of IBM Corporation.
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Figure 1: Removal of the multiplier from the cone-of-influence

FPUs. After all computations are finished, the results are com-
pared and an error is flagged if the results differ. The two FPUs
are evaluated independently; there is therefore no need to estab-
lish corresponding pipeline stages between these FPU models. Be-
cause the number of steps needed to complete a single floating point
computation is bounded, we may cast our verification problem as
a bounded check using SAT- and BDD-based techniques instead of
requiring more expensive unbounded algorithms.

Our goal is to exhaustively verify the datapath functionality. We
aim at bugs which cause numerically incorrect results (e.g., incor-
rect rounding) instead of bugs which, for example, result from unin-
tended interaction between multiple instructions. Hence we restrict
our verification to a single arbitrary instruction issued into an empty
FPU. Note that bugs in the inter-instruction control may often cause
data errors. However, these are often considered a separate class of
bugs which may be verified separately from the numerical com-
putation, as per [7, 8]. Though we do not cover inter-instruction
aspects, we do exhaustively verify the control logic specific to the
execution of a single instruction, including opcode decoding and
aspects of the clock gating control (which is particularly nontrivial
for modern processors).

There are three building blocks in the FPU that are major hur-
dles for formal algorithms: namely, the multiplier, the alignment
shifter that aligns the addend to the product, and the normaliza-
tion shifter that eliminates leading zeros in the intermediate result
before rounding. Each of these building blocks leads to run-time
explosion of SAT, and memory-explosion of BDDs.

To circumvent the difficulties posed by the shifters, we split
the overall verification problem into sub-problems as discussed in
Section 4. Each sub-problem restricts the shift-amount for both
shifters, causing them to “collapse” into simple wires, similar to
the case-splitting strategy employed in [9] for verifying floating-
point addition. We extend this approach to FMA instructions, and
to handle denormal results and operands (refer to Section 6).

To circumvent the difficulties posed by the multiplier, we remove
it from the cone-of-influence of the FPU outputs, as depicted in Fig-
ure 1. Note that the inputs to the multiplier are the significands of
the operands A and B, and its outputs are S and T such that the
sum of S and T equals the product of the input significands. Ad-
ditionally, S and T contain some leading bits known as “hot-ones”
which are an artifact of Booth-encoding. To eliminate the multi-
plier, we override S and T with new signals S′ and T ′, causing the
multiplier logic to become sinkless and consequently to be removed
from the cone-of-influence. Note that the multiplier in both the real
and reference FPU is overridden by S′ and T ′ for consistency.

The FPU relies on two properties that the real multiplier satisfies.
We therefore define S′ and T ′ such that they may take arbitrary

values which adhere to these two properties: (i) the sum of S′ and
T ′ lies in the range [1, 4) for normal input significands, and (ii)
the most significant bits of S′ and T ′ can take only specific values,
depending on the exact implementation of the multiplier array (hot-
one bits). To ensure soundness, we formally verify that the original
multiplier also satisfies the two constraints, i.e. S′ and T ′ over-
approximate the behavior of S and T . Hence, all possible outputs
of the real multiplier are covered in our verification. Practically,
this is a simple proof obligation for SAT, since it requires only a
fraction of the multiplier logic in the cone-of-influence.

Our formal methodology thus verifies the entire numerical com-
putation except for the actual significand multiplication. We
thus cover alignment shifts, end-around-carry addition and lead-
ing zero anticipation, normalization with sticky-bit computations,
mis-anticipation correction, rounding, overflow and underflow de-
tection, etc. Such implementations are notoriously customized
and error-prone, while the multiplier itself is relatively straight-
forward in comparison. Since our methodology is portable to alter-
nate frameworks, we also validate the design without the multiplier
overrides or case-splits using simulation and semi-formal methods.
The multiplier may also be formally verified using existing tech-
niques [10, 11] to ensure completeness of the overall process.

