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Abstract

The design of reliable circuits has received a lot of atten-
tion in the past, leading to the definition of several design
techniques introducing fault detection and fault tolerance
properties in systems for critical applications/environments.
Such design methodologies tackled the problem at differ-
ent abstraction levels, from switch-level to logic, RT level,
and more recently to system level. Aim of this paper is to
introduce a novel system-level technique based on the re-
definition of the operators functionality in the system spec-
ification. This technique provides reliability propertiesto
the system data path, transparently with respect to the de-
signer. Feasibility, fault coverage, performance degrada-
tion and overheads are investigated on a FIR circuit.

1 Introduction

When embedded systems implement critical applications
they should exploit a certain degree of reliability; in par-
ticular, Concurrent Error Detection (CED) capabilities are
frequently a requirement, since in critical operational envi-
ronments error propagation can have catastrophic effects.

In the past, a set of techniques [11, 13] has been pro-
posed (for both combinational and sequential devices) in
order to provide such CED property by acting directly at
low abstraction level, toward the end of the hardware de-
sign flow. However, time-to-market constraints and the in-
creasing complexity of modern devices make it impossible
to manage the problem at such a low level and a differ-
ent approach, able to raise the abstraction level, is neces-
sary. As a matter of fact, standard design methodologies
target devices by starting from system level specifications.
At this description level, the system specification identifies
the functional characteristics of the application withoutde-
tailing implementation aspects. Because the insertion and
the use of reliability methodologies significantly impacts
on performance, timing, energy and area, it is necessary to
transfer these aspects toward the upper levels of the synthe-

sis flow, by adding the reliability constraints to the classical
cost/performance parameters. Our goal is to define a co-
design methodology able to integrate CED capabilities from
the first steps of the design process, so to achieve a reli-
able system. The need of frameworks for reliable co-design
has been already highlighted in the last years, leading to
the development of approaches able to manage reliability
at system level. However some of the studies presented in
literature [19] focus on Design for Testability (DfT) tech-
niques defined at system-level without considering CED ap-
proaches. Other works [4] consider such kind of property
by means of a tagged specification used to drive a special
two-level partitioning to identify the proper reliable design
methodology to be used in the subsequent steps of the sys-
tem design process. Another important work is the one pre-
sented in [6] where a task-graph based co-design environ-
ment (suited for specific application domains) provides er-
ror detection properties based on duplication or assertions.
However, the use of such assertions is not transparent to the
designer and a quantitative evaluation of the fault coverage
cannot be computed. The proposal in [2] considers behav-
ioral assertions to drive a high-level synthesis tool: suchan
approach is interesting but it is hardware oriented and the
assertions involved are related only to area and performance
issues (i.e. no fault tolerance). In [5] a software modifica-
tion strategy is proposed for on-line fault detection; the au-
thors define a set of rules for explicitly introducing redun-
dancy in the high-level code, in some specific situations.

This paper presents a novel approach to reliable system
design by exploiting the SystemC-Plus object-oriented fea-
tures that can be applied in the more general framework pro-
posed in [4]. The methodology is presented in detail with
respect to a limited running case in order to describe both
advantages and drawbacks of the approach. The methodol-
ogy, as it is, has led to significant results, yet it is currently
under development in order to better exploit the potential
benefits of the adopted mechanisms, while minimizing the
present limitations. The methodology considers SystemC-
Plus descriptions as a starting point, thus giving the pos-
sibility of synthesizing the enriched specification eitherin
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hardware or in software, the proposed approach is indepen-
dent of the final implementation and thus it can be exploited
in a complete co-design flow (e.g. simulation, partitioning,
synthesis, etc.) without any specific intervention, and so
obtaining a straightforward way to reach a reliable hw/sw
implementation.

This paper is organized as follows. Section 2 describes
the key elements of the proposed approach, whereas the
details of the defined self-checking class are introduced in
Section 3. Section 4 discusses the quality of the technique,
investigating fault coverage issues for several target archi-
tectures. The proposed co-design flow is presented in Sec-
tion 5, with the results of the FIR benchmark application.
The last section draws some conclusions and future work.

