
 1

Reliability-Centric High-Level Synthesis

S. Tosun†, N. Mansouri†, E. Arvas†, M. Kandemir‡, and Yuan Xie‡
† {stosun,namansou,earvas}@ecs.syr.edu, Syracuse University

‡ {kandemir,yuanxie}@cse.psu.edu, Pennsylvania State University

Abstract
Importance of addressing soft errors in both safety critical
applications and commercial consumer products is increasing,
mainly due to ever shrinking geometries, higher-density circuits,
and employment of power-saving techniques such as voltage
scaling and component shut-down. As a result, it is becoming
necessary to treat reliability as a first-class citizen in system
design. In particular, reliability decisions taken early in system
design can have significant benefits in terms of design quality.
Motivated by this observation, this paper presents a reliability-
centric high-level synthesis approach that addresses the soft error
problem. The proposed approach tries to maximize reliability of
the design while observing the bounds on area and performance,
and makes use of our reliability characterization of hardware
components such as adders and multipliers. We implemented the
proposed approach, performed experiments with several designs,
and compared the results with those obtained by a prior proposal.

1. Introduction

With ever shrinking geometries and higher-density circuits, the
issue of soft errors and reliability in system design is set to become
an increasingly challenging issue for the industry as a whole. This
is true for both commercial consumer applications and safety
critical applications. Specifically, for high-volume low-margin
consumer products, frequent soft errors can lead to expensive field
maintenance. For safety critical applications, poor reliability can be
catastrophic in terms of both human and equipment cost.
Therefore, reliability-aware design that targets at mitigating the
potential consequences of soft errors is highly desirable.

While substantial progress has been made over the years in
formulating and understanding the basic concepts in high-level
synthesis (HLS), most of the prior studies focused on performance-
area or performance-power-area tradeoffs. In comparison,
relatively fewer papers considered reliable/fault-tolerant HLS.
However, considering the emerging soft error problem, it is
becoming increasingly important to incorporate reliability concerns
into the HLS process.

Prior work investigated soft error susceptibility of memory
elements and combinational circuits [1]. It showed that
combinational circuits are less susceptible to soft errors than
memory elements. This is because of three major error masking
effects on combinational circuits; namely logical, electrical, and
latching-window masking. On the other hand, Sivakumar et al [2]
demonstrate that the soft error susceptibility of combinational
circuits will be comparable to that of memory circuits by the year
of 2011 with the current technology trends. This significant
prediction urges the computer designers for further research to
reduce the soft error effects on the data-path part of their designs
since the current protection techniques for combinational circuits
introduce more area, power consumption, and/or performance
penalty than those designed for memory elements. These
observations motivate us to consider the effects of soft errors on
the problem of high-level data-path synthesis and the overall
reliability for the combinational part of the resulting designs.
Therefore, the work proposed in this paper is orthogonal and

complementary to techniques proposed for improving reliability of
memory components.
 In this paper, we propose and evaluate a reliability-centric HLS
approach that addresses soft errors. We call our approach
“reliability-centric” since it tries to maximize reliability of the
resulting design while observing the bounds on area and
performance. Note that this is very different from a conventional
HLS framework that incorporates reliability concerns into the
design in an ad-hoc fashion after the major design decisions (based
on performance, area, and/or power) have already been made. This
paper makes the following contributions:
◊ It describes our reliability characterization of library

components such as adders and multipliers. Our library
accommodates several versions of each type of resource,
where each version can have different area, performance and
reliability characteristics as compared to the others. In the
context of this characterization, we also discuss the
relationship between reliability and soft errors.

◊ It presents a reliability-centric HLS framework that operates
under performance and area bounds. The framework makes
use of our reliability characterization, and selects the most
reliable version (implementation) for each operation (in the
data-flow graph representation of the design) as long as we
do not exceed the area or performance bounds.

◊ It presents an experimental evaluation of the proposed
framework, and compares it to a prior study that improves
reliability through redundancy. Our experimental evaluation
identifies the cases where one of the techniques performs
better than the other, and points out a unified approach that
could merge the two techniques for increasing reliability
further.