3 Reference FPU

In this section we describe the reference FPU, against which we
compare the real FPU. The reference FPU is written in VHDL2 and,
as with the real FPU, is transformed into a netlist using a standard
VHDL compiler. The primary goal of the reference FPU is simplic-
ity: it must be a concise specification, not prone to the introduction
of bugs via the high-performance design and micro-architecture
tricks that complicate the real FPU. In industrial designs, blocks
such as adders, shifters, and leading-zero counters are often de-
signed at the gate-level in order to match the high-performance
circuit structure and facilitate combinational equivalence checking
between the two representations [1, 14]. In the multi-GHz design
domain, this means that such blocks must be pipelined and hence
cannot be specified with high-level VHDL operators such as “+”
and “sll”. In contrast, we do use such VHDL operators in our
reference model since we need not match circuit characteristics or
latch points. This simplicity comes at the cost of increased gate
count and greater structural dissimilarity with the real FPU which
precludes redundancy removal techniques from significantly sim-
plifying the verification problem. This is inevitable with a portable
reference model – and addressed by our overall methodology.

Altogether, the core of the reference FPU is only 300 lines of
VHDL; the handling of special cases such as operations on NaN
and infinity requires another 150 lines of trivial if-then constructs.
The reference FPU is thus approximately 450 lines of VHDL, ver-
sus approximately 15,000 for the real FPU.

Algorithm. We now describe the reference FPU algorithm and give
some details of its implementation. The reference FPU is required
to compute A×B + C for three operands A, B, and C. Other op-
erations like addition or multiplication can be derived from FMA in
an obvious way. Let sa denote the sign, ea the unbiased exponent,
and fa the significand including the implicit bit of the operand A
(similarly for B and C). We define sp = sa xor sb, ep = ea + eb,

2Others have formalized the IEEE standard in a theorem prover as a mathemat-
ical specification [12, 13]; we use an HDL-based reference model for portability to
simulation, emulation, semi-formal, and formal verification frameworks.
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Figure 2: The four cases of the reference FPU’s algorithm

and fp = fa × fb. The FMA operation can be rewritten as

A × B + C

=[(−1)sa × 2ea × fa] × [(−1)sb × 2eb × fb]

+ [(−1)sc × 2ec × fc]

= ([(−1)sp × 2ep × fp] + [(−1)sc × 2ec × fc]) .

Because the operand significands have 1 bit before and 52 bits be-
hind the binary point, fp has 2 bits before and 104 bits behind the
binary point, thus, a total of 106 bits. Let δ := ep − ec denote the
difference of the product exponent and the addend exponent. For
simplicity, the reference FPU is implemented as a case-statement
distinguishing the following four cases. In a real FPU, one would
reuse as much logic as possible between these cases, decreasing
circuit size but increasing implementation complexity.
Far-out left: δ ≤ −55. In this case, the addend is much larger
than the product, hence lies completely to its left as in Figure 2(a).
The addend is thus used as an intermediate result and the product
is reduced to a single sticky bit used for rounding.3

Overlap left: If δ ∈ {−54, . . . ,−1}, the addend is larger than the
product but the product vector overlaps with the right end of the
addend vector as in Figure 2(b). In this case the intermediate result
is computed by adding/subtracting the properly aligned product to
the addend, depending on the signs and opcode. Aligning means
shifting by an amount depending upon δ.
Overlap right: δ ∈ {0, . . . , 105}. Similar to the previous
case, now the addend overlaps with the right side of the product

3The −55 boundary is derived as follows (cf. Figure 2(a)): the addend has 52
bits behind the binary point, while δ reflects the distance between the most-significant
addend bit and the first bit left of the binary point of the product. Hence, if this distance
is 52, i.e. δ = −52, the two bits left of the binary point of the product lie below the
two LSBs of the addend. At a distance of 54, the product lies directly behind the
addend, but then the MSB of the product would be the guard bit for rounding. At a
distance of greater or equal to 55 (δ ≤ −55), the product is completely reduced to a
sticky-bit for rounding. The other boundaries can be derived similarly.

,.-
propagated into the exponent.
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Figure 3: Block level diagram of the reference FPU’s rounder

as in Figure 2(c). Here the intermediate result is computed by
adding/subtracting the properly aligned addend to the product.
Far-out right: δ ≥ 106. This is the case where the addend is
much smaller than the product, hence lies completely to its right as
in Figure 2(d). In this case, the product becomes the intermediate
result, and the addend is reduced to a sticky bit.

The maximum width for the intermediate result in these cases is
161 bits – this accounts for 1 carry-out bit, 53 bits of the addend,
106 bits of product, plus 1 guard bit. In all cases an intermediate
result of this width is computed; if the overlap is small (or a far-
out case happens), the intermediate result is padded with 0’s. The
intermediate exponent eint is the weight of the most-significant bit.

