
Behavioural Transformation to Improve Circuit Performance in
High-Level Synthesis*

R. Ruiz-Sautua, M. C. Molina, J.M. Mendías, R. Hermida
Dpto. Arquitectura de Computadores y Automática

Universidad Complutense de Madrid
rsautua@fdi.ucm.es, {cmolinap, mendias, rhermida}@dacya.ucm.es

Abstract
Early scheduling algorithms usually adjusted the clock
cycle duration to the execution time of the slowest
operation. This resulted in large slack times wasted in
those cycles executing faster operations. To reduce the
wasted times multi-cycle and chaining techniques have
been employed. While these techniques have produced
successful designs, its effectiveness is often limited due to
the area increment that may derive from chaining, and the
extra latencies that may derive from multicycling. In this
paper we present an optimization method that solves the
time-constrained scheduling problem by transforming
behavioural specifications into new ones whose subsequent
synthesis substantially improves circuit performance. Our
proposal breaks up some of the specification operations,
allowing their execution during several possibly
unconsecutive cycles, and also the calculation of several
data-dependent operation fragments in the same cycle. To
do so, it takes into account the circuit latency and the
execution time of every specification operation. The
experimental results carried out show that circuits obtained
from the optimized specification are on average 60% faster
than those synthesized from the original specification, with
only slight increments in the circuit area.

1. Introduction
A High–Level Synthesis (HLS) process transforms the

behavioural description of a circuit into a Register-
Transfer-Level (RTL) implementation. It involves three
major tasks: scheduling, allocation, and binding.
Scheduling determines the number of clock cycles (latency)
and their duration, and assigns operations of the
behavioural description to them. Allocation selects a set of
functional, storage, and routing resources from the
components library. And binding assigns operations to
functional units (FUs), variables to storage elements, and
data transfers to routing resources.

 Early algorithms used to propose schedules with at least
as many cycles as the number of operations in the critical
path. The clock cycle duration usually equals the longest

 * This work has been supported by Grant CICYT TIC-2002/750

arrival time of the result bits of the specification operations.
This produces a large slack to be wasted in those cycles
where the results calculated have smaller arrival times than
the cycle length. Additionally, some datapath FUs remain
idle during part of the clock cycle if the results calculated
have different arrival times.

Many efforts in high-level scheduling have been
concentrated on improving circuit performance (time
required to execute all the behavioural description
operations) by minimizing the slack times wasted in clock
cycles. Traditionally, pipelining has been the preferred
technique to improve system performance, although it does
not reduce the circuit latency [1-2]. In order to reduce the
latency, some algorithms have added some optimization
phases after the scheduling process to adjust either the
number or duration of the clock cycles [3-6]. The
algorithms presented in [4] and [5] reduce the circuit
latency by allocating respectively carry-save and variable-
latency operators (the time taken to compute the outputs
depends on the input values). In [6] the phase coupling
problem of the HLS is alleviated by allowing the later
adjustment of every scheduling decision.

Most scheduling algorithms have reduced circuit latency
by incorporating chaining and multi-cycle features.
Chaining helps to reduce the number of clock cycles by
allowing the execution of several data-dependent
operations in the same cycle. The result produced by one
operation is supplied as input operand to another operation
in the same cycle. This technique requires more FUs (the
chained operations cannot share HW resources) and less
storage units (the intermediate results are not stored). One
step further, the bit-level chaining (BLC) [3] [7] exploits
the inherent parallelism of data-dependent operations with
rippling effect (e.g. additions and multiplications). Thus,
part of these chained operations can be executed in parallel
at the bit level. Multi-cycle reduces the clock cycle duration
by allowing the execution of long operations across several
consecutive cycles. In this case, the results produced need
several cycles to be available. Non-integer multi-cycle has
been used in [3] to chain the result produced in one cycle
by a multi-cycle operator to the next data-dependent
operation.

Although all these design techniques reduce the circuit
latency, in most cases better results could be obtained if:

1530-1591/05 $20.00 © 2005 IEEE

• clock cycle duration were independent of the execution
times of operations

• the execution of operations across several
unconsecutive cycles were allowed

• every result bit were available (to be used as an input
operand) the cycle it is calculated in, even if the overall
execution of the operation has not finished

In this paper we present an optimization method that
takes into account the above features. It substitutes, before
synthesis, some of the specification operations for several
ones whose types and widths may be different from the
original, and that can be scheduled independently. The
schedule of the new operations considerably reduces the
slack times wasted, as compared with the implementations
synthesized from the original specification. It produces
implementations with the following features:
• one original operation may be executed in several

unconsecutive cycles
• one operation may start its execution before the

computation of its predecessors has been completed

2. Motivational example
Figures 1 and 2 illustrate an example of how this

optimization method may improve circuit performance. A
behavioural specification written in VHDL is shown in Fig.
1 a). It consists of 3 data-dependent additions of 16 bits.
Fig. 1 b) presents the schedule proposed by a conventional
algorithm, where every addition has been scheduled in a
different clock cycle. Fig. 1 c) illustrates a zoom of this
schedule. It clearly shows that the execution time of every
16-bits addition is equivalent to the time needed to execute

16 chained 1-bit additions. Hence, the execution time of all
the specification operations is equivalent to the execution
time of 48 chained 1-bit additions (16×3 cycles). The
datapath synthesized from this schedule is formed by one
16-bits adder. It corresponds to the circuit with minimal
FUs area, but maximal execution time.