 The rest of this paper is organized as follows. The next section
presents a discussion of the prior work. Section 3 gives a
background on soft errors. Section 4 presents the results obtained
from our reliability characterization of hardware components.
Section 5 explains the method used in this paper to evaluate the
reliability of the overall design. Section 6 presents our approach to
scheduling, resource binding, and resource allocation. Section 7
presents experimental data, showing the impact of the proposed
reliability-centric approach. Section 8 concludes the paper with a
summary of our contributions and summarizes our future efforts.

2. Related Work

Most of the prior studies on reliable design make use of component
redundancy. They typically use one resource (version) for each
type of operation with a fixed reliability, and the reliability is
increased by adopting N Modular Redundancy (NMR). Orailoglu
and Karri [3] introduced an elegant design methodology for fault-
tolerant ASICs to explore the three-dimensional space of
reliability, area, and performance. They presented two strategies
that are based on NMR. The first strategy targets at minimizing the
overall cost of the design under performance and reliability
constraints, while the second one tries to maximize the reliability
given the cost and performance constraints. Their technique adds
an extra cost to the design that is proportional to N (in NMR) for

1530-1591/05 $20.00 © 2005 IEEE

 2

specific resource. For example, if the design area is S without any
redundancy and the resource with the area of A is duplicated (i.e.,
N=2), then the area of resulting design is S+A, excluding the area
required by the result-checking circuitry and interconnects. This
technique gives very good results if the cost bound permits the
designer to add redundancy to the design. A similar approach is
used in related studies such as [4]. In addition, these studies make
use of transformations that alter the computational structure such
that the original behavior is maintained. The transformation based
synthesis is used to reduce the overhead introduced by redundant
components.
 Another method used to improve the reliability of the high-level
system is to duplicate the entire structure for the self-recovering
circuits. This technique is used in various studies such as [5]. After
copying the entire flow graph, they used various strategies to
minimize the overall area of the final design. For example, [5]
exploits the freedom of operations, and schedules both the copies
to reduce the area overhead. Our approach differs from these
previous studies since it makes use of a reliability-characterized
library that has different versions of resources with different area,
performance, and reliability metrics. The library we use permits us
choose the most reliable resources for a specific task. In other
words, instead of increasing reliability through redundancy, we
achieve reliable design by using different versions of the
components (as allowed by area and performance bounds).

3. Background on Soft Errors

 A soft error, also called single event upset (SEU), is a “glitch”
in a semiconductor device [6]. These glitches are random, usually
not catastrophic, and they do not normally destroy the device. Soft
errors could be induced through three different radiation sources,
alpha particles from the naturally occurring radioactive impurities
in device materials, high-energy cosmic ray induced neutrons, and
neutron induced 10B fission. Soft errors occur when the collected
energy Q at a particular node is greater than a critical charge
Qcritical, which results in a bit flip at that node. This concept of
critical charge can be used to estimate the soft error rate (SER), as
will be detailed in the next section. Figure 1 illustrates the device
view and the circuit view of the bit flipping caused by a particle
strike.

Current

n+ n+
+

-

+

-

+

- +

-

+

- +

-

+

-

+

-
+

-

A particle

strike

Vout
CL

Vin

A particle

strike

Bit Flip !

1->0!

Figure 1: Soft error phenomenon: a device view and a circuit
view.
 Soft errors are the most benign form of radiation effects on the
circuitry, where radiation directly or indirectly induces a localized
ionization capable of upsetting internal data states. The causes for
soft errors are usually outside of the designer’s control. While
these errors result in an upset event, the circuit itself is not
damaged. Many systems can tolerate a certain degree of soft errors.
For example, in a video application, soft errors can manifest
themselves as missing or wrong colored bits on a display screen.
These errors may or may not be noticeable or important to the user.
However, when memory elements are used to control the
functionality of the device, such as in an SRAM FPGA, soft errors
can have a much more serious impact and lead not only to corrupt
data, but also to a loss of functionality and critical failures. Soft
error phenomenon in memory was known to exist as early as

1970s, and studies have been conducted to tackle this problem at
the circuit level. For example, in 1996, IBM disclosed its
experiments on computer electronics failure due to soft error from
1978 to 1994 [6]. Because of technology scaling, drastic shrinking
in device sizes, associated with reduction in operating voltages and
increase in clock frequencies, digital logic is becoming
increasingly susceptible to soft errors from natural ground level
radiation. Consequently, providing reliable functioning in the
existence of soft errors is becoming increasingly critical.
 It should be emphasized that the reliability problem is more
critical for embedded systems than their general-purpose
counterparts due to following reasons. First, as compared to
general-purpose systems, embedded systems are generally
employed in harsher environments. Second, to reduce power
demands, many battery-operated embedded systems accommodate
circuit/architectural-level techniques such as voltage scaling and
cache shutdown, which increase the vulnerability of the entire
system to soft errors. Third, the need for developing safety or
mission critical embedded applications with high demands in terms
of computational power under low-cost real time constraints
pushed designers to explore the possibilities offered by
incorporating the reliability concerns in hardware and software
design of an embedded system. Therefore, reliability concern must
be taken as the first-class parameter in embedded system design.

