
Concurrent Error Detection in Asynchronous Burst-Mode Controllers

Sobeeh Almukhaizim∗and Yiorgos Makris
Electrical Engineering Dept.

Yale University
New Haven, CT 06520, USA

Abstract

We discuss the problem of Concurrent Error Detec-
tion (CED) in a popular class of asynchronous controllers,
namely Burst-Mode machines. We first outline the particular-
ities of these clock-less circuits, including the use of redun-
dancy to ensure hazard-free operation, and we explain how
they limit the applicability and effectiveness of traditional
CED methods, such as duplication. We then demonstrate
how duplication can be enhanced to resolve these limita-
tions through additional hardware for comparison synchro-
nization and detection of error-induced hazards, which jeop-
ardize the interaction of the circuit with its environment. Fi-
nally, we propose a Transition-Triggered CED method which
employs a transition prediction function to eliminate the need
for hazard detection circuitry and hazard-free implementa-
tion of the duplicate. As indicated by experimental results,
the proposed method reduces significantly the cost of CED,
with an average of 22% in hardware savings.

1 Introduction

Asynchronous circuits promise a wide range of bene-
fits, including elimination of clock distribution networks and
clock skew problems, improved performance, reduced power
consumption, and modularity. Nevertheless, adoption of
a fully asynchronous design style for general purpose cir-
cuits has been rather limited, mainly because of the lack
of supporting CAD tools and methodologies. Indeed, asyn-
chronous circuits present their own set of challenges, mak-
ing the porting of design and test methods from the syn-
chronous domain neither straightforward nor always possi-
ble. In certain control-dominated applications, however, the
use of asynchronous circuits has resulted in irrefutable ad-
vantages. For example, an asynchronous implementation of
an instruction decoder exhibits a performance that is at least
three times better than the performance of a highly tuned syn-
chronous version [1]. As a result, asynchronous controllers
have attracted a lot of attention and several styles have been
proposed for their design [2, 3, 4]. Among them,Burst-Mode
machinesconstitute one of the most popular classes.

In this paper, we address the problem of Concurrent Er-
ror Detection (CED) in asynchronous Burst-Mode machines.
CED methods are typically employed to monitor the behav-
ior of a circuit and detect any deviation from the correct func-

∗The author is supported through a scholarship from Kuwait University.

tionality due to transient errors such as Single Event Upsets
(SEU). While a wide variety of CED methods have been
developed for synchronous controllers, their asynchronous
counterparts are intrinsically different, limiting the effective-
ness of these methods. To demonstrate this problem, we dis-
cuss the applicability of duplication, the most common syn-
chronous CED method, to asynchronous Burst-Mode con-
trollers. We show that direct use of duplication is jeopardized
by two inherent properties of these circuits:

• Lack of a global clock: Clock-less operation al-
lows a circuit and its duplicate to produce results au-
tonomously and at their own pace. As a result, even in
error-free operation, the outputs of these circuits are not
always equal. Therefore, in order to avoid false alarms,
a comparison synchronization method is required.

• Existence of redundant logic: Redundancy in the
implementation of the circuit is necessary to ensure
hazard-free operation, as required by the communica-
tion protocol between a Burst-Mode machine and its en-
vironment. As a result of redundancy, some errors cause
only hazards but no functional discrepancy, so they can-
not be detected by comparison. Therefore, in order to
monitor the correct interaction of the circuit and its en-
vironment, a hazard-detection method is also required.

In short, remedial action in the form of additional hard-
ware needs to be taken. To address the first issue, we propose
a comparison synchronization method which utilizes control
information inherent to the operation of asynchronous Burst-
Mode controllers. To address the second issue, we propose
the addition of hazard detection circuitry to the output and
state bits of the original circuit. Thus, duplication-based
CED is enhanced to guarantee detection of all functional er-
rors and hazards in asynchronous Burst-Mode machines.

We then propose aTransition-TriggeredCED method that
reduces the overhead incurred by the enhanced duplication
described above. More specifically, our method uses a tran-
sition prediction function which is derived from the function-
ality of the asynchronous Burst-Mode machine. In conjunc-
tion with the comparison synchronizer, this function elimi-
nates the need for a hazard-free duplicate and is used as a
less expensive method to perform hazard detection.