Fig. 1 d) illustrates another possible schedule using
BLC. In this case, the execution time is equivalent to the
time required to execute 18 chained 1-bit additions, thanks
to the rippling effect of additions that allows the execution
in parallel of some bits of the 3 operations. Fig. 1 e) shows
in every column the addition bits that are executed in
parallel, and the time when every result bit is available in
function of the delay δ of 1-bit adder (above each column).
For example, bits i of C, i-1 of E and i-2 of G are calculated
simultaneously. If the execution starts in time t, then bit i of
C is available in time t+(i+1)ּδ. The datapath synthesized
from this schedule consists of 3 chained adders of 16 bits. It
corresponds to the circuit with minimum execution time,
but maximal FUs area.

Fig. 2 a) shows our transformed specification. It has
been obtained taking into account the circuit latency, and
the number of bits of every addition that can be executed
simultaneously. In the transformed specification every
addition has been substituted for 3 data-dependent smaller
additions with similar execution times. Fig. 2 b) shows the
schedule obtained by a conventional algorithm from the
new specification, where a fragment of every original
addition has been scheduled in every cycle. Fig. 2 c)
illustrates the addition bits that are calculated
simultaneously in every cycle, being the execution time

Fig. 1. a) Behavioural specification, b) conventional schedule, c) zoom of the conventional schedule, d) schedule
using operation chaining, e) inherent parallelism of the chained operations that calculate C, E, and G.

entity example is
port (clk: in std_logic;

A, B, D, F: in std_logic_vector(15 downto 0);
G: inout std_logic_vector(15 downto 0));

end example;

architecture beh1 of example is
begin
main: process

variable C: std_logic_vector(15 downto 0);
variable E: std_logic_vector(15 downto 0);

begin
C := A + B;
E := C + D;
G <= E + F;

end process main;
end beh1;

a) b)

+

A B

C
+

+
E

G

D F

cycle 1

cycle 2

cycle 3

d)

G
cycle 1

F

BA

D
+

C

E +

16

16

16

18 bits delay

+

C0C1C2C3C4C5
E0E1E2E3E4

G3 G0G1G2

t+δt+2δ
C6C7C8C9C10C11
E5E6E7E8E9E10

G4G5G6G7G8G9

cycle 1

C12C13C14C15
E11E12E13E14E15

G10G11G12G13G14G15

t+18δ t+3δt+17δ

+

B0 A0

C0

B1 A1

C1

+

B15 A15

C15

+

+

D0 C0

E0

D1 C1

E1

+

D15 C15

E15

+

+

F0 E0

G0

F1 E1

G1 F15 E15

G15

+

cycle 1

cycle 2

cycle 3

+ 16 bits delay

16 bits delay

16 bits delay

e)

c)
entity example is
port (clk: in std_logic;

A, B, D, F: in std_logic_vector(15 downto 0);
G: inout std_logic_vector(15 downto 0));

end example;

architecture beh1 of example is
begin
main: process

variable C: std_logic_vector(15 downto 0);
variable E: std_logic_vector(15 downto 0);

begin
C := A + B;
E := C + D;
G <= E + F;

end process main;
end beh1;

a) b)

+

A B

C
+

+
E

G

D F

cycle 1

cycle 2

cycle 3

++

A B

C
+

++
E

G

D F

cycle 1

cycle 2

cycle 3

d)

G
cycle 1

F

BA

D
+

C

E +

16

16

16

18 bits delay

+

G
cycle 1

F

BA

D
+

C

E +

16

16

16

18 bits delay

+

C0C1C2C3C4C5
E0E1E2E3E4

G3 G0G1G2

t+δt+2δ
C6C7C8C9C10C11
E5E6E7E8E9E10

G4G5G6G7G8G9

cycle 1

C12C13C14C15
E11E12E13E14E15

G10G11G12G13G14G15

t+18δ t+3δt+17δ
C0C1C2C3C4C5 C0C1C2C3C4C5 C1C2C3C4C5

E0E1E2E3E4 E0E1E2E3E4 E1E2E3E4

G3 G0G1G2

t+δt+2δ
C6C7C8C9C10C11
E5E6E7E8E9E10

G4G5G6G7G8G9

C6C7C8C9C10C11 C6C7C8C9C10C11
E5E6E7E8E9E10 E5E6E7E8E9E10

G4G5G6G7G8G9

cycle 1

C12C13C14C15
E11E12E13E14E15

G10G11G12G13G14G15

C12C13C14C15
E11E12E13E14E15

G10G11G12G13G14G15

t+18δ t+3δt+17δ

+

B0 A0

C0

B1 A1

C1

+

B15 A15

C15

+

+

D0 C0

E0

D1 C1

E1

+

D15 C15

E15

+

+

F0 E0

G0

F1 E1

G1 F15 E15

G15

+

cycle 1

cycle 2

cycle 3

+ 16 bits delay

16 bits delay

16 bits delay

++

B0 A0

C0

B1 A1

C1

+

B15 A15

C15

+

++

D0 C0

E0

D1 C1

E1

+

D15 C15

E15

+

++

F0 E0

G0

F1 E1

G1 F15 E15

G15

+

cycle 1

cycle 2

cycle 3

+ 16 bits delay

16 bits delay

16 bits delay

e)