4. Reliability Characterization Based on
Soft Errors

 A key component of the proposed reliability-centric high-level
synthesis effort is the library characterization for soft errors.
Current state-of-the-art in library characterization [7] focuses
mainly on latency, area, and power. However, it is equally
important to study the soft error susceptibility of the library
components so that one can conduct a tradeoff analysis between
reliability and other metrics, which is critical for our purposes.
 Efficient soft error fault injection and simulation techniques [8]
can be used to evaluate the soft error susceptibility of a library
component. For each component (such as carry-lookahead adder
or carry-skip adder), each of the nodes (gates) in the netlist can be
characterized individually to determine their soft error
susceptibility by fault injection and simulation. After this step, by
analyzing the interconnection of gates in the netlist, the overall soft
error susceptibility of the design can be determined.
 Our resource library has components with different area,
performance, and reliability properties. The basic resources we
implemented are adders and multipliers. For example, for adder
implementations, we used ripple-carry adder, Brent-Kung adder,
and Kogge-Stone adder, and for multiplier implementations, we
used carry-save multiplier and Leap frog multiplier. In order to
estimate the reliabilities of these different versions of adders and
multipliers, we use a three-step approach illustrated in Figure 2.
 For the first step, we derive the Qcritical values from circuit
simulation. For example, we determine the Qcritical values for

Figure 2: Relationship between Qcritical, SER, failure rate, and
reliability.















−××∝
Qs

QcriticalCSNfluxSER exp

SER=λ

}exp{)(ttR λ−=

Qcritical SER

Failure rate Reliability

1

2

3

 3

ripple-carry, Brent-Kung, and Kogge-Stone adders as 59.460e-21
C, 29.701e-21 C, and 37.291e-21 C, respectively. After finding
the Qcritical for each implementation, the soft error rate (SER) is
estimated by using the expression,







−

××∝
sQ

criticalQ
CSfluxNSER exp ,

proposed by Hazucha et al [9]. In this expression, Nflux is the
intensity of the neutron flux, CS is the area of cross section of the
node, and Qs is the charge collection efficiency that strongly
depends on doping. The other parameters, neutron flux (Nflux) and
the area of cross section of the node (CS), can be chosen to be the
same for different circuit implementations with the same process
technology. With the assumption of uniform neutron flux and the
same technology generation being used for circuit implementation,
the total charge efficiency (Qs) can be assumed to be the same for
two circuits. Thus, the SERs for two circuits with the same
technology generation can be related to each other as

}
21

exp{*
21

sQ

criticalQcriticalQ
SERSER

−
= .

 We now need to relate the SER of each component to its
reliability metric. Reliability is defined as the probability with
which a component will perform its intended function satisfactorily
for a period of time [t0,t], given that the component was working
properly at time t0 [10]. To calculate the reliability of a design,
one needs to determine its failure rate

λ
, which is the probability

with which the design will fail in the next time unit, given that it
has been working properly in the current one. The reliability of a
component can be related to its failure rate by the distribution
function }exp{)(ttR λ−= . If we assume that every soft error will
result in a failure, we can use the SER of a component as its failure
rate, shown as the second step in Figure 2. We can then use the
reliability function to determine the reliability of a component,
which is the third step in the same figure. Note that in our library
characterization, the reliability of the ripple-carry adder is set to
0.999; and the reliabilities of other components are determined
based on this value, using three steps depicted in Figure 2.
 We laid out the circuits using the MAX layout editor tool, and
used the HSPICE simulator to simulate the layouts. The
normalized area and delay values for each implementation are
shown in Table 1 under columns two and three, respectively. Using
the steps explained above, the reliability values for these resources
are estimated as shown in the fourth column of Table 1. In our
experiments, we use the values given in Table 1.