The intermediate result is next passed to the rounder, depicted in
Figure 3. First, the rounder counts the number of leading zeros nlz
of the intermediate result. This is necessary since, in the overlap
cases, the addend and the product may cancel-out some positions.
Next, the intermediate result is shifted to the left by nlz places, and
the intermediate exponent is adjusted by subtracting nlz from it.
However, the shift-amount is bounded if necessary to prevent the
exponent from becoming negative; note that a denormal result may
be generated here due to such partial normalization. Finally, the
normalized intermediate result is rounded according to the round-
ing mode and the bits behind the significand, as well as the sticky
bits generated in the two far-out cases. The rounder also produces
flags such as overflow, underflow, and inexact, which are readily
computed from the exponent and the rounding decision.

4 Case-Splitting

The FPU’s alignment and normalization shifters are inherently dif-
ficult for both BDD- and SAT-based algorithms, due to shifts of
variable values by variable amounts. In order to make the ver-
ification task feasible, the overall problem must be divided into
sub-cases. The general idea of case-splitting is to fix the shift
amounts of both shifters to a constant in each case, rendering the
shifters amenable to BDD- and SAT-based analysis within each
case. To ensure complete coverage, all possible combinations of
shift amounts must be included in at least one case. This general
scheme of case-splitting was also used in [9] for the verification of
floating-point addition. We now describe the case-splits needed for
the verification of FMA, and contrast to those of [9] below. First,
we distinguish between overlap and far-out cases:

i) Far-out: in the far-out cases, the intermediate result is the
product and the addend is reduced to a single sticky bit, or
vice versa. This case does not need to be sub-divided further.

ii) Overlap: this is the case where the addend and the prod-
uct overlap, i.e., δ ∈ {−54, . . . , 105}. The alignment-shift
amount is determined by δ. This case is divided into a sub-
case for each of the 160 different δ-values to trivialize the
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alignment shifter. These 160 cases belong to two classes:
(a) No cancellation: if δ /∈ {−2,−1, 0, 1}, the most-
significant bits of the addend and the product are at least two
bit-positions apart. In this case, no massive cancellation can
occur. The small normalization shift amounts between 0 and
2 due to carry-outs or borrow-outs during the addition can be
handled by the formal algorithms without further splitting.
(b) Cancellation: if δ ∈ {−2,−1, 0, 1}, the product and the
addend may cancel out leading bits when doing effective sub-
traction. In this case the normalization shift amount is deter-
mined by the leading-zero counter in the reference FPU and
by a leading-zero-anticipator [6] in the real FPU. Both meth-
ods normalize at most to the extent that the exponent does not
drop below 0 as per Figure 3. Since in these cases the nor-
malization shifter can perform shifts by arbitrary amounts, we
sub-divide these four δ-values into sub-cases for every nor-
malization-shift-amount, i.e., into 107 sub-cases.4

We thus have one far-out case, 156 non-cancellation overlap cases,
and 4 × 107 cancellation overlap cases, totaling 585 cases which
are independently verified. Note that these cases naturally reflect
the way in which every FPU must generate results, from simple ref-
erence models to multi-GHz implementations using any variety of
design and micro-architectural techniques. We thus feel that these
case-splits will directly apply to any design, which is substantiated
by our having successfully applied them to four industrial FPUs.

There is an interesting case hidden in the above case-splits: the
product of two normal numbers may be denormal. If such a product
is added to a zero addend, the result is the appropriately denormal-
ized product. For example, eprod = −15 and ec = 0 would cause
a denormalization of the significand product by 15 places to the
right. In the reference FPU, this is handled as an overlap-left case,
because δ = −15. This provides the correct number of 0’s in front
of the product. Since the intermediate exponent eint = ec + 1 = 1
in this case, the normalization shift amount is limited to 1. This
is also a fixed shift amount, hence this can be handled simultane-
ously with the standard δ = −15 non-cancellation case-split as de-
scribed above. Note that this case also applies to the multiplication-
instruction, where the addend is always zero.

Constraining. Case-splitting is achieved by “constraining” certain
signals in the reference FPU corresponding to the sub-case. Formal
algorithms use the constraints to define a care-set, and may simplify
their processing with respect to the defined care-set.

The distinction between far-out and overlap, and between the dif-
ferent δ-values, is defined by a constraint on the operand exponents.
Specifically, we define a constraint Cδ := (ea + eb = ec + δ) for
every δ-case. The constraint for the far-out cases is the respective
inequality over the operand exponents.