The few asynchronous CED methods that exist in the lit-
erature assume the existence ofexplicitcompletion signals in
order to synchronize the comparison [5, 6, 7]. In contrast, the

1530-1591/05 $20.00 © 2005 IEEE

Combinational
Logic

Delay

Inputs Outputs

State

Figure 1. Huffman Asynchronous Circuits

proposed method utilizes the predefined behavior of Burst-
Mode controllers for the synchronization. Moreover, errors
in redundant logic that cause only hazards but no functional
discrepancy were not considered in previous methods.

The remainder of the paper is organized as follows. In
Section 2, we briefly introduce the class of asynchronous
Burst-Mode controllers. In Section 3, we discuss the short-
comings of duplication-based CED when applied to these cir-
cuits and we demonstrate the required remedial action. In
Section 4, we describe the Transition-Triggered CED method
that we have developed for reducing the cost of duplication
in asynchronous Burst-Mode machines. Finally, in Section
5, we provide experimental results quantifying the hardware
savings achieved by the proposed method.

2 Asynchronous Burst-Mode Machines

In this section, we introduce briefly the fundamentals of
asynchronous Burst-Mode machines. We then outline the
synthesis process for realizing an asynchronous Burst-Mode
implementation from a given Finite State Machine (FSM) de-
scription [8] and we give an example.

2.1 Fundamentals

Burst-Mode machines constitute a class ofHuffmancir-
cuits [9], which is widely used for designing and implement-
ing asynchronous controllers [8, 10, 11, 12]. As shown in
Fig. 1, Huffman circuits consist of a set of combinational
functions, computing the next state and output of the circuit,
and a set of feedback lines, storing the state of the circuit. No
clock and no state registers are used in these circuits, how-
ever, delay elements are often added to eliminateessential
hazards1 [13]. Given the absence of a global clock,commu-
nication protocolsare needed to ensure the correct interac-
tion of an asynchronous circuit and its environment. These
protocols define the properties of the stimuli that the environ-
ment is allowed to provide to the circuit, as well as the prop-
erties of the responses that the circuit will generate. Based on
these protocols, several classes of circuits are distinguished.

The key aspect of the protocol used in Burst-Mode ma-
chines, as indicated by their name, is that the interaction of

1Essential hazards arise when a state change completes before the input
change is fully processed. To prevent this early state change from propagat-
ing through the combinational logic, delay may be added to the feedback.

the circuit and its environment happens inBursts. An input
burst is defined as a set of bit changes in one or more in-
puts of the circuit, which are allowed to occur in any order
and without any constraint in their relative time of arrival.
Once an input burst is complete, andonly then, the circuit
responds through a hazard-free state and output change to
the environment. We emphasize the protocol requirement for
hazard-free state and output changes. Since no clock is used,
synchronization between the circuit and its environment is
based on the fact that any change in the state or output of the
circuit signifies completion of an evaluation cycle. There-
fore, all hazards should be eliminated to ensure correct cir-
cuit functionality and interaction with its environment.

In order to implement a circuit that complies to the afore-
mentioned communication protocol, two features are added
during the synthesis process.First , in order to make the
functionality of the circuit critical-race2 free,dichotomiesare
added to constrain the binary state encoding of the circuit
[14]. Consequently, the resulting state codes ensure that a
transition between two states never reaches a transient state
with a different destination state for the current input.Sec-
ond, to make the next state and output functions hazard-free,
redundant implicantsare added to their implementation [15].

The popularity of Burst-Mode machines owes itself in part
to the extensive research efforts that have been invested in
methods and tools for automating their design [8, 10, 11, 12].
For the purpose of this work, we used a comprehensive asyn-
chronous Burst-Mode logic synthesis package called MIN-
IMALIST [8]. The above constraints, along with several
optimization algorithms are incorporated in MINIMALIST,
yielding a minimal hazard-free logic implementation.