Resource type Area (Unit) Delay (cc) Reliability

Adder 1 1 2 0.999

Adder 2 2 1 0.969

Adder 3 4 1 0.987

Multiplier 1 2 2 0.999

Multiplier 2 4 1 0.969

Table 1: Area, delay, and reliability values for different adder
and multiplier versions.

5. Design Reliability

 While the results obtained from the reliability characterization
of components presented in Section 4 are important, we also need a
mechanism to evaluate the reliability of an entire design built from
such components. Our goal in this section is to present the model
adopted in calculating the reliability of an entire design, given the
reliability characterizations of individual components. Note that

this is critical as it allows us to compare the two alternate designs
(that implement the same functionality with different versions of
resources) from a reliability perspective.
 A design is typically composed of multiple components that
interact with each other. The overall reliability of a design is
calculated based on how these components are related to each
other. Two basic reliability models are serial and parallel reliability
models [10], illustrated in Figures 3(a) and 3(b), respectively.

Figure 3: Serial (a) and parallel (b) reliability models.

 In the serial model, all the components involved should succeed
in order to have a system–wide (design-wide) success. As a result,
the overall reliability of the system from point A to B in Figure
3(a) can be expressed as

∏
=

=
n

i iRsR
1

.

In reliability engineering, the overall reliability of the parallel
model between points A and B in Figure 3(b) can be found as

∏
=

−−=
n

i iRsR
1

)1(1 ,

since it is assumed that only one component’s success results in
system-wide success. However, in the context of high-level
synthesis, in order to have a successful execution of entire design,
all hardware components must succeed. Consequently, to express
the reliability of the design, we adopt the formula

∏
=

=
n

i iRsR
1

for parallel models as well. As an example, the reliability of the
data-flow graph shown in Figure 4(a) can be expressed
as FRERDRCRBRARsR *****= .

 (a) (b)
Figure 4: (a) An example data-flow graph (b) TMR structure.

 Since we want to compare our approach to a redundancy-based
solution as well, let us now discuss the concept of redundancy in
mathematical terms. N Modular Redundancy (NMR) [3] is a
simple majority voting system that has N modules connected in
parallel. TMR (Triple Modular Redundancy) is a special case of
NMR illustrated in Figure 4(b). The reliability of the NMR can be
expressed as

∑
=

−−= 






N

ki

iN
R

i
R

i

N

NMRR)1(* ,

where N is the number of components in the system and k is the
number of components that must succeed in order to have a
successful execution. The relationship between N and k is given
by 12 −= kN . If 3≥N , the structure can have the ability of fault

Module 1 Module 2 Module 3

Voter

Input 1 Input 2 Input 3

Output

+A +B

+C

+D +E

+F

1 2 n

(a)

1

2

n (b)

A B A B

 4

tolerance, which is the capability of the system to continue to
perform successfully after a fault occurrence [3]. If a simple
duplication is used, the system can detect the fault when a fault is
introduced and some recovery mechanisms such as rollback can be
used to recapture the successful state of the system. In our
experiments, we also used NMR structure to demonstrate the
efficiency of using multiple implementations of a node (in the
data-flow graph) to increase the reliability of the overall design.

6. Reliability-Centric Resource Allocation,
Binding and Scheduling

 In this section, we present resource allocation, binding and
scheduling for our reliability-centric high-level synthesis approach.
The problem of finding the most reliable design based on our
library can be stated as follows: Given a data-flow graph Gs(V,E), a
resource set R, desired latency Ld, and desired area Ad, determine
the design with the highest reliability. Note that both bounds Ld
and Ad can prevent us from selecting the most reliable component
for every operation in the data-flow graph. Each resource
(version) r with type t in R has typically a different area,
performance, and reliability characteristic from the other resources
(versions) of type t. In this section, we present our approach to
determining the most reliable system by using these resources.
 To illustrate the impact of using more reliable resources
(instead of less reliable ones), we consider Figure 5(a) and Figure
5(b), which are two possible schedules for the data-flow graph
given in Figure 4(a). For this example, we bound the latency to 5
clock cycles and the area to 4 units. For the first schedule, shown
in Figure 5(a), we use only adders of type 2 (see Table 1). In
contrast, for the second schedule we consider using all the adder
types in Table 1. As a result, the first schedule has 4 units of total
area (two adders of type 2) and a reliability of 0.82783. On the
other hand, the second one has 3 units of total area (one adder of
type 1 and one adder of type 2) and its reliability is
0.90713. This small example illustrates that we can have a more
reliable design by using different resources with different
reliability/area/performance characteristic.