As regards the additional constraints for the cancellation cases,
the normalization shift amount depends on the number of leading
zeros of the intermediate result and the intermediate exponent eint,
cf. Figure 3. Hence, it is difficult to define these constraints directly
upon the operands while still ensuring that the case-split is com-
plete and still sufficient to trivialize the normalization shifter. For
this reason, the normalization shift constraint is defined directly on
the shift-amount signal sha of the reference FPU. We define a con-
straint Csha := (sha = X) for all 107 possible shift-amounts.4

4This includes all 106 possible shift amounts, plus one additional case
Csha/rest := (sha > 106) to cover the remaining values. The Csha/rest

case defines an empty care-set, hence this case is trivially discharged; it is checked
only for completeness.

The disjunction of all the cases is easily provable as a tautology,
guaranteeing completeness of our methodology.

The definition of the Csha constraints is simple, since the sha
signal may be directly referenced from the reference FPU. How-
ever, the logic driving this signal has considerable complexity. The
number of leading zeros in the intermediate result is obtained from
a 161-bit addition of the product and the addend. The addition it-
self is based on the (constrained) alignment shifts of the product
and the addend. Nevertheless, the Csha constraint alone suffices to
bound BDD size both for the reference and real FPU computations
without any explicit constraint on the real FPU. This is a signifi-
cant observation and demonstrates the benefit of using constraints
as a mechanism for case-splitting: the sha signal is a function of
the operand and opcode values represented as a BDD. A constraint
on sha is therefore effectively a constraint on the operand and
opcode; although the BDD-minimization algorithms are heuristic,
they are powerful enough to automatically carry over this constraint
from the reference to the real FPU, effectively constraining the real
FPU’s shift amount as well. This is non-trivial, considering that
the real FPU’s shift-amount is obtained from a completely dissimi-
lar piece of logic, namely a limited leading-zero anticipator (LZA)
working in parallel with the adder (such as the one described in
[6]). The shift-amount signal in the real FPU may even differ in
value from sha in the reference FPU, e.g., offset by a constant
preshift, or simply offset by one due to the possible shift-amount
anticipation error inherent in the LZA.

Discussion. The distinction between far-out and overlap with and
without cancellation cases as described above was also done in [9].
They do not need to sub-divide the δ = −2 case into different nor-
malization cases, since this case can lead to cancellation only in
FMA due to the two bits in front of the binary point of the product.
In our approach, the Cδ constraint is defined similar to [9]. The
normalization shift case-split, however, is done differently: Chen
and Bryant define their constraints directly on the operand signif-
icands, while we use the reference FPU’s sha signal, which im-
poses a constraint on the operands implicitly. This is necessary
in our methodology because denormal results may be produced
(whereas [9] does not verify denormal results), which requires a
comparison of the number of leading zeros to the intermediate ex-
ponent. This becomes even more complex with denormal operands
as discussed in Section 6. Performing such a case splitting strategy
for FMA explicitly on the operands would thus be error-prone and
amplify the difficulty of ensuring completeness across the cases.
The verification task in [9] is further sub-divided into effective ad-
dition/subtraction because cancellation can only happen during the
latter. In our setting, this additional split is unnecessary.

5 Verification results

Our experiments were run on IBM pSeries computers with
POWER4 processors running at 1.7GHz, using the IBM internal
verification tool SixthSense. All designs are mapped into a netlist
representation containing only 2-input AND gates, inverters, and
registers, using straight-forward logic synthesis techniques [15].
As described, our real FPU comprises approximately 15,000 lines
of VHDL. After compilation and phase abstraction [16], the netlist
of the real FPU has approximately 4,800 registers and 55,000
AND gates. We employed automated redundancy removal algo-
rithms [15] to reduce the size of the netlist prior to application of
BDD- and SAT-based analysis. The accumulated run-time for ver-
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Nodes [106] Time [mins]
Instr. Case avg max avg max

add overlap w/ cancellation 0.2 0.4 3 5
add overlap w/o cancellation 0.3 0.5 3 4
add far-out n/a n/a 12
mult n/a n/a n/a 5
FMA overlap w/ cancellation 6.9 26.0 8 24
FMA overlap w/o cancellation 2.1 4.7 5 10
FMA far-out n/a n/a 53

Table 1: BDD nodes and runtimes for the double-precision cases

ifying the add-instruction was approximately 16 hours. Multipli-
cation took only 5 minutes; the accumulated run-time for all FMA
jobs was 73 hours. A complete regression of all jobs takes less than
a day when running 10 jobs in parallel. Table 1 lists the average and
peak number of BDD nodes and run-times for the different types of
runs (n/a refers to cases where SAT was used).