c)

equivalent to 18 chained 1-bit adders (6×3 cycles). Note
that the clock cycle duration achieved (equivalent to 6
chained 1-bit additions) is independent of the operation
execution time (16 chained 1-bit additions). The datapath
obtained from the allocation of this schedule comprises 3
chained adders of 6 bits, and every adder is dedicated to
calculate just one addition in the behavioural description.
For example, one adder calculates C5..0 in the first cycle,
C11..6 in the second one, and C15..12 in the third. Note that the
storage area (5 registers of 1 bit) is quite smaller as well,
because most result bits calculated in every cycle are also
consumed in that same cycle to compute some result bits of
another chained operation. The dedicated registers needed
to stabilize the input and output ports have not been
considered because they coincide in both implementations.
For example, in the first cycle one adder calculates C5..0,
where C4..0 is used as input operand by a second adder,

which calculates E4..0, and E3..0 is used as input operand by
the third adder. Therefore just C5 and E4 plus the 3 carry
outs must be stored in this first clock cycle.

Table I summarizes the main features of the three
implementations. The values shown have been produced by
Synopsys Design Compiler after logic synthesis, and
include, in all cases, the routing and controller costs. The
execution time of the implementation synthesized from the
transformed specification is comparable to that obtained
using chaining techniques. However, the area is quite
smaller if the optimized specification is used. Note that it is
even smaller than the area of the circuit obtained from the
schedule shown in Fig. 1 b).

In the example the additions of the specification are
executed over ripple-carry adders. Nevertheless big
reductions in both the cycle length and the datapath area
can also be achieved by using faster and more expensive
adders (carry-lookahead, fast lookahead, and carry-save).

3. Optimization method
The optimization method improves the results obtained

by HLS algorithms when solving the time-constrained
scheduling problem of data-intensive applications. It
transforms the behavioural specification into another one
whose synthesis results in smaller execution times.
Performance results are comparable to those reported by
BLC techniques, but implementation areas are smaller.

During this process some operations are broken up into
several smaller ones, allowing their schedule in different
cycles (possibly unconsecutive). Hence, the transformed
description may have more operations, and also their types

Fig. 2. a) Optimized specification, b) schedule of the transformed specification, c) inherent parallelism of the
operations that calculate C, E, and G.

a)
architecture beh2 of example is
begin
main:process

variable E: std_logic_vector(15 downto 0);
variable C: std_logic_vector(15 downto 0);

begin
C(6 downto 0) := ("0" & A(5 downto 0)) + ("0" & B(5 downto 0));
E(5 downto 0) := ("0" & C(4 downto 0)) + ("0" & D(4 downto 0));
G(4 downto 0) aux1 := ("0" & E(3 downto 0)) + ("0" & F(3 downto 0));

C(12 downto 6) := ("0" & A(11 downto 6)) + ("0" & B(11 downto 6)) + C(6);
E(11 downto 5) := ("0" & C(10 downto 5)) + ("0" & D(10 downto 5)) + E(5);
G(10 downto 4) <= ("0" & E(9 downto 4)) + ("0" & F(9 downto 4)) + G(4);

C(15 downto 12) := A(15 downto 12)+ B(15 downto 12) + C(12);
E(15 downto 11) := C(15 downto 11) + D(15 downto 11) + E(11);
G(15 downto 10) <= (E(15 downto 10)) + (F(15 downto 10)) + G(10);

end process main;
end beh2;

b)

cycle 2 G3..0

+
E9..5E10

C10..6C11

+
B11..6A11..6

D10..5

+
G9..4

F9..4

+
E15..11

C15..12

+
B15..12A15..12

D15..11

+
G15..10

F15..10

cycle 3

6

6

6

4

5

6

cycle 1

B5..0A5..0

D4..0

F3..0

+
C4..0

+
C5

E3..0

+
E4

6

5

4

6 bits delay

6 bits delay

6 bits delay

c)
C0C1C2C3C4C5

E0E1E2E3E4
G3 G0G1G2

t+δt+2δt+6δ

cycle 1

C6C7C8C9C10C11
E5E6E7E8E9E10

G4G5G6G7G8G9

cycle 2

t+7δt+12δ
C12C13C14C15
E11E12E13E14E15

G10G11G12G13G14G15

cycle 3

t+13δt+18δ

a)
architecture beh2 of example is
begin
main:process

variable E: std_logic_vector(15 downto 0);
variable C: std_logic_vector(15 downto 0);

begin
C(6 downto 0) := ("0" & A(5 downto 0)) + ("0" & B(5 downto 0));
E(5 downto 0) := ("0" & C(4 downto 0)) + ("0" & D(4 downto 0));
G(4 downto 0) aux1 := ("0" & E(3 downto 0)) + ("0" & F(3 downto 0));

C(12 downto 6) := ("0" & A(11 downto 6)) + ("0" & B(11 downto 6)) + C(6);
E(11 downto 5) := ("0" & C(10 downto 5)) + ("0" & D(10 downto 5)) + E(5);
G(10 downto 4) <= ("0" & E(9 downto 4)) + ("0" & F(9 downto 4)) + G(4);