Figure 5: Two possible schedules for the data-flow graph*
shown in Figure 4(a).

 The overall algorithm is given in Figure 6. In this algorithm, we
first find an initial solution (between lines 3 through 5), which is
the most reliable one among all possible solutions. This is because
this initial solution employs the most reliable version for each node
in the data-flow graph. The algorithm performs resource allocation,
binding, and scheduling [11] in lines 3, 4 and 5. Note that, while
this algorithm can be used for both pipelined and non-pipelined

* In a scheduled data-flow graph, a step is a clock cycle that an operation
(node) starts its execution. The type of an operation is given inside of the
node with symbols such as + and * for addition and multiplication,
respectively. The name (id) of the node is also given along with its type
with a letter or a number.

data-paths, we use it here only in the context of non-pipelined
circuits. The scheduling algorithm partitions the data-flow graph
into the number of cycles determined by As Soon As Possible
(ASAP) scheduling, and calculates the density of each partition for
a specific type of operation. The total partition density is found by
adding the probabilities with which a node can be scheduled within
a partition. Then, it schedules an operation in the least dense
partition in which the operation can be scheduled. The algorithm
tries to distribute the operations evenly among the partitions so that
the number of resources used in the final design is minimized.
After scheduling the graph and binding the resources to each node,
the algorithm returns the latency and the total area of this initial
solution. As indicated earlier, this initial solution is the most
reliable one since the most reliable versions are allocated for each
node. However, it may not necessarily meet the latency or/and area
constraints. Consequently, we may need to select a victim node
and sacrifice its reliability by using a less reliable version for it.
This is achieved in two steps. In the first step, given between lines
7 through 12 in Figure 6, we check if the performance constraint
(bound) is met. If the latency L of the initial schedule is greater
than the desired latency (bound) Ld, then we iteratively reduce L by
allocating a new resource (typically a less reliable one) to a node
until we reach to Ld. Specifically, we pick the slowest node on the
critical path (Note that selecting a node which is not on the critical
path will not help us reduce the initial latency value), and use a
faster but potentially less reliable version for it. After this, the
critical path of the current design may change. Thus, we may have
to select a node from another path, which is the current critical
path, in the next iteration if the current latency value is still higher
than the bound (Ld). This process is repeated until we meet the
latency bound. If all the available versions have been tried and we
still could not meet the performance bound, we can conclude that it
is not possible to find a solution for the graph with given latency
constraint and available resources. After allocating new resources
to some of the nodes, we may need to update the resource sharing
if necessary (i.e., if A>Ad) to minimize the total area since we
introduce new resources to the design that can increase the overall

Figure 6: Algorithm for reliable design under performance and
area constraints. Ad and Ld correspond to latency
(performance) and area bounds, respectively.

+A

+B

+C

+D +E

+F

+A

+B

+C

+D +E

+F

Step 1

Step 2

Step 3

Step 4

Step 5

(a) (b)

1. Find_Design (Gs(V,E),R,Ld,Ad)
2. {
3. Allocate the most reliable resource to each node (G,R);
4. L=ASAP(G,R); ALAP(G,R,L);
5. Schedule(G,R,L); Bind_Resources(G,R);
6. A=Find_Total_Area(G,R);
7. while(L>Ld & ∃ r’ ∈ R. tr>tr’) do
8. {
9. Select the node nl on the critical path with highest delay;
10. Allocate a resource r’ to nl such that tr>tr’;
11. L=ASAP(G,R); ALAP(G,R,L);Schedule (G,R,L);
12. }
13. Update resource sharing;
14. A=Find_Total_Area(G,R);
15. if(A>Ad & Ld>L)
16 {
17. while(Ld>L) do
18. { L=L+1; ALAP(G,R,L);
19. Schedule (G,R,L); Bind_Resources(G,R);
20. }
21. }
22. A=Find_Total_Area(G,R);
23. while(A>Ad & ∃ r’ ∈ R. ar>ar’) do
24. {
25. Select the node nl with the biggest area;
26. Allocate a resource r’ to nl and to all other nodes that are

sharing the same resource with nl such that ar>ar’
& t r≥tr’;