We use both SAT- and BDD-based symbolic simulation as our
verification engines for FMA. The SAT-solver uses an interleaved
BDD-sweeping and structural satisfiability checking technique as
described in [15], and operates upon an unfolded combinational
netlist. The BDD-based symbolic simulator operates directly upon
the sequential netlist. Satisfiability checking was used to verify
the “far-out” cases and took 53 minutes to complete. The SAT-
solver is able to identify that the shifters which align the addend
to the product are not needed in this case, and thus automatically
removes these unused shifters from the cone-of-influence. In con-
trast, BDD-based symbolic simulation would build the BDDs for
these unneeded shifters anyway because only in later time-steps
would it become apparent that they are not needed for this case. The
overlap cases were verified using BDD-based symbolic simulation
with the described case-splits applied as discussed in Section 4.

The addition instruction was verified with the multiplier in the
cone-of-influence since the second operand of the multiplication
is 1.0; constant propagation automatically replaces the multiplier
by trivial logic. The applied case-splitting is similar to the FMA
instruction, with the unnecessary splits removed.

We used satisfiability checking for the verification of the mul-
tiply instruction. After the multiplier is removed from the cone-
of-influence, the only difficult aspect of the proof is the possible
denormalization (cf. Section 4). Verification of this is possible
without case-splitting because the SAT solver and redundancy re-
moval techniques are able to identify structural similarities between
the denormalization shifters in the real and the reference FPU, and
use this fact to simplify the satisfiability check.

For the cases solved by BDD-based methods, we provided an
efficient statically-derived variable ordering to the symbolic sim-
ulator. Initially, we attempted to use more generically-computed
initial orders coupled with dynamic variable reordering. However,
those runs consumed considerably more time and memory, even
suffering from memory-explosion at times. The superior orders are
intuitively derivable: the operand exponents come first, followed by
the fractions intertwined with the pseudo-inputs S′ and T ′ for the
multiplier override; the fractions and S′ and T ′ are aligned accord-
ing to the δ of each individual run (similar to those in [9]). These
orders are readily portable to other FPU designs since they are de-
fined in terms only of the operands and pseudo-inputs. Using these
orders, we disable dynamic variable ordering as it unnecessarily
consumes run-time without yielding a superior order.

We also experimented with different BDD minimization algo-

rithms (using the care-sets defined by the constraints). The BDD
operation constrain [17] was overall the best choice: it is fast when
the number of nodes is manageable. More aggressive minimization
algorithms yielded greater reductions in the peak number of BDD
nodes, but their overall run-time was significantly higher.

6 Portability of this methodology
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cause cancellation even for large δ’s

We have adapted the
reference FPU and
the verification en-
vironment to several
different FPUs under
development at IBM,
some of which are fully
IEEE-compliant and
thus handle denormal
operands and results in
hardware, and may also
perform exponent-wrapping on overflows and underflows. The
adaptation of the reference FPU and the verification environment
was done within only a few days. The enhancement of the
reference FPU to interpret denormal numbers according to the
IEEE standard was simple; note that this modification is a one-time
effort which does not need to be redone for subsequent FPUs.
Also the rules for signals S′ and T ′, overriding the multiplier
output, had to be adapted: the properties asserted for S′ and T ′

now also specify the range of the product if one or both operands
are denormal. For example, it is asserted that the product lies in
the range [0, 1) if both operands are denormal. This is the obvious
generalization of the property “the sum of S′ and T ′ lies in the
range [1, 4)” described in Section 2. It is still simple for SAT to
prove that the real multiplier also satisfies these properties and
hence that the multiplier isolation is sound.