2 The proposed approach

In the following the key elements of the proposed ap-
proach are detailed: the specification language, the fault
model, the design methodology, the target architecture and
the coverage analysis.
Specification language.The proposed approach is based

on the SystemC-Plusspecification language [18], a
proper extension of the synthesizableSynopsys-subset
of SystemC[17], that allows full exploitation of object-
oriented features (inheritance, polymorphism, etc.) in
the specification, while keeping hardware and software
synthesis capabilities.

Fault Model. The adopted fault model consists of thesin-
gle functional unit failure, where any number of phys-
ical faults can cause one (and only one) functional unit
to perform incorrectly. The considered faults affect the
target platform, mining hardware and software execu-
tion units. The functional units considered in this work
are those dedicated to perform the basic arithmetic and
logical computations (e.g. ALUs, multipliers, shifters,
etc.), i.e. those that can be mapped directly onto the
operators (arithmetic, logic or bit-a-bit) used in the
specification (e.g.=, +, -, *, etc.). The functional
failure is modeled by means of a variable number of
errors (e.g. stuck at, bit-flip, etc.) affecting the bits
of the result provided by the faulty unit. Both perma-
nent and transient and intermittent faults are covered
by our approach, the latter increasingly like to occur in
any integrated device, due to the technology trend that
reduces size and increases operating frequency ([12]).

Design methodology.According to the adopted fault
model, the idea is to provide the designer with the
possibility of using a self-checking data type that au-
tonomously performs controls on data resulting from
basic computations. The verification of results’ cor-
rectness is achieved by means of one or more func-
tional redundancy mechanisms (the number and the

complexity of such mechanisms will depend on the de-
sired trade-off between fault coverage, cost and per-
formance) as typically adopted in the software field
(e.g. software checking [20, 15, 21, 14], and assertion
[9, 1, 8]).

Target architecture. Because the specification is indepen-
dent of the target platform, the proposed approach does
not need any particular information about the final ar-
chitecture. The resulting implementation (totally hard-
ware, totally software with one or more processors, or
a mix of them) depends on the adopted design flow
and the constraints to be satisfied, as in any hw/sw co-
design flow.

2.1 Coverage analysis

The effectiveness of the proposed self-checking tech-
nique is evaluated in terms of the achieved fault coverage
and the additional costs. Both qualitative and quantitative
analyses have been carried out. As an example, consider
the z=x+y operation, controlled by the inverse operation
w=z-x (in this case the controlling mechanism isw==y).
Referring to the adopted fault model, two situations can be
envisioned. Using a multi functional resource system and a
proper allocation/scheduling policy it is possible to achieve
a 100% fault coverage if different functional units perform
the two operations. On the other hand, a software imple-
mentation on a monoprocessor system (or a limited resource
hardware system) could lead to a solution where the same
functional unit could perform both operations. In the latter
case there could be faults causing undetected erroneous data
affecting the fault coverage to some degree since one unit
performs the operation and its control. For example, there
could be a situation where, by means of an undesired error
masking (or error compensation), an erroneousz’ could
lead to aw’=z’-x, with w’ coincident toy so nullifying
the error control. Section 5 dedicates particular attention to
the worst-case fault coverage evaluation, investigating the
probability of a fault causing consistent error compensation
when performing two related operations.

In the following the+ operator and its underlying hard-
ware adder component will be used as running example,
without loss of generality. The same considerations ap-
ply to any arithmetic/logical component working on in-
teger data, in a straightforward manner; only the overall
cost/performance results are here reported. The limitation
to integers depends onSystemCability to synthesize only
this type.

3 Class templateSCK<TYPE>

The operative element of the proposed approach is the
SCK class template (it is the onlySystemC-Plusexten-
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sion used with respect to synthesizableSystemC). The use
of a class template in C++ fashion (e.g. as proposed in
[10] where a very similar approach is used to prevent er-
rors in the software design) allows the designer to adopt it
with all the synthesizable basic data types by changing only
the data declaration. A proper overloading mechanism of
the basic operators applies the desired reliability-oriented
mechanisms, while theSystemC-Plusfeatures will guaran-
tee the synthesizability property. For example, when using
an SCK<int> data type, theoperator+ will verify the
consistency of its result by means of an inverse operation
(i.e. operator-), consequently updating the value of an
error bit associated with the data itself. Operators are de-
signed to propagate also the error bit value. As a result,
we obtain a specification that includes the operations veri-
fying the correctness of the provided results, while keeping
a minimal impact on the way the system is specified.