C(15 downto 12) := A(15 downto 12)+ B(15 downto 12) + C(12);
E(15 downto 11) := C(15 downto 11) + D(15 downto 11) + E(11);
G(15 downto 10) <= (E(15 downto 10)) + (F(15 downto 10)) + G(10);

end process main;
end beh2;

a)
architecture beh2 of example is
begin
main:process

variable E: std_logic_vector(15 downto 0);
variable C: std_logic_vector(15 downto 0);

begin
C(6 downto 0) := ("0" & A(5 downto 0)) + ("0" & B(5 downto 0));
E(5 downto 0) := ("0" & C(4 downto 0)) + ("0" & D(4 downto 0));
G(4 downto 0) aux1 := ("0" & E(3 downto 0)) + ("0" & F(3 downto 0));

C(12 downto 6) := ("0" & A(11 downto 6)) + ("0" & B(11 downto 6)) + C(6);
E(11 downto 5) := ("0" & C(10 downto 5)) + ("0" & D(10 downto 5)) + E(5);
G(10 downto 4) <= ("0" & E(9 downto 4)) + ("0" & F(9 downto 4)) + G(4);

C(15 downto 12) := A(15 downto 12)+ B(15 downto 12) + C(12);
E(15 downto 11) := C(15 downto 11) + D(15 downto 11) + E(11);
G(15 downto 10) <= (E(15 downto 10)) + (F(15 downto 10)) + G(10);

end process main;
end beh2;

b)

cycle 2 G3..0

+
E9..5E10

C10..6C11

+
B11..6A11..6

D10..5

+
G9..4

F9..4

+
E15..11

C15..12

+
B15..12A15..12

D15..11

+
G15..10

F15..10

cycle 3

6

6

6

4

5

6

cycle 1

B5..0A5..0

D4..0

F3..0

+
C4..0

+
C5

E3..0

+
E4

6

5

4

6 bits delay

6 bits delay

6 bits delay

c)
C0C1C2C3C4C5

E0E1E2E3E4
G3 G0G1G2

t+δt+2δt+6δ

cycle 1

C6C7C8C9C10C11
E5E6E7E8E9E10

G4G5G6G7G8G9

cycle 2

t+7δt+12δ
C12C13C14C15
E11E12E13E14E15

G10G11G12G13G14G15

cycle 3

t+13δt+18δ

b)

cycle 2 G3..0

+
E9..5E10

C10..6C11

+
B11..6A11..6

D10..5

+
G9..4

F9..4

+
E15..11

C15..12

+
B15..12A15..12

D15..11

+
G15..10

F15..10

cycle 3

6

6

6

4

5

6

cycle 1

B5..0A5..0

D4..0

F3..0

+
C4..0

+
C5

E3..0

+
E4

6

5

4

6 bits delay

6 bits delay

6 bits delay
b)

cycle 2 G3..0

+
E9..5E10

C10..6C11

+
B11..6A11..6

D10..5

+
G9..4

F9..4

+
E15..11

C15..12

+
B15..12A15..12

D15..11

+
G15..10

F15..10

cycle 3

6

6

6

4

5

6

cycle 1

B5..0A5..0

D4..0

F3..0

+
C4..0

+
C5

E3..0

+
E4

6

5

4

6 bits delay

6 bits delay

6 bits delay

cycle 2 G3..0

+
E9..5E10

C10..6C11

+
B11..6A11..6

D10..5

+
G9..4

F9..4

+
E15..11

C15..12

+
B15..12A15..12

D15..11

+
G15..10

F15..10

cycle 3

6

6

6

4

5

6

cycle 1

B5..0A5..0

D4..0

F3..0

+
C4..0

+
C5

E3..0

+
E4

6

5

4

6 bits delay

6 bits delay

6 bits delay

c)
C0C1C2C3C4C5

E0E1E2E3E4
G3 G0G1G2

t+δt+2δt+6δ

cycle 1

C6C7C8C9C10C11
E5E6E7E8E9E10

G4G5G6G7G8G9

cycle 2

t+7δt+12δ
C12C13C14C15
E11E12E13E14E15

G10G11G12G13G14G15

cycle 3

t+13δt+18δc)
C0C1C2C3C4C5

E0E1E2E3E4
G3 G0G1G2

t+δt+2δt+6δ

cycle 1

C6C7C8C9C10C11
E5E6E7E8E9E10

G4G5G6G7G8G9

cycle 2

t+7δt+12δ
C12C13C14C15
E11E12E13E14E15

G10G11G12G13G14G15

cycle 3

t+13δt+18δ
C0C1C2C3C4C5

E0E1E2E3E4
G3 G0G1G2

C0C1C2C3C4C5 C0C1C2C3C4C5 C1C2C3C4C5

E0E1E2E3E4 E0E1E2E3E4 E1E2E3E4
G3 G0G1G2

t+δt+2δt+6δ

cycle 1

C6C7C8C9C10C11
E5E6E7E8E9E10

G4G5G6G7G8G9

cycle 2

t+7δt+12δ
C6C7C8C9C10C11
E5E6E7E8E9E10

G4G5G6G7G8G9

C6C7C8C9C10C11 C6C7C8C9C10C11
E5E6E7E8E9E10 E5E6E7E8E9E10

G4G5G6G7G8G9

cycle 2

t+7δt+12δ
C12C13C14C15
E11E12E13E14E15

G10G11G12G13G14G15

cycle 3

t+13δt+18δ
C12C13C14C15
E11E12E13E14E15

G10G11G12G13G14G15

C12C13C14C15
E11E12E13E14E15

G10G11G12G13G14G15

cycle 3

t+13δt+18δ

Table I. Comparison of the implementations in Figs. 1 and 2

Original specification Fig. 1 b) Fig. 1 d)
Optimized

specification
Latency 3 1 3

Cycle length 9.4 ns 9.57 ns 3.55 ns
Execution time 28.22 ns 9.57 ns 10.66 ns

FU cost ⊕ 16 bits
(162 gates)

