Reliability-Centric High-Level Synthesis

S. Tosuh, N. Mansour, E. Arvag, M. Kandemif, and Yuan Xi&
T {stosun,namansou,earvas}@ecs.syr.edu, Syracuse University
T {kandemir,yuanxie}@cse.psu.edu, Pennsylvania State University

Abstract

Importance of addressing soft errors in both safetjtical

applications and commercial consumer products israasing,
mainly due to ever shrinking geometries, highersitgncircuits,
and employment of power-saving techniques such citage
scaling and component shut-down. As a result, ibeésoming
necessary to treat reliability as a first-classizéin in system
design. In particular, reliability decisions takerarly in system
design can have significant benefits in terms dfigie quality.
Motivated by this observation, this paper presemtseliability-

centric high-level synthesis approach that addregke soft error
problem. The proposed approach tries to maximizabiity of

the design while observing the bounds on area arfbpnance,
and makes use of our reliability characterizatioh fardware
components such as adders and multipliers. We mggiéed the
proposed approach, performed experiments with sédesigns,
and compared the results with those obtained bgica proposal.

1. I ntroduction

With ever shrinking geometries and higher-densitguits, the
issue of soft errors and reliability in system desi set to become
an increasingly challenging issue for the indusisya whole. This
is true for both commercial consumer applicatiomsl aafety
critical applications. Specifically, for high-volienlow-margin
consumer products, frequent soft errors can leaxpensive field
maintenance. For safety critical applications, petiability can be
catastrophic in terms of both human and equipmenst.c
Therefore, reliability-aware design that targetsnatigating the
potential consequences of soft errors is highlyrdeke.

While substantial progress has been made over ¢agsyin
formulating and understanding the basic conceptsigh-level
synthesis (HLS), most of the prior studies focusegerformance-
area or performance-power-area tradeoffs. In coismar
relatively fewer papers considered reliable/faaletant HLS.
However, considering the emerging soft error pnobldt is
becoming increasingly important to incorporateatality concerns
into the HLS process.

Prior work investigated soft error susceptibility memory
elements and combinational circuits [1]. It showabat
combinational circuits are less susceptible to sofors than
memory elements. This is because of three majar emasking
effects on combinational circuits; namely logicelectrical, and
latching-window masking. On the other hand, Sivaiuet al [2]
demonstrate that the soft error susceptibility ombinational
circuits will be comparable to that of memory citslby the year
of 2011 with the current technology trends. Thign#gicant
prediction urges the computer designers for furttesearch to
reduce the soft error effects on the data-path gfattheir designs
since the current protection techniques for contmnal circuits
introduce more area, power consumption, and/oropadnce
penalty than those designed for memory elementsesd
observations motivate us to consider the effectsofif errors on
the problem of high-level data-path synthesis ane overall
reliability for the combinational part of the resmy designs.
Therefore, the work proposed in this paper is atmal and

1530-1591/05 $20.00 © 2005 IEEE

complementary to techniques proposed for improveligbility of
memory components.

In this paper, we propose and evaluate ahiétiacentric HLS
approach that addresses soft errors. We call owroaph
“reliability-centric” since it tries to maximize liebility of the
resulting design while observing the bounds on asedal
performance. Note that this is very different frantonventional
HLS framework that incorporates reliability concgrinto the
design in an ad-hoc fashion after the major degagisions (based
on performance, area, and/or power) have alreaely bede. This
paper makes the following contributions:

It describes our reliability characterization ofbréry
components such as adders and multipliers. Ouariib
accommodates several versions of each type of masou
where each version can have different area, pedioca and
reliability characteristics as compared to the @thén the
context of this characterization, we also discuse t
relationship between reliability and soft errors.
It presents a reliability-centric HLS framework ttoperates
under performance and area bounds. The framewoKkesna
use of our reliability characterization, and sedettte most
reliable version (implementation) for each operat{m the
data-flow graph representation of the design) ag las we
do not exceed the area or performance bounds.
It presents an experimental evaluation of the psedo
framework, and compares it to a prior study thapriones
reliability through redundancy. Our experimentablenation
identifies the cases where one of the technique®mpes
better than the other, and points out a unifiedr@ggh that
could merge the two techniques for increasing béitst
further.
The rest of this paper is organized as folloWse next section
presents a discussion of the prior work. Sectiorgides a
background on soft errors. Section 4 presentsdhelts obtained
from our reliability characterization of hardwar@ngponents.
Section 5 explains the method used in this papeveiuate the
reliability of the overall design. Section 6 preseour approach to
scheduling, resource binding, and resource allocatSection 7
presents experimental data, showing the impachefproposed
reliability-centric approach. Section 8 concludke paper with a
summary of our contributions and summarizes owréefforts.