Operator overloading is not an innovative technique, al-
though it has been employed in the past for different goals
and generally for dealing with software properties, rather
than being used to detect hardware failures as in the present
approach.

3.1 SCK interface

Figure 1 shows the interface of the class SCK (limited
in this example for clarity to operators= and+). The error
bit E has been introduced and associated with the internal
dataID, together with the methods used to manage such
data (GetError andGetID) and the prototypes of the useful
versions of the two operators. It is worth noting that the
presence of the empty constructor is due to synthesis con-
straints.

Figure 1. The SCK interface.

3.2 SCK implementation

Figure 2 shows the self-checking implementation of the
operator+ used in the SCK class. The code shows the strat-

egy used to provide error propagation and inverse opera-
tion check. In particular az=x+y operation is checked by
means of the (z-y==x) error control. Although a strat-
egy has been fixed in the SCK class, it is straightforward
to provide different implementations to obtain a different
trade-off between cost and reliability.

Figure 2. Self-Checking operator+.

For example, a different implementation of the+ oper-
ator uses the(z-y==x)&&(z-x==y) control condition
proving higher fault coverage and hardware cost.

A similar hidden control mechanism has been defined for
the other arithmetic operators, taking also into consideration
problems related to the precision of the inverse operation
(for the division case); Table 1 reports the most promising
overloading techniques we evaluated.

Operators Techniques
Tech1 Tech2 Both

Add + op2’ = ris - op1 op1’ = ris - op2
ris = op1+op2 op2 == op2’ op1 == op1’
Fault Cov. 97.25% 98.81% 99.11%
Sub - op1’ = ris + op2 ris’ = op2 - op1
ris = op1 - op2 op1 == op1’ 0 == ris + ris’
Fault Cov. 96.85% 94.01% 99.58%
Mult + ris’ = (-op1)×op2 ris’ = op1×(-op2)
ris = op1×op2 0 == ris + ris’ 0 == ris + ris’
Fault Cov. 96.22% 96.38% 97.43%
Div / op1’ = ris×op2 op1’ = -ris×op2 -

+ (op1 % op2) - (op1 % op2)
ris = op1 / op2 op1 == op1’ op1 == op1’ -
Fault Cov. 94.33% 97.16% -

Table 1. Overloading techniques and fault
coverage.

It is worth noting that there is no available tool for evalu-
ating the fault coverage of the final realization with respect
to the on–line fault detection properties, yet the local fault
coverage analysis (carried out with an exact fault detection
analysis for the single arithmetic units) can be used as an
estimation of the reliability level that will be achieved.

4 Fault coverage analysis

The effectiveness of our approach relies on the percent-
age of faults that may cause undetected errors when using
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a system with limited resources such that the nominal oper-
ation and its controlling operation cannot unveil a fault, as
introduced in Section 2.1. An in-depth analysis based on the
integer faulty class has been carried out. For example, using
theFAddFSubIntC faulty type, a fault causing an error on
the addition could produce also an error on the subtraction
operation such that the fault is not detected. This consid-
eration highlights the need for a detailed low-level analysis
to evaluate the fault coverage guaranteed by the proposed
approach with respect to several target architectures.

Let us consider, as an example, instructionc=a+b. As
shown in Figure 2, the enhanced operator+ will perform
the additiona+b and will also perform the hidden operation
d=c+(-a) followed by a comparison betweend andb. In
a fault free situation, with the exception of overflows (which
are separately dealt with)d equalsb; no error indication is
set. On the other hand, when a fault occurs within the adder
(andc=a+b producesc’ instead ofc) when performing
the hidden operationd’=c’+(-a), one of the following
situations may arise:

1. the operation is performed on a different functional
unit (fault free for hypothesis), thus the resulting value
d’ is different fromb: the fault is detected;

2. the operation is performed on the same faulty unit, in
this case two are the possible outcomes:

(a) d’ differs fromb: the fault either is not observ-
able, henced’ is the correct result of the opera-
tion, or is observable and detected.