2.2 Example

An asynchronous Burst-Mode machine is described using
a state transition table such as the one shown in Fig. 2. The
rows in the table correspond to the current symbolic state,
the columns correspond to the inputs and the entry indicates
the next state and the outputs. For example, if the circuit is in
stateS0, an input-burst of1010 will cause a transition to state
S2 and will generate an output of00. Let us now assume that
the next input burst is1001, i.e. inputc is lowered and input
d is raised, and thatc is lowered first and thend is raised, i.e.
1001 → 1000 → 1001. The circuit responds only after the
input burst is complete, so between the time thatc is lowered
and the time thatd is raised, the next state and output function
do not change. Once the input burst is complete, the circuit
will make a transition to stateS0 and will compute the output,
which in this case remains the same,00.

We note that, depending on the encoding of the states, a
critical-race may occur during this transition. For example,
if the states are encoded asS0 = 00, S1 = 01 andS2 = 11,

2A critical-race hazard exists if two state variables change value and the
machine’s next state depends on the order of arrival of these changes [9, 13].

Inputs: a, b, c, d
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
S0,00 S0,00 - - - - - - S0,01 S0,00 S2,00 - S1,00 - - -
S0,00 - - - - - - - S1,10 S1,10 - - S1,00 - - -

- - - - - - - - S2,00 S0,00 S2,00 S2,00 - - - -

S
0

S
1

S
2

Outputs: x, w

States

Figure 2. Symbolic State Transition Table

Y0

Y
1

a

b

c

d

w

x

1

2

3

4

5

6

7

Figure 3. Asynchronous Circuit Implementation

then the transition fromS2 to S0 may go through a transient
state of01, which is the state encoding ofS1. In combination
with the current input burst of1001, this will produce a next
state ofS1 and an output of10, both of which are incorrect.
Thus, this state encoding would be invalid for the circuit.

A dash in a table entry signifies that the corresponding
combination of current state and input is not permitted by
the communication protocol between the circuit and the en-
vironment. For example, if the circuit is in stateS1, an input-
burst of0010 is not allowed to occur. The synthesis process
of MINIMALIST starts by performing state minimization on
thesymbolicstate transition table, constrained such that the
reduced state transition table has a hazard-free logic imple-
mentation [12]. In the example of Fig. 2, the state transi-
tion table is already minimal. Next, dichotomies are added
to ensure a critical-race free state encoding. Solving the di-
chotomies results in the state encodingS0 = 00, S1 = 01,
andS2 = 10 for the example circuit and the symbolic states
are replaced by their binary values. The last step is to gen-
erate a minimal costhazard-freelogic implementation of the
circuit [11]. Fig. 3 shows the resulting implementation of the
example asynchronous Burst-Mode machine, which includes
some logic redundancy to ensure hazard-free operation.

3 Duplication in Burst-Mode Controllers

In this section, we discuss the shortcomings of
duplication-based CED when applied to asynchronous Burst-
Mode controllers and we propose remedies.

3.1 Shortcomings

Duplication-based CED is the simplest and most com-
monly used method in synchronous circuits. It employs a
copy of the original circuit and a comparator to continuously
check the results of the two circuits and identify any error-
induced discrepancies. Duplication, however, cannot be di-
rectly applied on asynchronous Burst-Mode controllers due

1

4

Y1

b

Y1 = b + a b` Y1 + a Y1 = b + 1 + 4

Figure 4. Timing Diagram Illustrating a Hazard

to two reasons: (i) the lack of a global synchronization clock
and (ii) the existence of redundant logic in the circuit.

The lack of a synchronizing clock introduces uncertainty
as to when the responses of the two circuits should be com-
pared. Process variations, input skew and the fact that the
two circuits are separate entities are few of the reasons why
two identical circuits may compute the correct response with
different delay. Consequently, the output of the compara-
tor may temporarily indicate an error, which in this case is a
false alarm. The use of duplication-based CED is no longer
straightforward without the requirement that the outputs be
checkedonlywhen both are supposed to be ready.