2. Related Work

Most of the prior studies on reliable design mage af component
redundancy. They typically use one resource (vejsfor each
type of operation with a fixed reliability, and theliability is
increased by adopting N Modular Redundancy (NMRRiloglu
and Karri [3] introduced an elegant design methogyplfor fault-
tolerant ASICs to explore the three-dimensional cepaof
reliability, area, and performance. They preserited strategies

hthat are based on NMR. The first strategy targetsimimizing the

overall cost of the design under performance anihhibty
constraints, while the second one tries to maxirttieereliability
given the cost and performance constraints. Theeinrtique adds
an extra cost to the design that is proportionall tin NMR) for

specific resource. For example, if the design &&awithout any 1970s, and studies have been conducted to tadklgtbblem at
redundancy and the resource with the areA isfduplicated (i.e., the circuit level. For example, in 1996, IBM dissddl its
N=2), then the area of resulting desigrsisA, excluding the area experiments on computer electronics failure dusatb error from
required by the result-checking circuitry and intemects. This 1978 to 1994 [6]. Because of technology scalingstic shrinking
technique gives very good results if the cost bopatdnits the in device sizes, associated with reduction in dpegavoltages and
designer to add redundancy to the design. A sinaifgproach is increase in clock frequencies, digital logic is dming

used in related studies such as [4]. In additibase studies makeincreasingly susceptible to soft errors from ndtg@und level

use of transformations that alter the computati@talcture such
that the original behavior is maintained. The tfamsation based
synthesis is used to reduce the overhead introdogaeédundant
components.

Another method used to improve the reliabitifyhe high-level
system is to duplicate the entire structure for shH-recovering
circuits. This technique is used in various studigsh as [5]. After
copying the entire flow graph, they used varioustsgies to
minimize the overall area of the final design. Fexample, [5]
exploits the freedom of operations, and schedut¢s the copies
to reduce the area overhead. Our approach diffenn fthese
previous studies since it makes use of a relighilitaracterized
library that has different versions of resourcethwdifferent area,

radiation. Consequently, providing reliable funaoing in the
existence of soft errors is becoming increasinghljcal.

It should be emphasized that the reliabilitpkpem is more
critical for embedded systems than their genergbqse
counterparts due to following reasons. First, ampgared to
general-purpose systems, embedded systems are aljener
employed in harsher environments. Second, to recumeer
demands, many battery-operated embedded systemsscoiate
circuit/architectural-level techniques such as agdt scaling and
cache shutdown, which increase the vulnerabilityttef entire
system to soft errors. Third, the need for develgpsafety or
mission critical embedded applications with higmdeads in terms
of computational power under low-cost real time stoaints

performance, and reliability metrics. The librarg wse permits us pushed designers to explore the possibilities edferby
choose the most reliable resources for a speafik.tIn other incorporating the reliability concerns in hardwaaed software
words, instead of increasing reliability througtdwadancy, we design of an embedded system. Therefore, religlmitincern must

achieve reliable design by using different versioos the
components (as allowed by area and performancedspun

3. Background on Soft Errors

A soft error, also callecsingle event upséBEU), is a “glitch”

be taken as the first-class parameter in embeddsters design.

4, Reliability Characterization Based on
Soft Errors

A key component of the proposed reliabilityyee high-level

in a semiconductor device [6]. These glitches arglom, usually gynthesis effort is the library characterizatiorr foft errors.
not catastrophic, and they do not normally destheydevice. Soft Cyrrent state-of-the-art in library characterizati§7] focuses
errors could be induced through three differentatimh sources, mainly on latency, area, and power. However, itetually
alpha particles from the naturally occurring radioae impurities important to study the soft error susceptibility thfe library

in device: materials, high-gnergy cosmic ray indugedtrons, and components so that one can conduct a tradeoff sisaetween
neutron induced 10B fission. Soft errors occur witencollected (giapility and other metrics, which is criticalrfour purposes.

energy Q at a particular node is greater than #caicharge Efficient soft error fault injection and sinatibn techniques [8]

Quriica Which results in a bit flip at that node. Thisncept of can be used to evaluate the soft error suscepilifi a library
critical charge can be used to estimate the soft eate (SER), as component. For each component (such as carrahesd adder

will be detailed_in t_he_next section_. F_igu_re 1 stiwates the de_vice or carry-skip adder), each of the nodes (gatethémetlist can be
view and the circuit view of the bit flipping causby a particle hgracterized to determine their softrror

strike.
A particle .