3 ⊕ 16 bits
(486 gates)

3 ⊕ 6 bits
(176 gates)

Registers cost ⊕ 16 bits
(81 gates) — 5 ⊕ 1 bit

(55 gates)

Routing area
2 mux 3 to 1 - 16 bits
1 mux 2 to 1 - 16 bits

(176 gates)
—

6 mux 3 to 1 - 6 bits
5 mux 2 to 1 - 1 bit

(159 gates)
Controller area 60 gates 32 gates 62 gates

Total area 479 gates 518 gates 452 gates

and widths may be different. The set of operations to be
broken up and the fragment sizes are selected considering
the circuit latency and the execution times, mobilities, and
data dependencies of the operations

In the present version of the algorithm we have
considered signed and unsigned additive operations i.e. that
can be transformed into additions: multiplications,
subtractions, comparisons, maximum, etc. The algorithm
comprises the following three phases:
1) Operative kernel extraction. Signed operations are
transformed into several unsigned ones, and additive
operations into additions and some glue logic.
2) Estimation of clock cycle duration. The critical path is
identified and its length used to estimate the clock cycle.
3) Fragmentation of operations. Some of the operations in
the behavioural description are broken up in order to fulfill
the time constraint imposed in the previous phase.

3.1. Operative kernel extraction
In order to increase the number of operations that may

share one FU, our algorithm unifies the different
representation formats used in the specification. It
transforms signed operations into several unsigned ones,
e.g. a two’s complement signed multiplication of m×n bits
is transformed using our variant of the Baugh & Wooley
algorithm into one multiplication of (m-1)×(n-1) bits, and
two additions of m and n+1 bits. Afterwards it extracts the
additive kernel of the specification operations, to be
transformed into several additions and glue logic. Some of
the transformations performed are shown in [8].

3.2. Estimation of the clock cycle duration
The critical path identification becomes the first task to

be done. The critical path of a behavioural description is

the path of the DFG taking the longest time to be executed.
It has been measured in number of 1-bit chained additions,
so non-additive operations are not considered .

To calculate the time consumed by one path, operations
are crossed from its output to the input. For each operation
crossed, 1 is added to the width of the last operation (the
one which produces the path output). If the operation
considered is wider than its successor, the number of least
significant bits (LSB) truncated is also added. The
algorithm below is used to compute the execution time of
every path.

time: path execution time n: number of path operations
width(ope): width of ope path[i]: i-th operation of the path
truncated_rigth(ope): number LSB bits truncated from the result of ope

time = width(path[n]); i = n-1;
while (i > 0) do
 if width (path[i]) ≤ width(path[i+1])
 then time = time + 1;
 else time = time + 1 + truncated_rigth(path[i]);
 end if;
 i = i-1;
end while;

Once the critical path is selected, its execution time is used
to estimate the cycle duration (measured in number of 1-bit
chained additions). It also depends on the latency (λ).

=

λ
)time(execution_ athcritical_ptioncycle_dura

Fig. 3 a) illustrates the DFG of a behavioural description
with 4 additions of 6 bits, 3 additions of 8 bits, and 1
addition of 5 bits. The inherent parallelism of operations B,
C, and E is shown in Fig. 3 b). Bits i, i-1, and i-2 of
operations B, C, and E respectively, may be calculated in
parallel. The execution time of the path formed by these
operations is 8ּδ. A conventional algorithm would select
this path as the critical one, because any other path has

Fig. 3. a) DFG of one behavioural description, b) inherent parallelism of the path formed by operations A, C,
and E, c), d) and e) ASAP and ALAP schedules of the DFG operations, f) mobilities of the unscheduled
operations, g) schedule obtained from the optimized specification, and h) area and performance comparison.

d)a)

b)

A4 A3 A2 A0A1

f)

t+δ
B0B1

C0

E5 E4

B3

C2

E1

B2

C1

E0

B5

C4

E3

B4

C3

E2

t+2δt+3δt+4δt+5δt+6δt+7δt+8δ

C5

F0

G0

F4F7 F6 F1F3 F2

H5 H4H6 H3 H2

cycle 1cycle 2cycle 3

ASAP/ALAP schedule

G5 G4G7 G6 G1G3 G2

H1

F5

H7 H0

A2

A4..3

B2

B5

D2..1

D5..4

C1

C4

E0

E3
cycle 1

cycle 2

cycle 3

g)
A1..0 B2..0 C1..0 D2..0 E0 F2..0 G2..0 H1..0cycle 1

cycle 2

cycle 3

B4..3 C3..2 D3 E2..1 F5..3 G5..3 H4..2

A4..2 B5 C5..4 D5..4 E5..3 F7..6 G7..6 H7..5

h)

8
8+F G +

8H +

6B

+ 6C

+
6E

+

6+D

c) 20 %
50 %
23 %

62 %

FUs 160

Cycle duration

Original Optimized

Registers 280 140
200

4.64 ns 1.77 ns
Total 712 510

Routing 172 132

28 %

Saved

A
re

a
(g

at
es

)