27. A=Find_Total_Area(G,R);
28. }
29. if(A>Ad or L>Ld){return no solution;}
30. else{return total system reliability;}
31. }

 5

area of the design. This may result in sacrificing more nodes that
share the same resource with the ones that we updated. After
having met the latency constraint, we next calculate the total area
of the design, and check whether the area bound is met. If the area
A of the scheduled graph is greater than the desired area Ad, then
we make two attempts to reduce the area. We first check if there is
a latency slack that could be exploited (i.e., L<Ld) to reduce the
number of resources in the schedule. This attempt is implemented
between lines 15 through 21 in Figure 6. If this is not possible,
then we make our second attempt (lines 23 through 28), which is
based on an idea similar to the one we employed for reducing the
latency. Specifically, we select a victim node to be sacrificed based
on node areas, and allocate a smaller version to it. However, when
we choose a new version, we also need to check if this version
increases the latency. If it does, we select an alternate node, and
repeat the process until the area bound is met. If all the versions
have been tried and we still could not meet the area bound, then we
can conclude that it is not possible to find a solution to the given
graph with given area constraint and available resources. Finally, if
our algorithm returns a design that meets the area and performance
bounds, we calculate the total reliability of the design using
approach described in Section 5.

7. Experimental Evaluation

 In this section, we present experimental data showing the
impact of the proposed approach, and compare our results with
those obtained by a prior work. In our experiments, we used
several high-level synthesis benchmarks. Due to space concerns,
we only give the results for three benchmark examples; namely, a
16-point symmetric FIR filter [3], a 16 point elliptic wave filter
(EW) [11], and a differential equation solver (DiffEq) [12]. For the
resource library, we use the values in Table 1. We first illustrate
the impact of our approach on the FIR filter design. Then, we show
how reliability of a design changes with respect to performance
and area. Finally, we present a comparison of our approach with
the solution presented in [3] on different benchmarks. We also
show the results when our approach is combined with the method
in [3]. Note that, except for the last experiment, our approach does
not employ any redundancy.
 In the first experiment, we schedule the FIR filter with two
different approaches. Figure 7(a) shows the first approach that uses
only one implementation for each type of operator (node).
Specifically, we restrict ourselves to type 2 adders and type 2
multipliers. In comparison, the scheduling resulted from our
reliability-centric approach is shown in Figure 7(b). The latency
and area bounds for both the designs are 11 clock cycles and 8
units, respectively. The resulting area and reliability for the first
design are 8 units (two adders of type 2 and two multipliers of type
2) and 0.48467, respectively. On the other hand, our design has a
reliability of 0.78943 while the total area is the same as the first
one. To reach this reliability value, our solution employs two
adders of type 1, two multipliers of type 1, and one adder of type 2,
resulting 8 units of total area. It must be emphasized that if we use
other combinations of resources from Table 1 for the first
approach, we may not be able to meet the area and/or latency
bounds. For example, suppose that we used an adder of type 1 and
a multiplier of type 1 to schedule the FIR filter. In this case, the
minimum latency that could be achieved would be 18 clock cycles
(which is larger than the 11 cycles bound). This experiment shows
that having multiple versions of components with different
reliability, performance, and area values can help us reach a more
reliable design than an alternate scheme, which restricts itself to
one type of resource only.

Figure 7: Two possible schedules for the FIR filter with Ld=11
and Ad=8.

 In the second experiment, we demonstrate, using our approach,
the tradeoff between performance and reliability and between area
and reliability. We use the FIR filter in this experiment. Figures
8(a) and 8(b) plot the reliability when the latency and area values,
respectively, are varied. The reliability values in Figure 8(a) are
found by setting the area constraint to 8 units. As can be observed
from the figure, the performance changes inversely with reliability,
i.e., when we have a larger latency bound, we achieve better
reliability. We study the impact of area bound on design reliability
by setting a constant latency bound (10 clock cycles in this case)
and varying the area bound. Figure 8(b) plots the results and shows
that reliability increases proportionally with area.

Figure 8: (a) Reliability vs performance (b) Reliability vs area.