Current strike ‘/ A par‘.hcle

strike
ek $ \ Vm Voul
— — TCo
L ~ BitFlip!
— 1->0!

Figure 1: Soft error phenomenon: a device view and a circuit
view.
Soft errors are the most benign form of radiaeffects on the

individually
susceptibility by fault injection and simulationftér this step, by
analyzing the interconnection of gates in the setlhe overall soft
error susceptibility of the design can be deterichine

Our resource library has components with cbffié area,
performance, and reliability properties. The bassources we
implemented are adders and multipliers. For examgite adder
implementations, we used ripple-carry adder, Bkumg adder,
and Kogge-Stone adder, and for multiplier imp#atations, we
used carry-save multiplier and Leap frog mulépliln order to
estimate the reliabilities of these different vens of adders and
multipliers, we use a three-step approach illusttén Figure 2.

For the first step, we derive the,f, values from circuit

circuitry, where radiation directly or indirectipduces a localized simulation. For example, we determine thgQ, values for

ionization capable of upsetting internal data staldne causes for

soft errors are usually outside of the designeostml. While
these errors result in an upset event, the ciritaélf is not
damaged. Many systems can tolerate a certain defjsest errors.
For example, in a video application, soft errors gaanifest
themselves as missing or wrong colored bits onsplaly screen.
These errors may or may not be noticeable or impotb the user.

However, when memory elements are used to contnel t

functionality of the device, such as in an SRAM PP Goft errors
can have a much more serious impact and lead mpt@mrorrupt
data, but also to a loss of functionality and caitifailures. Soft
error phenomenon in memory was known to exist aly ees

SER] NquxxCSxexpﬂQrigﬂ\

|
Cser D

Failure rate

R(t)=exp{-At}

Figure 2: Relationship between Qqitica, SER, failure rate, and
reliability.

ripple-carry, Brent-Kung, and Kogge-Stone adder$@2460e-21 this is critical as it allows us to compare the titeraate designs

C, 29.701e-21 C, and 37.291e-21 C, respectivelyterAinding (that implement the same functionality with differemtrsions of

the Quiica fOr each implementation, the soft error rate (SER) resources) from a reliability perspective.

estimated by using the expression, A design is typically composed of multiple quonents that

_ interact with each other. The overall reliability ofdasign is
SERO N x CS X exp Qeritical calculated based on how these components are refatedch

flux Q ' other. Two basic reliability models are serial and fpelreeliability
S models [10], illustrated in Figures 3(a) and 3(b), respely.

proposed by Hazucha et al [9]. In this expressiofy Nis the o

intensity of the neutron flux, CS is the area of cresstion of the H

node, and Qis the charge collection efficiency that strongly o

depends on doping. The other parameters, neutrorfNiyx) and A._@_@_._.__QD—-B A .

the area of cross section of the node (CS), can teenho be the

same for different circuit implementations with the sapnocess

technology. With the assumption of uniform neutrbrx fand the @ (b) Q

same technology generation being used for circuitdmpntation, rigyre 3: Serial (a) and parallel (b) reliability models.

the total charge efficiency Rcan be assumed to be the same for

two circuits. Thus, the SERs for two circuits with tkame

' In the serial model, all the components invdlsbould succeed
technology generation can be related to each other as

in order to have a system—wide (design-wide) success result,
the overall reliability of the system from point A Byin Figure
3(a) can be expressed as

_n
Rg = MR -

Qcritical1 ~ Vcritical 2 1
J‘ .