Logic redundancy in Burst-Mode machines prevents haz-
ards from occurring during error-free operation. As a result,
some errors may causeonly hazards but no functional dis-
crepancy. For example, if the current state in the circuit of
Fig. 3 isS1 and the input changes from1100 to 1000 then
the next state should beS1, as indicated in Fig. 2. How-
ever, an error inducing a logic value of ‘0’ at the output of
gate 4 will result in a hazard at the next state lines. This is
illustrated in the timing diagram of Fig. 4. The dashed line
represents the logic value if the error was not present. In this
example, the change of inputb affects the next state function
Y1 before the change in gate 1 reachesY1. During that time,
Y1 is at the logic value of ‘1’ due to gate 4. Consequently, an
error in gate 4 will generate a hazard atY1 but will not affect
correctness of the results. Interestingly, the number of such
errors is significant, exceeding 30% in many circuits.

3.2 Proposed Remedies

Based on the communication protocol, an asynchronous
Burst-Mode machine changes its state and output only after
an input burst is complete. Similarly, the environment is not
allowed to provide a new input burst until the output burst
of the circuit is complete, i.e. until it has finished evaluation
of the previous input burst. This restriction forms the basis
for synchronizing the comparison between the original and

Change
Detection Circuitry

Input Change
Delay

Input Change

Figure 5. Change Detection Circuit

Delay

Delay

Change
in Inputs Output Hazard

Figure 6. Hazard Detection Circuit

the duplicate circuit. Essentially, we can use the arrival of a
new input burst as a valid point in time to check the response
of the circuit for the previous input burst. For this purpose,
the change detection circuit of Fig. 5 is added to every input
line, generating a short comparison window after each input
change. When the last bit of the input burst changes, the
circuit starts evaluating its new state and output, which will
be checked by the comparison window generated by the first
bit change of the next input burst.

Error-induced hazards can be detected by adding the cir-
cuit of Fig. 6 to the next state and output bits of the circuit.
Hazard detection is based on the fact that no more than one
transition, either rising or falling, is allowed on these lines
after each input burst. The hazard detection circuit is able to
observe the occurrence of both a rising and a falling transi-
tion on a state or output bit. Every time an input changes,
the transitions detected in the hazard detection circuit are re-
set. Subsequently, the upper feedback loop monitors the line
and latches a rising transition while the lower feedback loop
does the same for a falling transition. If both transitions are
observed, then the hazard signal is asserted.

The enhanced duplication-based CED method is illus-
trated in Fig. 7. The change detection circuit is added to
every input line and the hazard detection circuit is added to
every output and state line of the original circuitonly. Since
the duplicate circuit does not interact with the environment,
hazard detection in the duplicate circuit is not required. Fi-
nally, the error indication signal is asserted if the comparator
detects a mismatch between the two circuits after an input
changeor if a hazard is observed in the original circuit.

4 Proposed Transition-Triggered CED

In an effort to reduce the cost of duplication in asyn-
chronous Burst-Mode machines, we propose in this section
a Transition-Triggered CEDmethod which is shown in Fig.
9. Our method starts with the observation that hazards in the
duplicate circuit do not affect the communication protocol
between the original circuit and the environment. Therefore,
the redundant logic used to make the original circuit hazard-
free is not necessary in the duplicate circuit. By allowing
hazards to occur in the duplicate circuit, its logic implemen-
tation can be optimized to reduce the cost. Hazards on the

Inputs
Outputs

Next State

Change
Detection Circuitry

Outputs

Next State

C
O
M
P
A
R
A
T
O
R

Error

ORIGINAL
CIRCUIT

Hazard
Detection Circuitry

Hazard
Detection Circuitry

DUPLICATE
CIRCUIT

Figure 7. Enhanced Duplication-Based CED

feedback lines of the optimized duplicate, however, jeopar-
dize the operation of the asynchronous circuit. To avoid this
problem, we use multiplexors on the state lines of the opti-
mized duplicate circuit to select between the current state and
the next state. The multiplexors are controlled using an addi-
tional Transition Prediction Function , which signifies the
end of an input burst. The implementation of the transition
prediction function needs to behazard-freeto avoid propa-
gation of an incorrect next state through the multiplexors.