A4 A3 A1 A0A2

cycle 1

B0

C4 C3C5 C0C2 C1

E4 E3E5 E0E2 E1

cycle 2cycle 3

ALAP schedule

D4 D3D5 D2 D1 D0

B4 B3B5 B2 B1

C5 C4 C0C3 C2

E5 E4 E1 E0E3 E2

cycle 1cycle 2cycle 3

ASAP schedule

D5 D4 D0D3 D2

B5 B4 B1 B0B3

C1

B2

D1

5
+A

cycle 1cycle 2cycle 3

ASAP

ALAP

e)

A1..0

- 30 % Controller 60 78

d)a)

b)

A4 A3 A2A4A4 A3A3 A2A2 A0A1 A0A0A1A1

f)

t+δ
B0B1

C0

E5 E4

B3

C2

E1

B2

C1

E0

B5

C4

E3

B4

C3

E2

t+2δt+3δt+4δt+5δt+6δt+7δt+8δ

C5

B0B0B1B1

C0C0

E5E5 E4

B3

C2C2

E1E1

B2B2

C1C1

E0E0

B5B5

C4C4

E3E3

B4B4

C3C3

E2E2

t+2δt+3δt+4δt+5δt+6δt+7δt+8δ

C5C5

F0F0

G0G0

F4F4F7F7 F6F6 F1F1F3F3 F2F2

H5H5 H4H4H6H6 H3H3 H2H2

cycle 1cycle 2cycle 3 cycle 1cycle 2cycle 3

ASAP/ALAP schedule

G5G5 G4G4G7G7 G6G6 G1G1G3G3 G2

H1

F5F5

H7H7 H0

A2A2

A4..3

B2

B5

D2..1

D5..4

C1

C4

E0

E3
cycle 1

cycle 2

cycle 3

g)
A1..0 B2..0 C1..0 D2..0 E0 F2..0 G2..0 H1..0cycle 1

cycle 2

cycle 3

B4..3 C3..2 D3 E2..1 F5..3 G5..3 H4..2

A4..2 B5 C5..4 D5..4 E5..3 F7..6 G7..6 H7..5

A1..0 B2..0 C1..0 D2..0 E0 F2..0 G2..0 H1..0cycle 1

cycle 2

cycle 3

B4..3 C3..2 D3 E2..1 F5..3 G5..3 H4..2

A4..2 B5 C5..4 D5..4 E5..3 F7..6 G7..6 H7..5

h)

8
8+F G +

8H +
8

8+F G +

8H +
8H +

6B

+ 6C

+
6E

+

6+D

6B

+ 6C + 6C

+
6E +
6E

+

6+D 6+D

c) 20 %
50 %
23 %

62 %

FUs 160

Cycle duration

Original Optimized

Registers 280 140
200

4.64 ns 1.77 ns
Total 712 510

Routing 172 132

28 %

Saved

A
re

a
(g

at
es

)

A4A4 A3A3 A1 A0A2 A1A1 A0A0A2A2

cycle 1

B0

C4 C3C5 C0C2 C1

E4 E3E5 E0E2 E1

cycle 2cycle 3

ALAP schedule

D4 D3D5 D2 D1 D0

B4 B3B5 B2 B1

C5 C4 C0C3 C2

E5 E4 E1 E0E3 E2

cycle 1cycle 2cycle 3

ASAP schedule

D5 D4 D0D3 D2

B5 B4 B1 B0B3

C1

B2

D1

cycle 1

B0

C4 C3C5 C0C2 C1

E4 E3E5 E0E2 E1

cycle 2cycle 3

ALAP schedule

D4 D3D5 D2 D1 D0

B4 B3B5 B2 B1 B0B0

C4C4 C3C3C5C5 C0C0C2 C1C1

E4E4 E3E3E5E5 E0E0E2E2 E1

cycle 2cycle 3

ALAP schedule

D4D4 D3D3D5D5 D2D2 D1D1 D0D0

B4B4 B3B3B5B5 B2B2 B1B1

C5 C4 C0C3 C2

E5 E4 E1 E0E3 E2

cycle 1cycle 2cycle 3

ASAP schedule

D5 D4 D0D3 D2

B5 B4 B1 B0B3

C1

B2

D1

C5C5 C4C4 C0C3C3 C2C2

E5E5 E4E4 E1E1 E0E0E3 E2E2

cycle 1cycle 2cycle 3

ASAP schedule

D5D5 D4D4 D0D0D3D3 D2D2

B5B5 B4B4 B1B1 B0B0B3B3

C1C1

B2B2

D1D1

5
+A 5
+A +A

cycle 1cycle 2cycle 3 cycle 1cycle 2cycle 3

ASAP

ALAP

e)

A1..0

- 30 % Controller 60 78

fewer operations. However, the rippling effect makes the
critical path become operations F and H, and G and H,
whose execution times equal 9ּδ. In order to schedule the
proposed DFG in 3 cycles, the cycle duration estimated by
the algorithm comes to 3ּδ (3 chained 1-bit additions).