Qs
We now need to relate the SER of each compoteerits
reliability metric. Reliability is defined as the probability with N . . I
which a component will perform its intended functisatisfactorily " reliability engineering, the overall reliabilitpf the parallel
for a period of time [ft], given that the component was working"0de! between points A and B in Figure 3(b) carfobed as
properly at time t[10]. To calculate the reliability of a design, n
S Rs=1-T@-R),

one needs to determine filure rate 2, which is the probability

with which the design will fail in the next time iingiven that it o , .

has been working properly in the current one. The rdilialif a SINC€ it is assumed that only one component's sscesults in

component can be related to its failure rate by theillision SYyStém-wide success. However, in the context ofh-fegel

functionR(t) = exp{-At} . If we assume that every soft error wilisynthesis, in order to have a successful execafi@ntire design,

result in a failure, we can use the SER of a comptoaits failure &/l hardware components must succeed. Consequémtgxpress

rate, shown as the second step in Figure 2. We @ uke the the reliability of the design, we adopt the formula

reliability function to determine the reliability of eomponent, n

which is the third step in the same figure. Note thaour library Rs = i|;|1Ri

characterization, the reliability of the ripple-carry ad@eset to -

0.999; and the reliabilities of other components aztemnined fOr parallel models as well. As an example, théabdlity of the

based on this value, using three steps depicteijiré=2. data-flow graph* shgwn n Flgure 4(a) can be expess
We laid out the circuits using the MAX layouiter tool, and 25Rs = Ra*Rg* Rc* Rp " Rg * R .

used the HSPICE simulator to simulate the layoutse Th

normalized area and delay values for each implementaire ®» ® itz Input3

shown in Table 1 under columns two and three, resmdgtising v v v

the steps explained above, the reliability valuegshese resources (9 [Modute 1] [odule 2 | [odule 3]

are estimated as shown in the fourth column of Table Jour
experiments, we use the values given in Table 1.

SER = SER_ * exp{
1 S P

I¢

Resour ce type Area (Unit) Delay (cc) Reliability Output
Adder 1 1 2 0.999 @ (b)
Adder 2 2 1 0.969 Figure 4: (a) An example data-flow graph (b) TMR structure.
Adder 3 4 1 0.987 _
Multiplier 1 > > 0.999 Since we want to compare our approach to andahcy-based
Multiphier 2 2 T 0969 solution as well, let us now discuss the conceptedfindancy in
mathematical terms. N Modular Redundancy (NMR) [8]a

Table 1: Area, delay, and reliability values for different adder

S ; simple majority voting system that has N moduleanexted in
and multiplier versions.

parallel. TMR (Triple Modular Redundancy) is a specase of
NMR illustrated in Figure 4(b). The reliability tfie NMR can be

expressed as
R = g N R +@-rNT
NMR =& @-R -,

5. Design Reliability

While the results obtained from the reliabilityacacterization
of components presented in Section 4 are importanalseeneed a
mechanism to evaluate the reliability of an entirsigte built from
such components. Our goal in this section is to ptetsee model
adopted in calculating the reliability of an entiresiyn, given the
reliability characterizations of individual componenidote that

whereN is the number of components in the system larithe
number of components that must succeed in ordehawe a
successful execution. The relationship betwlleandk is given
byN =2k -1. If N =23, the structure can have the ability of fault

3

tolerance, which is the capability of the systemctmtinue to
perform successfully after a fault occurrence [3f a simple
duplication is used, the system can detect the f@uén a fault is
introduced and some recovery mechanisms suchlaackican be
used to recapture the successful state of the msyshe our
experiments, we also used NMR structure to dematestthe
efficiency of using multiple implementations of ade (in the
data-flow graph) to increase the reliability of tneerall design.

6. Reliability-Centric Resource Allocation,

Binding and Scheduling

In this section, we present resource allooatisinding and

scheduling for our reliability-centric high-levejrehesis approach.

The problem of finding the most reliable designduh®n our
library can be stated as follows: Given a data-fipaphG4(V,E),a
resource seR, desired latencyy, and desired aredy, determine
the design with the highest reliability. Note thmith boundd 4
and Ay can prevent us from selecting the most reliable pmrent