(b) d’ equalsb: the fault is observable in such a way
that an erroneous result is produced, but in such
a way that the two errors mask the fault.

Situation (2b) is the critical one and it affects the fault
coverage due to the presence of faults that the methodol-
ogy cannot cover. It is worth noting that the problem arises
only when the same resource is used to compute both the
related operations: it is thus necessary to evaluate the exact
fault coverage that is achievable by means of the proposed
approach in such a situation (worst case analysis), as dis-
cussed in the following.

4.1 The testing environment

Fault coverage is evaluated at hardware level, by con-
sidering the target architectures and the faults included in
the adopted fault model. A specific test architecture has
been defined to analyze the faults masking effects with re-
spect to the pairs of operations used within the overloading
of the SCK class operators. More in detail, we simulate
faults effects considering the pair of operations that are im-
plemented in the enhanced operator (e.g.,+ and- for opera-
tor+) when they are performed on the same functional unit.
The test architecture is independent of the actual implemen-
tation, and can be used with different technological choices,

with a carry look-ahead implementation of an adder, as well
as with a ripple carry implementation. Two environments
have been setup, in VHDL and C. Theg function, when
needed, is the one used to produce the value for the dual
operation (e.g. in the case of the + and - operations pair, the
g function performs the 1’s complement and thef function
receives a 1 on thecarry-in to work in 2’s complement).

Table 2 shows how the coverage analysis has been car-
ried out, reporting the experimental results obtained for a
ripple-carry adder performing the+ operation, where “Tech
1” refers to a single overloading of the operator using as
control operationop2=ris-op1; “Tech 2” refers to the
dual controlling operationop1 = ris-op2; the third ap-
proach (“Tech 1&2”) includes both overloading strategies.

To obtain results independent of the actual implementa-
tion of the adder (e.g. FPGA, ASIC with standard or full-
custom, etc.), functionsf, g and faults have been modeled
at the functional level (i.e. the faulty functional unit is the
single full-adder in the chain composing then-bit adder).

Overloading⇒ Tech1 Tech2 Tech 1&2

# bits # fault

situations

1 128 95.31% 96.88% 97.66%

2 1024 96.88% 98.44% 98.83%

3 6144 97.40% 98.96% 99.22%

4 7808 97.66% 99.22% 99.41%

8 16×2
20 98.05% 99.61% 99.71%

16 6×2
30 98.18% 99.74% 99.80%

Table 2. Experimental results for different
overloadings for operator+.

The first column of Table 2 refers to the width of the
operands used to perform the computation, ranging from
1 to 12 bits. The second column reports the total number
of fault situations for each case, dependent on the number
of input combinations and faults in the adder, given by the
following equation:

No. of faulty situations= num faults 1bit× n × 22n

wheren is the operand size,num faults 1bit the number
of faults for the 1-bit adder which equals 32. This result
is used to evaluate the achieved fault coverage. The other
columns report how the detection capability varies with re-
spect to the different overloading strategies for the + oper-
ator. Each entry shows the achieved fault coverage, that is
the number of times the methodology guarantees that the
result is either correct or an error signal is raised. For exam-
ple, using2-bit operands, the adoption of the control opera-
tion op2=ris-op1 does not allow the detection of a fault
causing an observable error in 32 situations, a fault coverage
of 96.88%. The number of undetected errors drops, though
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implying a higher overhead in terms of computational time
and/or area overhead.

Another interesting measure consists of the capability of
the methodology to detect the fault, independently of the
fact that it produces an erroneous result or not (i.e. inde-
pendently of the fault observability). By analyzing the 2-
bit adder case, the number of observable errors is 216 yet
in almost all approaches the technique allows fault detec-
tion also when the produced result is correct: 352 (out of
1024) for “Tech1”, 384 for “Tech2” and 428 for the com-
bination of both. This property allows the reduction of
the probability of having a second fault occur before the
first one is detected, thus improving the system reliability.
It is worth mentioning that classical Self-Checking design
techniques provide fault detection capabilities only when
the fault is observable. In conclusion, the example shows
that for a ripple-carry adder (independently from its actual
implementation) using different functional units to perform
related operations the coverage is always 100%; using the
same unit the percentage of input combinations that by-pass
the checks varies, depending on the adopted strategy, in the
range[81.90%, 99.87%].