 In the final set of experiments, we compare our approach to the
approach presented in [3]. We also illustrate the results obtained
when these two techniques are combined. To do this, we scheduled
the FIR, EW, and DiffEq benchmarks with different area and
latency bounds. We started with the minimum allowable latency
and area values, and then increased the area and latency bounds.
For each schedule, we calculated the overall design reliability. The
results are provided in Table 2(a), Table 2(b), and Table 2(c),
respectively. We show the area and latency bounds used in the first
two columns of these tables. In column three, we give the
reliability values obtained using the technique presented in [3], and
column four shows the reliability values obtained by our approach
explained in this paper. Column five gives the percentage
(reliability) improvements brought by our approach over the
technique in [3]. Note that a negative value means that our
approach generates worse result than [3] under those particular
parameters. As can be seen from this column, our approach
generates more reliable designs when the latency/area bounds are
tighter. However, when we start to increase the area bound while
keeping the latency bound constant, [3] improves the overall
design reliability. With larger area bounds, it finds better results.
For example, in Table 2(a), when the latency bound is 10 clock
cycles, and the area bound is 9 units, [3] finds a design with the
reliability of 0.48467. In comparison, with the same bounds, our

0.4

0.5

0.6

0.7

0.8

0.9

1

8 10 12 13 14 15 16

Area

R
el

ia
b

ili
ty

0.4

0.5

0.6

0.7

0.8

0.9

1

10 11 12 14 16 18

Latency

R
el

ia
b

ili
ty

(a) (b)

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

(a)

(b)

+1

*8

*2

+a

+2

+b

*3

+c

+4

+5

*1 +3

*4

*5 +6

+d *6 +7

*7 +8 +e

+f

+g

+1 +2

+3

+4

+5

+6

+7

+8

*8

*1 *2

*3
+a

*4
+b

+c
*5

*6
+d

*7
+e

+f

+g

 6

Bounds

Ld Ad

Ref [3] Our
approach

%
Imprv

Our
approach
+Ref [3]

%

Imprv
 10 9 0.48467 0.59998 23.79 0.59998 23.79

10 11 0.61856 0.69516 12.38 0.76572 23.79
10 13 0.76572 0.69516 -9.22 0.77187 0.80
11 9 0.48467 0.78943 62.88 0.79497 64.02
11 11 0.61856 0.89798 45.17 0.98411 59.10
11 13 0.76572 0.89798 17.27 0.99102 29.42
12 9 0.61856 0.81387 31.58 0.81959 32.50
12 11 0.76572 0.90890 18.70 0.98411 28.52
12 13 0.78943 0.90890 15.13 0.99301 25.79

(a)

Bounds

Ld Ad

Ref [3] Our
approach

%
Imprv

Our
approach
+Ref [3]

%

Imprv
 13 7 0.45509 0.70260 54.39 0.81225 78.48

13 9 0.67645 0.78463 15.99 0.97530 44.18
13 11 0.89005 0.78463 -11.84 0.98805 11.01
14 7 0.45509 0.71114 56.26 0.83739 84.01
14 9 0.69739 0.79417 13.88 0.97530 39.85
14 11 0.94641 0.79417 -16.09 0.98805 4.40
15 5 0.45509 0.69739 53.24 0.69739 53.24
15 7 0.71899 0.80383 11.80 0.81225 12.97
15 9 0.97530 0.80383 -17.58 0.97530 0.00

(b)

Bounds

Ld Ad

Ref [3] Our
approach

%
Imprv

Our
approach
+Ref [3]

%

Imprv
 5 11 0.70723 0.77497 9.58 0.77497 9.58

5 13 0.82370 0.80403 -2.39 0.82370 0.00
5 15 0.82783 0.80645 -2.58 0.84920 2.58
6 11 0.70723 0.82370 16.47 0.82700 16.94
6 13 0.82370 0.82370 0.00 0.82783 0.50
6 15 0.82783 0.90260 9.03 0.90712 9.58
7 7 0.70723 0.90260 27.62 0.90260 27.62
7 9 0.82370 0.93054 12.97 0.93054 12.97
7 11 0.82783 0.95935 15.89 0.95935 15.89

(c)
Table 2: Reliability values and improvements under different
latency and area bounds. (a) FIR filter, (b) EW filter, (c) DiffEq.