data-paths, we use it here only in the context arfi-pipelined
circuits. The scheduling algorithm partitions thetedflow graph
into the number of cycles determined by As SoonPassible
(ASAP) scheduling, and calculates the density ohgzartition for
a specific type of operation. The total partitieendity is found by
adding the probabilities with which a node can dfeegluled within
a partition. Then, it schedules an operation in lésst dense
partition in which the operation can be schedulHie algorithm
tries to distribute the operations evenly amongoiditions so that
the number of resources used in the final desigmir@mized.
After scheduling the graph and binding the resaitoeeach node,
the algorithm returns the latency and the totaharkthis initial
solution. As indicated earlier, this initial soluti is the most
reliable one since the most reliable versions doeated for each
node. However, it may not necessarily meet thentater/and area
constraints. Consequently, we may need to seledttan node
and sacrifice its reliability by using a less rbl@ version for it.
This is achieved in two steps. In the first stdpey between lines
7 through 12 in Figure 6, we check if the perforogeconstraint
(bound) is met. If the latendy of the initial schedule is greater

for every operation in the data-flow graphEach resource than the desired latency (bourd) then we iteratively redudeby
(version) r with type t in R has typically a different area,allocating a new resource (typically a less redabhe) to a node
performance, and reliability characteristic frone tther resources until we reach td_y. Specifically, we pick the slowest node on the

(versions) of type. In this section, we present our approach
determining the most reliable system by using tmeseurces.

To illustrate the impact of using more relmbtesources
(instead of less reliable ones), we consider Figieg¢ and Figure
5(b), which are two possible schedules for the -flat& graph
given in Figure 4(a). For this example, we bourel ldtency to 5

itical path (Note that selecting a node whichds on the critical
path will not help us reduce the initial latencyueg, and use a
faster but potentially less reliable version far Affter this, the
critical path of the current design may change.sThwe may have
to select a node from another path, which is theeou critical
path, in the next iteration if the current latevajue is still higher

clock cycles and the area to 4 units. For the ficstedule, shown than the boundLg). This process is repeated until we meet the

in Figure 5(a), we use only adders of type 2 (sablél 1). In

contrast, for the second schedule we consider wsindpe adder
types in Table 1. As a result, the first schedwae # units of total
area (two adders of type 2) and a reliability 82783. On the
other hand, the second one has 3 units of total @mee adder of
type 1 and one adder of type 2) and iddiability is

0.90713. This small example illustrates that we bame a more
reliable design by using different resources witfffecent

reliability/area/performance characteristic.

(b)

(a)
Figure 5. Two possible schedules for the data-flow graph’
shown in Figure 4(a).

The overall algorithm is given in Figure 6.this algorithm, we
first find an initial solution (between lines 3 ¢lugh 5), which is
the most reliable one among all possible solutidihss is because
this initial solution employs the most reliable sien for each node
in the data-flow graph. The algorithm performs rese allocation,
binding, and scheduling [11] in lines 3, 4 and Btéthat, while
this algorithm can be used for both pipelined aod-pipelined

" In a scheduled data-flow gl[aph, a step is a chydke that an operation
(node) starts its execution. The type of an opamais given inside of the
node "with symbols such as +"and * for addition andltiplication,
respectively. The name (id) of the node is alseegialong with its type
with a letter or a number.

latency bound. If all the available versions haeerbtried and we
still could not meet the performance bound, weaarclude that it
is not possible to find a solution for the graphhagiven latency
constraint and available resources. After allocptiew resources
to some of the nodes, we may need to update tbhenes sharing
if necessary (i.e., if A>§ to minimize the total area since we
introduce new resources to the design that caeaserthe overall

1. Find_Design (((V,E),R,lg,Aq)

2. {

3. Allocate the most reliable resource to eate(G,R);

4. L=ASAP(G,R); ALAP(G,R,L);

5. Schedule(G,R,1Bind_Resources(G,R);

6. A=Find7TotaI7Arﬁ1(G,R);

7. while(>Lq4 & Lr LIR. t>t.) do

8.

9. Select the noden the critical path with highest delay;

10. Allocate a resource r'ricsuch that,pt,;

11. L=ASAP(G,R); ALAP(G,R,L);Schedule (GR,

12.

13. Update resource sharing;

14. A=Find_Total_Area(G,R);

15. ifA>Ay & Lg>L)

16

17. whild(>L) do

18. { L=L+1, ALAP(G,R,L);

19. Schedule (G,R,t.Bind_Resources(G,R);

20.

21.