Interestingly, the transition prediction function can be
used in conjunction with the comparison synchronizer to fur-
ther reduce the cost of CED in two ways.First , the hazard
detection circuit that was added to each output and state line
can be eliminated: the transition prediction function indicates
when changes areallowed to occurat the next state and out-
put signals of the original circuit, while the change detection
circuit of Fig. 5 indicates when such changesactually occur.
An error-induced hazard in the original circuit would result
in a mismatch between these two signals and may, thus, be
detected without the addition of explicit hazard detection cir-
cuitry. Second, the functionality of the duplicate circuit can
be optimized further. Since the hazard-free operation of the
original circuitduring an input burstis checked by the transi-
tion prediction function and the response change signal, com-
parison between the original circuit and the optimized dupli-
cate is necessaryonlyafter an input burst is complete. There-
fore, the functionality of the optimized duplicate for incom-
plete input bursts can be considered as “don’t-care”, allowing
for further hardware reduction in its implementation.

The functionality of the optimized duplicate and the tran-
sition prediction function is illustrated in the state transition
table of Fig. 8. In contrast to the table of Fig. 2, only entries
with a change in the output or next state lines are defined for
the duplicate circuit; the rest are “don’t cares”. The transition
prediction function is defined for every defined entry in the
state transition table of the original circuit and takes a logic
value of ‘1’ only when a transition appears in the next state
or output lines at the end of an input burst. The state tran-
sition table shown in Fig. 8 is used to design the proposed
Transition-Triggered CED method illustrated in Fig. 9. The
state of the transition prediction function and the optimized
duplicate circuit changes after an input burst is complete and

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
-, --0 -, --0 - - - - - - S0,011 -, --0 S2,001 - S1,001 - - -

S0,001 - - - - - - - S1,101 -, --0 - - -, --0 - - -
- - - - - - - - -, --0 S0,001 -, --0 -, --0 - - - -

S
0

S1

S
2

States

Figure 8. Optimized Symbolic State Transition Table with a Transition Prediction Function

Inputs

Outputs

Next State

Input Change

Outputs

Next State

ORIGINAL
CIRCUIT

Transition
Prediction
Function

C
O
M
P
A
R
A
T
O
R

Optimized
Duplicate

Change
Detection Circuitry

Error

Change
Detection Circuitry

Comparison
Synchronizer

NS/Output Change

Mux

Figure 9. Transition-Triggered CED

5

4

3
6

Error

Transition
Prediction
Function

Comparator

Change in
NS/Outputs

2

1

Change
in Inputs

Figure 10. Comparison Synchronizer

the next input burst starts. The structure of the comparison
synchronizer is illustrated in Fig. 10. The comparison syn-
chronizer uses four control signals to generate the error in-
dication signal: the change in the inputs, the change in the
next state or outputs, the transition prediction function and
the result of the comparator. The signal indicating a change
in next state or output between input changes is stored using
gates 1 and 2. Every time an input changes, two comparisons
are performed: First, the change in the next state and out-
puts signal is compared to the transition prediction function
using gate 3, in order to detect any unexpected transitions
in the original circuit. Second, the result of the comparator
is enabled, using the transition prediction function in gate 4,
to check the response of the original circuit for correctness.
The logic OR of these two comparisons, which is computed
in gate 5, constitutes the error indication signal.

5 Experimental Results

In this section, we compare the area overhead of the pro-
posed CED method to duplication-based CED. The specifi-
cations of the circuits used in these experiments are provided
along with MINIMALIST in [16]. The circuits are first syn-
thesized using MINIMALIST to generate an asynchronous
implementation inpla [17] format. Next, the change de-

tection, hazard detection and duplicate circuits are added to
the original circuit, as described in Section 3.2, to perform
duplication-based CED. The optimized duplicate circuit of
the proposed Transition-Triggered CED is produced using
espresso[17] based on the specification of the original cir-
cuit. The transition prediction function is generated using
MINIMALIST to ensure hazard-free behavior. The change
detection circuit, state multiplexors, and output comparator
are added to the original circuit, as described in Section 4, to
perform the proposed Transition-Triggered CED.