Figure 9: Average reliability values for [3], our approach, and
the combined approach for three different HLS benchmarks.

approach obtains a reliability value of 0.59998, a 23.79%
improvement over [3]. However, when the area bound is loosened
to 13 under the same latency bound, [3] increases the reliability of
the design to 0.76572, which means a 9.22% improvement over
our approach. When we combine these two methods (i.e., when we
also employ redundancy following our approach), we can have
even more reliable designs under very tight bounds as shown in
column six of Table 2. For the combined approach, we introduce
redundancy as suggested in [3]. Note that, when we add
redundancy for an operator, we use the same version selected by
our reliability-centric approach as duplicate(s). For example, if we

use adder of type 2 in the schedule, we also use the same type of
adder as the redundant copy. The improvements brought by this
combined approach over [3] are given in column seven of Table 2.
This combined approach obtains a better reliability than [3], as can
be seen from these tables.
 In Figure 9, we give the average reliability values (over all our
experiments) obtained by [3], our approach, and the combined
approach for FIR, EW, and DiffEq benchmarks. Our approach
brings 21.92%, 9.67%, and 9.21% overall design reliability
improvements over [3] for FIR, EW, and DiffEq designs,
respectively. The combined approach obtains even more reliable
designs with design reliability increase of 30.33%, 28.57%, and
10.26% over [3] for FIR, EW, and DiffEq, respectively. Note that,
the reliability values for these designs are found for tight area and
latency values, which is desirable for system design.

8. Conclusions and Future Work

 This paper focuses on high-level synthesis and presents a
reliability-centric approach to address the growing soft error
problem. The main idea behind this approach is to increase the
reliability of the design as much as possible, bounded only by
allowable area and latency. As opposed to the prior work on the
topic, the proposed framework accommodates different versions of
the same type of resource, each differing in performance, area,
and/or reliability. Our experimental evaluation identifies the cases
where one can expect the proposed approach to be better than the
prior proposal. We also discuss how our approach can be
combined with the prior work to achieve even further
improvements on reliability of the design under consideration. As
our future plan, we would like to compare this approach to other
possible alternate schemes such as optimizing area under reliability
and performance constraints, or optimizing performance under
reliability and area constraints.

References

[1] K. Johansson, P. Dyreklev, B. Granbom, M. Calvet, S. Fourtine, and
O. Feuillatre, “In-flight and ground testing of single event upset sensitivity
in static RAM’s”, IEEE Transactions on Nuclear Science, 45:1628–1632,
June 1998.
[2] P. Sivakumar, M. Kistler, S. W. Keckler, D. C. Burger, and L. Alvisi,
“Modeling the Effect of Technology Trends on the Soft Error Rate of
Combinational Logic", International Conference on Dependable Systems
and Networks (DSN), June, 2002.
[3] A. Orailoglu and R. Karri, “A Design Methodology For The High-level
Synthesis Of Fault-tolerant Asics”, VLSI Signal Processing V, 1992.
[4] L .Guerra, M. Potkonjak, and J. Rabaey, “High level synthesis for
reconfigurable data path structures”, Computer-Aided Design, 1993.
[5] A. Antola, V. Piuri, and M. Sami, “High-level synthesis of data paths
with concurrent error detection”, Defect and Fault Tolerance in VLSI
Systems, 1998.
[6] J. F. Ziegler et.al. “IBM experiments in soft fails in computer
electronics (1978-1994)”, IBM Journal of Research and Development,
1996.
[7] B. Ackalloor and D. Gaitonde, “An overview of library
characterization in semi-custom design”, Proceedings of the IEEE Custom
Integrated Circuits Conference, 1998.
[8] D. Alexandrescu, L. Anghel, and M. Nicolaidis, “New Methods for
Evaluating the Impact of Single Event Transients in VDSM ICs”, Defect
and Fault Tolerance Symposium, 2002.
[9] P. Hazucha and C. Svensson, “Optimized test circuits for SER
characterization of a manufacturing process”, Solid-State Circuits, 2000.
[10] K. Neubeck, “Practical Reliability Analysis”, Prentice Hall, 2003.
[11] K. S. Hwang, A. E. Casavant, C.-T. Chang, and M. A. d'Abreu,
"Scheduling and hardware sharing in pipelined data paths", International
Conference on Computer Aided Design, 1989.
[12] 1992 High-Level Synthesis Design Repository,
http://ftp.ics.uci.edu/pub/hlsynth/HLSynth92/

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FIR EW DiffEq

Average Reliability Values
Ref[3] Our Approach Our Approach + Ref[3]

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