22. A=Find_Total_Area(G,R);

23. whilef>A & Cr LIR. a>a) do

24,

25. Select the nodewith the biggest area;

26. Allocate a resource rht@nd to all other nodes that arg
sharing the same resource withsuch that @a
& tetr;

27. A=Find_Total_Area(G,R);

28. }

29. IfA>Aq or L>L g){return no solution}

30. else{returtotal system reliability;}

31. }

Figure 6: Algorithm for reliable design under performance and
area constraints. Ay and Ly correspond to latency
(performance) and area bounds, respectively.

area of the design. This may result in sacrifiangre nodes that
share the same resource with the ones that we aghdafter
having met the latency constraint, we next caleuthe total area
of the design, and check whether the area boungislf the area
A of the scheduled graph is greater than the desireaA,, then
we make two attempts to reduce the area. We fistlcif there is
a latency slack that could be exploited (i.e., k<to reduce the
number of resources in the schedule. This attemphplemented
between lines 15 through 21 in Figure 6. If thim@ possible,
then we make our second attempt (lines 23 thro@hwhich is
based on an idea similar to the one we employedeftucing the
latency. Specifically, we select a victim node eodacrificed based
on node areas, and allocate a smaller version koitvever, when
we choose a new version, we also need to chedkisifversion
increases the latency. If it does, we select agrradte node, and
repeat the process until the area bound is metll the versions
have been tried and we still could not meet tha arend, then we
can conclude that it is not possible to find a Soiuto the given
graph with given area constraint and availableusss. Finally, if
our algorithm returns a design that meets the anelgperformance
bounds, we calculate the total reliability of thes@n using
approach described in Section 5.

7. Experimental Evaluation

In this section, we present experimental dsitawing the
impact of the proposed approach, and compare ultsewith
those obtained by a prior work. In our experimems, used
several high-level synthesis benchmarks. Due t@esgancerns,
we only give the results for three benchmark exasiphamely, a
16-point symmetric FIR filter [3], a 16 point eltip wave filter
(EW) [11], and a differential equation solver ([E€) [12]. For the
resource library, we use the values in Table 1.f\g¢ illustrate
the impact of our approach on the FIR filter desifimen, we show
how reliability of a design changes with respectptrformance
and area. Finally, we present a comparison of ppraach with
the solution presented in [3] on different benchwmaWe also
show the results when our approach is combined thighmethod
in [3]. Note that, except for the last experimenir approach does
not employ any redundancy.

In the first experiment, we schedule the FIR filteith two
different approaches. Figure 7(a) shows the fpgraach that uses
only one implementation for each type of operatoodg).
Specifically, we restrict ourselves to type 2 addand type 2
multipliers. In comparison, the scheduling resulttdm our
reliability-centric approach is shown in Figure Y(Bhe latency
and area bounds for both the designs are 11 clgclex and 8
units, respectively. The resulting area and rditgbfor the first
design are 8 units (two adders of type 2 and twtiptiers of type
2) and 0.48467, respectively. On the other handdesign has a
reliability of 0.78943 while the total area is tkame as the first
one. To reach this reliability value, our solutiemploys two
adders of type 1, two multipliers of type 1, ane @udlder of type 2,
resulting 8 units of total area. It must be empresithat if we use
other combinations of resources from Table 1 foe tirst
approach, we may not be able to meet the area raftaténcy
bounds. For example, suppose that we used an afltigre 1 and
a multiplier of type 1 to schedule the FIR filtém. this case, the
minimum latency that could be achieved would beslb8k cycles
(which is larger than the 11 cycles bound). Thigeginent shows
that having multiple versions of components withffedent
reliability, performance, and area values can hslpeach a more
reliable design than an alternate scheme, whictiigesitself to
one type of resource only.

(b)
Figure 7: Two possible schedules for the FIR filter with L4=11
and Ag=8.

(a)

In the second experiment, we demonstrate gusim approach,
the tradeoff between performance and reliability batween area
and reliability. We use the FIR filter in this expeent. Figures
8(a) and 8(b) plot the reliability when the lateranyd area values,
respectively, are varied. The reliability valuesHigure 8(a) are
found by setting the area constraint to 8 unitsc&s be observed
from the figure, the performance changes inversély reliability,
i.e., when we have a larger latency bound, we aehieetter
reliability. We study the impact of area bound @sidn reliability
by setting a constant latency bound (10 clock cyatethis case)
and varying the area bound. Figure 8(b) plots déselts and shows
that reliability increases proportionally with area

/
T
/
/

1

1

0.9

A

o
©
4
©

o

3
Reliability

o

3

o
o

Reliability

o
=

o
o
=3
o

o
=
o
=

10 11 12 14 16 18 8 10 12 13 14 15 16

(a) Latency (b) Area

Figure 8: (a) Reliability vs performance (b) Reliability vs area.