3.3. Fragmentation of operations
The clock cycle duration estimated in the previous phase

may be smaller than the execution time of some
specification operations. In order to meet the time
constraint imposed, some operations must be broken up to
allow their execution in several cycles. To identify which
ones must be broken up, and the number and widths of the
fragments to be obtained, the ASAP and ALAP schedules
of every operation bit are performed. Both schedules are
calculated taking into account the maximum number of
chained bits allowed in one clock cycle. If the ASAP and
ALAP schedules of one operation bit coincide, then that
operation bit must be executed in the cycle fixed by both
schedules. Operations with some bits scheduled in different
cycles must be broken up. Additionally, operations whose
bits have different ASAP and ALAP schedules are also
broken up to avoid any reduction in their mobilities. The
number of fragments obtained from one operation equals
the number of different (ASAP schedule, ALAP schedule)
pairs found in the calculation of every operation bit
mobility. And the width of every fragment is the number of
operation bits with the same ASAP and ALAP schedules.
As a result all the fragments of the same original operation
have different mobilities. The algorithm below is used to
calculate the number and width of the fragments obtained
from every operation.

n_bits: number of chained addition bits allowed in every cycle
ASAP(ope): first cycle where it is possible to schedule operation ope
ALAP(ope): last cycle where it is possible to schedule operation ope
sched_ASAP[ope,i]/sched_ALAP[ope,i]: maximum number of bits of
operation ope that can be scheduled in cycle i
fragments[ope,k].(size, ASAP, ALAP): set of fragments (from 0 to k-1)
obtained from ope, of width size and mobility ASAP-ALAP cycles

w = width(ope); i = ASAP(ope); j = ALAP(ope);
while (w > 0) do
 if (w > n_bits) then
 sched_ASAP[ope,i] = n_bits; sched_AlAP[ope,j] = n_bits;
 else sched_ASAP[ope,i] = w; sched_ALAP[ope,j] = w;
 end if
 w = w – n_bits; i = i+ 1; j = j - 1;
end while;
i = ASAP(ope); j= ASAP(ope); k = 0;
while (i ≠ ALAP(ope)) and (j ≠ ALAP(ope)) do
 while(sched_ASAP[ope,i] = 0) do i = i+1 endwhile;
 while(sched_ALAP[ope,j] = 0) do j = j+1 endwhile;
 M = Min(sched_ASAP[ope,i], sched_ALAP[ope,j]);
 sched_ASAP[ope,i] = sched_ASAP[ope,i] –M;
 sched_ALAP[ope,j] = sched_ALAP[ope,j] –M;
 fragments[ope, k].size = M; fragments[ope, k].ASAP = i;
 fragments[ope, k].ALAP = j; k = k + 1;
end while;

These fragmentations produce new data dependencies
among operations and operation fragments. The execution
of one fragment requires the previous execution of the
precedent LSB of the same operation (to use the carry out
produced as its carry in), and also the bits used as input

operands. These new data dependencies and the mobilities
of operations and fragments just calculated must be taken
into account during the scheduling.

Figs. 3 c), d) and e) show the ASAP and ALAP
schedules of the operations in the example. They have been
calculated taking into account the cycle duration constraint
computed previously (3 chained 1-bit additions). Both
ASAP and ALAP schedules coincide on operations F, G,
and H. This means that their mobilities include just one
cycle, and in consequence they are already scheduled, as
depicted in Fig. 3 c). In the schedule proposed, operation F
is fragmented into F2..0, F5..3, and F7..6, in cycles 1, 2, and 3
respectively. The ASAP and ALAP schedules differ on
several bits in the remaining operations, as Figs. 3 d) and e)
illustrate. In order to avoid reductions in their mobilities,
these operations must be broken up. For example, operation
B is broken up into B1..0, B2, B4..3, and B5. Both the ASAP
and ALAP schedules of fragments B1..0 and B4..3 coincide,
therefore they are already scheduled in cycles 1 and 2
respectively. Other fragments of operation B are not
scheduled yet. The mobility of B2 includes cycles 1 and 2,
and the mobility of B5 cycles 2 and 3. Note in grey color the
bits already scheduled. Fig. 3 f) shows the mobility of the
unscheduled fragments. The optimized specification
consists of the scheduled fragments shown in Figs. 3 c) and
d), and the unscheduled ones in Fig. 3 f).

The schedule obtained by a conventional algorithm from
the optimized specification is shown in Fig. 3 g). In order
to balance the number of operations executed per cycle,
operation A is calculated in cycles 1 and 3. The
fragmentation of operations performed by the optimization
algorithm allows a conventional scheduler to produce
schedules where some operations can be calculated during
several unconsecutive cycles. To our knowledge, there is
not any other design technique able to allow the execution
of one operation in several unconsecutive cycles with the
aim of improving the circuit performance. Fig. 3 h)
compares the implementations synthesized from both the
optimized specification and the original one, being the
latency 3 cycles in both cases. In addition to the huge clock
cycle reduction (62%) a substantial area saving has also
been achieved (28%).

4. Experimental results
In order to evaluate the optimization method, we have

synthesized (using Synopsys Behavioral Compiler, BC,
version 2001.08) a set of specifications. For each one the
Behavioral Compiler was applied on:
• the original specification
• the specification obtained after the application of the

presynthesis transformations presented in this paper.
In all cases, best results have been achieved from the

optimized specifications with negligible increments in the
design time. The experimental work includes the
optimization and subsequent synthesis of several classical
HLS benchmarks [9], and part of a real application.