The results are analytically presented for the individual
components of duplication-based CED in Table 1 and the
proposed Transition-Triggered CED in Table 2. The gate
count of the circuits is normalized to the equivalent num-
ber of 2-input NAND-gates. Under the first major heading
in Table 1, we provide details about the circuits that were
used: name, number of primary inputs, number of states and
number of primary outputs. The literal and gate count of the
original circuit, the duplicate circuit, the hazard detection cir-
cuit, the comparator and the CED synchronizer are presented
in the second, third, fourth, fifth and sixth major heading,
respectively. The last major heading summarizes the total lit-
eral and gate count for duplication-based CED. The results
for the proposed Transition-Triggered CED method are il-
lustrated in Table 2. Under the first two major headings, we
repeat the original circuit information that appears in Table 1.
The literal and gate count of the optimized duplicate circuit,
the state multiplexors, the transition prediction function, the
comparator and the CED synchronizer are presented in the
third, fourth, fifth, sixth and seventh major heading, respec-
tively. The last column summarizes the total literal and gate
count for the proposed Transition-Triggered CED.

The average gate-count reduction of the proposed method
over duplication-based CED over all benchmark circuits is
22.56%. In small benchmark circuits, the cost of the haz-
ard detection circuit is very high relatively to the cost of the
original circuit and, thus, the proposed method outperforms
duplication-based CED significantly. For example, this is the
case fortangram−mixer andhp− ir. Moreover, the pro-
posed method also reduces significantly the cost for large
circuits, where the ratio of the cost of the hazard detection
circuit to the original circuit is small. For example, this is
the case forpe − send − ifc andp1, where the cost is re-
duced by more than 22%. The cost of the optimized dupli-
cate circuit is very close to the cost of the original circuit for
small benchmarks. For example, this is the case for circuits
concur −mixer andhp− ir. This is attributed to the small
amount of redundant logic used to design a hazard-free im-
plementation of the specification of these circuits. In more

Circuit Original Duplicate H. D. Circuit Comparator Synchronizer Total

Name I/S/O Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates
concur-mixer 3/3/3 26 16 26 16 78 70 38 25 22 17 190 144

martin-q-element 2/2/2 14 9 14 9 46 41 22 14 14 12 110 85
opt-token-distributor 4/6/4 74 41 74 41 112 98 56 35 30 23 346 238

pe-send-ifc 5/5/3 110 58 110 58 96 84 48 30 38 30 402 260
tangram-mixer 3/2/2 17 10 17 10 46 41 22 14 22 17 124 92

p1 13/11/14 458 238 458 238 278 247 134 85 142 77 1470 885
while concur 4/4/3 41 24 41 24 96 84 48 30 30 23 256 185

rf-control 6/6/5 75 37 75 37 128 112 64 40 48 36 390 262
hp-ir 3/2/2 13 8 13 8 46 41 22 14 22 17 116 88
while 4/3/3 27 16 27 16 78 70 38 25 30 23 200 150

Table 1. Experimental Results for Duplication-Based CED

Circuit Original Opt. Duplicate Muxes Transition Func. Comparator Synchronizer Total

Name I/S/O Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates
concur-mixer 3/3/3 26 16 22 14 12 7 6 3 38 25 60 47 164 112

martin-q-element 2/2/2 14 9 12 7 6 4 4 3 22 14 36 29 94 66
opt-token-distributor 4/6/4 74 41 46 22 18 11 23 14 56 35 86 65 303 188

pe-send-ifc 5/5/3 110 58 48 27 18 11 20 10 48 30 86 65 330 201
tangram-mixer 3/2/2 17 10 13 8 6 4 7 4 22 14 44 34 109 74

p1 13/11/14 458 238 185 99 24 14 92 49 134 85 276 180 1169 665
while concur 4/4/3 41 24 21 12 18 11 18 11 48 30 78 59 224 147

rf-control 6/6/5 75 37 34 19 18 11 25 15 64 40 112 84 328 206
hp-ir 3/2/2 13 8 10 6 6 4 8 5 22 14 44 34 103 71
while 4/3/3 27 16 13 9 12 7 17 9 38 25 68 53 175 119

Table 2. Experimental Results for Transition-Triggered CED

complex circuits, such aswhile concur andrf − control,
the cost of the optimized circuit is almost 50% of the cost of
the original circuit. Moreover, the cost of the optimized du-
plicate of the largest asynchronous controller,p1, is less than
42% of the cost of the original circuit. As the circuit specifi-
cation becomes more complex, the percentage of redundant
logic that can be saved by Transition-Triggered CED over
duplication-based CED also increases.