In the final set of experiments, we compare approach to the
approach presented in [3]. We also illustrate #sults obtained
when these two techniques are combined. To dowkischeduled
the FIR, EW, and DiffEq benchmarks with differenea and
latency bounds. We started with the minimum alloedatency
and area values, and then increased the area @mdyiebounds.
For each schedule, we calculated the overall desigability. The
results are provided in Table 2(a), Table 2(b), dadble 2(c),
respectively. We show the area and latency boused in the first
two columns of these tables. In column three, wee gihe
reliability values obtained using the techniquespreed in [3], and
column four shows the reliability values obtaingddur approach
explained in this paper. Column five gives the patage
(reliability) improvements brought by our approacker the
technique in [3]. Note that a negative value meémst our
approach generates worse result than [3] underetipasticular
parameters. As can be seen from this column, owroagh
generates more reliable designs when the latemayfaounds are
tighter. However, when we start to increase tha d@und while
keeping the latency bound constant, [3] improves tverall
design reliability. With larger area bounds, itdinbetter results.
For example, in Table 2(a), when the latency boisndl0 clock
cycles, and the area bound is 9 units, [3] findgesign with the
reliability of 0.48467. In comparison, with the satmounds, our

5

Our
Bounds Ref [3] Our % approach %
La Aq approach tmprv +Ref [3] Imprv
10 9 0.48467 0.59998 23.79 0.59998 23.7
10 11 0.61856 0.69516 12.38 0.76577 23.7
10 13 0.76572 0.69516 -9.22 0.77187 0.80
11 9 0.48467 0.78943 62.88 0.79497] 64.0
11 11 0.61856 0.89798 45.17 0.98411 59.1
11 13 0.76572 0.89798 17.27 0.99107 29.4
12 9 0.61856 0.81387 31.58 0.81959 32.5
12 11 0.76572 0.90890 18.70 0.98411 28.5
12 13 0.78943 0.90890 15.13 0.99307 25.7
(@
Our
Bounds Ref [3] Our % approach %
Lg Aqg approach tmpry +Ref [3] Imprv
13 7 0.45509 0.70260 54.39 0.81225 78.4
13 9 0.67645 0.78463 15.99 0.97530 44.1
13 11 0.89005 0.78463 -11.84 0.98809 11.0
14 7 0.45509 0.71114 56.26 0.83739 84.0
14 9 0.69739 0.79417 13.88 0.97530 39.84
14 11 0.94641 0.79417 -16.09 0.98809 4.49
15 5 0.45509 0.69739 53.24 0.69739 53.24
15 7 0.71899 0.80383 11.80 0.81225 12.9
15 9 0.97530 0.80383 -17.58 0.97530 0.00
(b)
Our
Bounds Ref [3] Our % approach %
Lo | Ag approach - Imprv. /R3] Imprv
5 11 0.70723 0.77497 9.58 0.77497| 9.58]
5 13 0.82370 0.80403 -2.39 0.82370) 0.00]
5 15 0.82783 0.80645 -2.58 0.84920) 2.58]
6 11 0.70723 0.82370 16.47 0.82700 16.94
6 13 0.82370 0.82370 0.00 0.82783] 0.50]
6 15 0.82783 0.90260 9.03 0.90712] 9.58]
7 7 0.70723 0.90260 27.62 0.90260) 27.63
7 9 0.82370 0.93054 12.97 0.93054] 12.91
7 11 0.82783 0.95935 15.89 0.95935 15.8
(c)

Table 2: Reliability values and improvements under different
latency and area bounds. (a) FIR filter, (b) EW filter, (c) DiffEq.

Averlage Reliability Values

0.9 4
0.8 1
0.7 7
0.6
0.5 1
0.4 4
0.3 1
0.2 4
0.1 1
0.0 -

B Ref[3]

FIR

O Our Approach

EW

B Our Approach + Ref[3]

DiffEq

Figure 9: Average reliability values for [3], our approach, and
the combined approach for three different HLS benchmarks.

approach obtains a reliability value of 0.59998,23.79%
improvement over [3]. However, when the area bosridosened
to 13 under the same latency bound, [3] incredsesdliability of
the design to 0.76572, which means a 9.22% impreweraver
our approach. When we combine these two methaels\fihen we
also employ redundancy following our approach), eem have
even more reliable designs under very tight bouagishown in
column six of Table 2. For the combined approach,imtroduce

redundancy as suggested in [3].