The same approach has been applied to the other opera-
tors (-, *, and/), analyzed w.r.t. several overloading tech-
niques and their combination, achieving similar results in
terms of fault observability and fault coverage.

5 The reliable co–design flow

This section shows the reliable co-design flow based on
self-checking specification used to evaluate cost and per-
formance of the proposed approach. Starting from a self-
checking specification inSystemC-Plus, the design flow
adopted (the flow isOFFIS [18] andSynopsys[16] based
for the HW part,GNU [7] based for the SW one) is shown
in Figure 3. By means of theOFFIS SystemC-Plus Synthe-
sizer, SystemC-Plusis transformed into synthesizable be-
havioral and/or RTSystemC. By means of theg++ compiler
we can easily obtain the software implementation, withSyn-
opsys CoCentricthe hardware one.

5.1 Methodology evaluation

By implementing both the reliable and not-reliable sys-
tem specification a comparison in terms of costs and perfor-
mance has been carried out, to evaluate the quality of the
proposed approach on the final system. A FIR circuit has
been designed with the proposed design flow [3], allowing
an in-depth analysis of the approach. Several experiments
have been carried out on the same circuit and results are re-
ported in Table 3, while other circuits are now taken into
consideration.

Figure 3. The reliable co-design flow.

Hardware
Implementation

Latency CLB
(clock cycles) Slices

FIR min area 2 + 7n @ 20MHz 412
min latency 2 + 5n @ 20MHz 477

FIR min area 2 + 10n @ 16.67MHz 1926
with SCK min latency 2 + 5n @ 20MHz 1593
FIR min area 2 + 9n @ 15.38MHz 634
embedded SCK min latency 2 + 5n @ 20MHz 861

Software Implementation

Exe Time (sec) Exe Size (KB)
FIR 6.83 889
FIR with SCK 10.02 893
FIR embedded SCK 7.90 889

Table 3. Application of the proposed method-
ology to the FIR.

Results on this example are encouraging as far as the
overloading mechanism is concerned, especially since such
an approach has been used in the past but for different envi-
ronments and purposes. The most significant aspects are:
• extensible reliability library : the overloading mecha-

nism provides a flexible and extensible way to define a
library or readily-available Self-Checking designs for
the basic operators, each one with a cost/fault cover-
age characterization; the designer can select different
self-checking approaches depending on the trade-off.

• information hiding : the most complex aspects related
to reliability are transparent to the designer, for both
hardware and software implementations.

• standard technology: the use of a mechanism part of
the specification language allows the approach to be
integrated in any SystemC hw/sw co-design flow.

On the other hand, the application of the approach
pointed out the possibility of incurring intemplate con-
flicts when templates for overloading are already part of the
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original description. In such a case the proposed approach
cannot be adopted.

This last motivation, together with the desire to be inde-
pendent of proprietary software (such as the converter from
SystemC-Plus to SystemC), is leading to the evolution of
the proposed approach to virtually exploit the overloading
mechanism directly in the SystemC description.

When the software implementation is selected, analyses
have been carried out to verify that the redundant operations
for achieving the desired reliability are not “simplified” by
the compiler thus nullifying the operator overloading ef-
forts. Both code size and execution times remain almost
unmodified.

Let us remember, that the achieved fault coverage is
complete for hardware implementation, whereas software
implementations are characterized by the coverage esti-
mated for the single functional unit, where the lowest es-
timated value is about 98%.

6 Concluding remarks

The paper proposes a methodology for designing circuits
with reliability properties by introducing in the initial sys-
tem specification elements able to provide the ability to au-
tonomously detect the occurrence of hardware faults. The
approach provides such on-line testing capabilities by using
the overloading mechanism for theSystemC-Pluslanguage,
today’s specification language for hardware/software co-
design flows. In a manner that is completely transparent to
the designer, “hidden” operations perform additional com-
putation to verify the correctness of the resulting data. The
achieved results in terms of fault coverage are promising
and future work will focus on the trade-off between fault
coverage and costs, in order to allow the designer to select
the desired level of reliability while keeping area overhead
and performance degradation within an acceptable limit.
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