The rest of the methodology can be applied with little modifi-
cation. The case-splitting strategy can be reused, due to the facts
that (i) the motivation for each individual case-split is architecture-
based rather than implementation-specific, and (ii) the definition
of the case-splits is done in terms of the reused reference FPU in-
stead of the real FPU. However, more overlap cases can now lead
to cancellation in the event of denormal operands. This happens,
for example, when a normal and a denormal number are multiplied
yielding a product with leading zeros. In this case the (normal)
aligned addend might just start at the leading ‘1’ of the product
(Figure 4), possibly causing massive cancellation. Hence, all over-
lap cases with potential cancellation must be sub-divided in order
to handle the normalization-shifter. This is a straightforward en-
hancement to the case-splitting described in Section 4; each case
has similar runtime to the cases described in Section 5. Although
the number of cases becomes larger (quadratic in the number of
δ-cases), the overall task is still tractable for discharging automat-
ically, especially given a larger network of machines to parallelize
the task. We discharge the approximately 17,000 cases with an ac-
cumulated runtime of 1416 hours, which takes approximately one
day given 50 machines. We are currently experimenting with tech-
niques to reduce the total number of cases, to decrease the cumula-
tive run-time; we omit such details for the sake of brevity.

Adaptations of our methodology to subsequent FPU designs re-
quired less than one day of effort each. Only the rules for S′ and
T ′ had to be adjusted, as these are the only implementation-specific
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aspect of our methodology. This clearly demonstrates the portabil-
ity of this methodology.

7 Related Work

Floating-point verification has been extensively studied both in
academia and industry. However, we are not aware of any fully-
automated attempts to formally verify FMA datapaths, nor any
which cover denormal operands or results for such operations.

Researchers at Intel [3, 18] and AMD [19, 4] have also applied
formal methods to the verification of FPUs. At Intel, FPUs are
verified using a customized toolset combining STE and theorem-
proving, likely requiring implementation-specific manual effort.
Recently, a sketch of the application of this approach to the ver-
ification of Intel’s Itanium fused-multiply-add datapath was pro-
vided in [20]. In contrast to our work, their approach does not
address details of the case-splits necessary for tractability, and does
not cover denormal results nor operands. The verification at AMD
uses the theorem prover ACL2, which requires manually-guided
proofs. Our approach is fully automatic and portable.

Aagaard and Seger [21] verified a floating-point multiplier using
a customized toolset combining STE and theorem proving. Their
multiplier does not include a denormalization shifter for multipli-
cation because it traps on denormal results. The multiplier array
is verified by sub-dividing the hardware into a Booth-decoder and
an addition network. The two parts are combined using theorem
proving. A similar approach is taken in [18] for the verification of
Intel’s Pentium 4 multiplier.

Berg and Jacobi [13] used the PVS theorem proving system to
verify an IEEE-compliant FPU against a mathematical formulation
of the IEEE standard. The use of a theorem prover is quite labor
intensive, especially at low levels of abstraction such as the gate-
level. Furthermore, such low level proofs are tailored to the specific
implementation, and hence are difficult to adapt to a different FPU.

The approach of Chen and Bryant [9] to verify floating-point ad-
dition comes closest to our work. In particular, our case-splitting
strategy is similar to theirs, as discussed in Section 4. We extend
their technique for applicability to the fused-multiply-add instruc-
tion, and to cover denormal results and operands. Additionally, our
approach uses standard BDD- and SAT-based analysis (exploiting
bit-level redundancy removal), whereas that of [9] requires word-
level PHDDs for computational efficiency.

Various research has addressed the automatic verification of in-
teger multipliers, e.g., [10, 11]. One promising future direction is
to incorporate such techniques into our methodology to verify the
multiplier along with the rest of the FPU, without isolation.

8 Summary

We have presented a fully-automated approach for verifying
floating-point addition, multiplication, and fused-multiply-add in-
structions by comparing their implementation against a simple ref-
erence FPU. To reduce formal complexity, we isolate the multiplier
from the cone-of-influence by overriding it with conservative vari-
ables. We additionally present a case-splitting strategy necessary to
make the verification feasible with automatic formal methods. All
case-splitting is defined exclusively in terms of the reference FPU,
and our specification is synthesizable (hence portable to simulation,
emulation, and arbitrary formal frameworks without a need for cus-
tomized tools), rendering a highly-portable overall methodology.

We have adapted this methodology to partially as well as fully
IEEE-compliant designs. Our experiments demonstrate this to be
an efficient and scalable approach for the verification of floating
point datapaths. The methodology is currently being applied to
four FPUs under development at IBM. Dozens of high-quality bugs
have been exposed by these efforts, some of which would likely
have slipped into first silicon otherwise.
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