6 Conclusion

Duplication-based CED is not directly applicable to the
class of asynchronous Burst-Mode controllers due to the lack
of a global clock, the existence of redundant logic, and the
communication protocol between these circuits and the envi-
ronment. We showed that these obstacles can be overcome at
the expense of additional hardware for comparison synchro-
nization and hazard detection, resulting in a comprehensive
CED method that detects not only the functional correctness
of the circuit, but also its correct interaction with the environ-
ment. Furthermore, we demonstrated that a transition pre-
diction function can be used to reduce the incurred overhead.
The proposed Transition-Triggered CED method eliminates
the additional hazard detection circuitry and permits a less
expensive implementation of the duplicate circuit. Thus, as
indicated through experimental results, an average of 22% in
hardware savings is achieved.

References

[1] W.-C. Chou et al., “Average-case optimized technology map-
ping of one-hot domino circuits,” inASYNC, 1998, pp. 80–91.

[2] C. Shi and J. Brzozowski, “An effecient algorithm for con-
strained encoding and its applications,”IEEE TCAD, vol. 12,
no. 12, pp. 1813–1826, 1993.

[3] K. Y. Yun and D. L. Dill, “Automatic synthesis of extended
burst-mode circuits,” inICCAD, 1999, pp. 118–132.

[4] B. Lin and S. Devadas, “Synthesis of hazard-free multi-level
logic under multiple-input changes from binary decision dia-
grams,” IEEE TCAD, vol. 14, no. 8, pp. 974–985, 1995.

[5] T. Verdel and Y. Makris, “Duplication-based concurrent error
detection in asynchronous circuits: shortcomings and reme-
dies,” inDFT, 2002, pp. 345 – 353.

[6] S. J. Piestrak and T. Nanya, “Towards totally self-checking
delay-insensitive systems,” inFTCS, 1995, pp. 228–237.

[7] D. A. Rennels and H. Kim, “Concurrent error detection in
self-timed VLSI,” inFTCS, 1994, pp. 96–105.

[8] R. M. Fuhrer and S. M. Nowick,Sequential Optimization of
Asynchronous and Synchronous Finite-State Machines: Algo-
rithms and Tools, Kluwer Academic Publishers, 2001.

[9] D. A. Huffman, The Synthesis of Sequential Switching Net-
works, Addison-Wesley, 1964.

[10] S. M. Nowick, Automatic Synthesis of Burst-Mode Asyn-
chronous Controllers, Ph.D. thesis, Stanford University,
1993.

[11] S. M. Nowick and D. L. Dill, “Exact two-level minimiza-
tion of hazard-free logic with multiple-input changes,”IEEE
TCAD, vol. 15, no. 8, pp. 986–997, 1995.

[12] R. M. Fuhrer and S. M. Nowick, “Optimista: State minimiza-
tion of asynchronous FSMs for optimum logic,” inICCAD,
1999, pp. 7–13.

[13] S. H. Unger, Asynchronous Sequential Switching Circuits,
Wiley-Interscience, 1969.

[14] G. De Micheli, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Optimal state assignment for finite state ma-
chine,” IEEE TCAD, vol. 4, no. 3, pp. 269–285, 1985.

[15] E. J. McCluskey, “Minimization of boolean functions,”Bell
System Technology Journal, vol. 35, pp. 1417–1444, 1956.

[16] “Tools (MINIMALIST),” Available from
http://www1.cs.columbia.edu/async/ .

[17] E. M. Sentovich et al., “SIS: a system for sequential circuit
synthesis,” ERL MEMO. No. UCB/ERL M92/41, EECS UC
Berkeley CA 94720, 1992.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