The classical benchmarks synthesized are a fifth order
elliptical wave filter (elliptic), a differential equation solver

(diffeq), a fourth order IIR filter (iir4), and a second order
FIR filter (fir2). Table II shows the clock cycle duration
and the datapath area comparison between the
implementations obtained from the transformed
specification and from the original one for several different
latencies (λ). Performance has been improved 67% on
average, and reductions of the cycle length of up to 84%
have been obtained. The datapath area has augmented 6%
on average. The number of operations in the transformed
specification is around 34% larger on average.

We have also synthesized part of a real circuit
description, the ADPCM decoding algorithm specified in
the Recommendation G.721 of CCITT. The modules
synthesized are: Inverse Adaptive Quantizer (IAQ), Tone &
Transition Detector (TTD), Output PCM Format
Conversion (OPFC), and Synchronous Coding Adjustment
(SCA). OPFC and SCA modules have been synthesized
together, and IAQ and TTD independently. The latencies
used to synthesize the original and the optimized
specifications are the ones selected by BC in the
conventional schedule (using the command schedule –
io_mode free_floating). Table III shows the cycle length of
the schedules obtained from both specifications. The circuit
performance has been improved 66% on average.
Additionally the circuit area has been reduced 4% on
average, thanks mainly to the normalization of types and
formats performed during the operative kernel extraction
phase. The number of operations in the optimized
specification has augmented around 30%.

In all the experiments performed the cycle length saved
has grown with the circuit latency. To illustrate this
dependency we have scheduled a behavioural description
using both the original and the optimized specifications for
different values of the circuit latency. Fig. 4 shows
graphically how the curves (the cycle length of the
schedules obtained from both specifications) diverge as the
latency becomes bigger.

5. Conclusion
This paper presents a presynthesis optimization process

that transforms a behavioural specification into a new one,
whose schedule results in huge improvements of circuit
performance. The specification transformation performed is
based on an estimation of the clock cycle duration, used to
select the operations to be broken up and the number and
widths of the fragments to be obtained. These
fragmentations allow a conventional scheduler to select a
set of possibly unconsecutive cycles to execute one
operation, by assigning separately its fragments to different
cycles in the new specification. Additionally, the result bits
of every operation executed in several cycles are available
the cycle they are calculated in, to be used by any
successor. Experimental results show reductions of up to
85% on the cycle duration in the circuits synthesized.

References
[1] N. Park, and A. Parker. “Sehwa: A Software Package for

Synthesis of Pipelines from Behavioural Specifications”.
IEEE Trans. On Computer-Aided Design, March 1988.

[2] K.S. Hwang, A.E. Casavant, C.T. Chang, and M.A. d’Abreu.
“Scheduling and Hardware Sharing in Pipelined Data Paths”.
In Proc. ICCAD, 1989.

[3] S. Park, and K. Choi. “Performance-Driven High-Level
Synthesis with Bit-Level Chaining and Clock Selection”.
IEEE Trans. on CAD, February 2001.

[4] Z. Yu, K. Khoo, and A. Wilson, Jr. “The Use of Carry-Save
Representation in Joint Module Selection and Retiming”. In
Proc. Design Automation Conf., 2000.

[5] V. Raghunathan, S. Ravi, and G. Lakshminarayana.
“Integrating Variable-Latency Components into High-Level
Synthesis”. IEEE Trans. on CAD, October 2000.

[6] J. Zhu, and D.D. Gajski. “Soft Scheduling in High Level
Synthesis”. In Proc. Design Automation Conf., 1999.

[7] P. Marwedel, B. Landwehr, and R. Dömer. “Built-in
Chaining: Introducing Complex Components into
Architectural Synthesis”. In Proc. ASPDAC, 1997.

[8] M.C. Molina, J.M. Mendías, R. Hermida. “Bit-Level
Scheduling of Heterogeneous Behavioural Specifications”. In
Proc. ICCAD, 2002.

[9] N. Dutt, “High-level Synthesis Workshop Benchmarks”.
Univ. California, Irvine, CA, Technical Report, 1992

Table II. Synthesis of some classical HLS benchmarks

 Cycle duration (nanoseconds)
 λλλλ Original Optimized Saved Area increment

11 51.59 11.63 77.45 % 5.4 %
6 60.45 21.21 64.9 % 6.45 %

ell
ip

tic

4 68.2 29.4 56.89 % 8.23 %
6 94.45 39.85 57.8 % 4.57 %
5 97.56 46 52.84 % 5.98 %

di
ffe

q

4 101.34 59.03 41.75 % 9.04 %
6 93.6 15.28 83.67 % 5.76 %

iir
4

5 93.6 18.41 80.33 % 7.34 %
5 94.57 14.5 84.67 % 6.03%

fir
2

3 94.57 20.8 78 % 6.78%

Table III. Synthesis of some modules of ADPCM decoder

Cycle duration (nanoseconds) Module λλλλ Original Optimized Saved
Area

saved
IAQ 3 6.96 2.4 65.51 % 2.4 %
TTD 5 9.28 3.66 60.56 % 6.25 %

OPFC + SCA 12 9.39 2.36 74.86 % 3.26 %

Fig. 4. Cycle length of the schedules obtained from
the original and optimized specifications.

0
10

20
30
40

50
60

3 5 7 9 11 13 15

Latency

C
yc

le
 le

ng
th

 (n
s)

Original specification Optimized specification

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