Note that, when add

redundancy for an operator, we use the same vesslatted by
our reliability-centric approach as duplicate()r Example, if we

use adder of type 2 in the schedule, we also wsasdme type of
adder as the redundant copy. The improvements htdwg this

combined approach over [3] are given in column sexeTable 2.

This combined approach obtains a better reliabitign [3], as can
be seen from these tables.

In Figure 9, we give the average reliabiliglues (over all our
experiments) obtained by [3], our approach, and dbmbined
approach for FIR, EW, and DiffEq benchmarks. Ouprapch
brings 21.92%, 9.67%, and 9.21% overall designaldity
improvements over [3] for FIR, EW, and DiffEq desig
respectively. The combined approach obtains evere maliable
designs with design reliability increase of 30.3328,57%, and
10.26% over [3] for FIR, EW, and DiffEq, respectiueNote that,
the reliability values for these designs are fofordtight area and
latency values, which is desirable for system desig

8. Conclusions and Future Work

This paper focuses on high-level synthesis anesents a
reliability-centric approach to address the growisgft error
problem. The main idea behind this approach isntweiase the
reliability of the design as much as possible, li®dhonly by
allowable area and latency. As opposed to the pvimk on the
topic, the proposed framework accommodates differersions of
the same type of resource, each differing in peréorce, area,
and/or reliability. Our experimental evaluation ritiées the cases
where one can expect the proposed approach totter bean the
prior proposal. We also discuss how our approach ba
combined with the prior work to achieve even furthe
improvements on reliability of the design under sideration. As
our future plan, we would like to compare this azmh to other
possible alternate schemes such as optimizinguaraer reliability
and performance constraints, or optimizing perforcea under
reliability and area constraints.

References

[1] K. Johansson, P. Dyreklev, B. Granbom, M. CalvetF&urtine, and
O. Feuillatre, “In-flight and ground testing of gla event upset sensitivity
in static RAM's”, IEEE Transactions on Nuclear Sciend®:1628-1632,
June 1998.

[2] P. Sivakumar, M. Kistler, S. W. Keckler, D. C. Bargand L. Alvisi,
“Modeling the Effect of Technology Trends on theftSBrror Rate of
Combinational Logic"International Conference on Dependable Systems
and Network¢DSN), June, 2002.

[3] A. Orailoglu and R. Karri;A Design Methodology For The High-level
Synthesis Of Fault-tolerant AsicsVLSI Signal Processing V, 1992.

[4] L .Guerra, M. Potkonjak, and J. Raba&igh level synthesis for
reconfigurable data path structuresGomputer-Aided Design, 1993.

[5] A. Antola, V. Piuri, and M. SamiHigh-level synthesis of data paths
with concurrent error detection”Defect and Fault Tolerance in VLSI
Systems, 1998.

[6] J. F. Ziegler etal. IBM experiments in soft fails in computer
electronics (1978-1992) IBM Journal of Research and Development,
1996.

[7] B. Ackalloor and D. Gaitonde,“An overview of library
characterization in semi-custom desig®toceedings of the IEEE Custom
Integrated Circuits Conference, 1998.

[8] D. Alexandrescu, L. Anghel, and M. Nicolaidi$yew Methods for
Evaluating the Impact of Single Event Transient$/ibSM ICs”, Defect
and Fault Tolerance Symposium, 2002.

[9] P. Hazuchaand C. SvenssorQptimized test circuits for SER
characterization of a manufacturing procesS$bolid-State Circuits, 2000.
[10]K. Neubeck,Practical Reliability Analysis”, Prentice Hall, 2003.
[11]K. S. Hwang, A. E. Casavant, C.-T. Chang, and M.dbreu,
"Scheduling and hardware sharing in pipelined dp&ths", International
Conference on Computer Aided Design, 1989.

[12]1992 High-Level Synthesis Design Reposijtory
http://ftp.ics.uci.edu/pub/hlsynth/HLSynth92/

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

