
A quality-of-service mechanism for
interconnection networks in system-on-chips

Wolf-Dietrich Weber*, Joe Chou, Ian Swarbrick, Drew Wingard
Sonics, Inc.® (www.sonicsinc.com).

* Google, Inc.®

Abstract
As Moore�s Law continues to fuel the ability to build ever increas-
ingly complex system-on-chips (SoCs), achieving performance
goals is rising as a critical challenge to completing designs. In
particular, the system interconnect must efficiently service a
diverse set of data flows with widely ranging quality-of-service
(QoS) requirements. However, the known solutions for off-chip
interconnects such as large-scale networks are not necessarily
applicable to the on-chip environment. Latency and memory con-
straints for on-chip interconnects are quite different from larger-
scale interconnects. This paper introduces a novel on-chip inter-
connect arbitration scheme. We show how this scheme can be dis-
tributed across a chip for high-speed implementation. We compare
the performance of the arbitration scheme with other known inter-
connect arbitration schemes. Existing schemes typically focus
heavily on either low latency of service for some initiators, or
alternatively on guaranteed bandwidth delivery for other initia-
tors. Our scheme allows service latency on some initiators to be
traded off smoothly against jitter bounds on other initiators, while
still delivering bandwidth guarantees. This scheme is a subset of
the QoS controls that are available in the SonicsMX� (SMX)
product.

1 Introduction
Most SoCs consist of a number of intellectual property (IP) cores
linked together via an on-chip "internal interconnect". Early SoC
designs employed only a few cores, and could utilize well-estab-
lished board-level bus schemes on the chip to satisfy the internal
interconnect requirement. A switch from a tri-state driver based
technology to a multiplex bus technology was adequate. But as the
number of cores on chip grows, the complexity of the interaction
between the IP cores increases exponentially, and a single com-
puter bus is insufficient.

To satisfy internal interconnect requirements moving forward,
multiple buses arranged as segments or hierarchies are the obvious
next step. Full-blown networks on a chip [1,5, 6] are inevitable.
These on-chip networks are required to meet the challenges
imposed by the most advanced chip technologies [3, 4], and to
enable the decoupling methodologies needed to address time-to-
market pressures [1, 2].

Most of today's consumer devices such as set-top-boxes or mobile
phones include some real-time complex data flows such as audio
or video traffic, intermixed with more traditional processor-to-
memory traffic. These real-time flows must be carefully managed
to avoid compromising audio or video quality. Over-designing sys-

tems with separate resources such as buses and memory systems is
one way to meet the requirements. But price pressure increasingly
forces designers to share such critical resources as an external
DRAM system. This results in several quality-of-service manage-
ment challenges:

� Multiple initiators sending traffic to multiple shared targets
� Varying quality-of-service requirements for the different traffic

flows, some with tight real-time or low-latency requirements
� Formation of a decentralized on-chip network with multiple

points of arbitration

Little focus has been given on quality of service for internal inter-
connects [6 (Chapter 4)]. This paper proposes that quality-of-ser-
vice management methodologies used in large scale
interconnection networks [8, 9, 10,11], can be applied as a baseline
for SoC internal interconnects. However, since on-chip intercon-
nects are qualitatively very different, because they must deliver
much lower latencies and typically cannot incorporate large
amounts of intermediate storage, store and-forward of packets with
software running smart prioritization algorithms are not possible.
Therefore, the QoS mechanisms employed must be simple enough
that they can be implemented in fast hardware without excessive
storage.

The remainder of this paper is organized as follows:

Section 2. Operation of our Interconnect arbitration and how it fits
with the quality-of-service model.

Section 3. Experiment Set Up Discussion (including system work-
loads)

Section 4. Presents and discusses the experiment results.

Section 5. Contrast of experiment results with related work

Section 6. Paper summary

2 Arbitration mechanisms
We focus on the arbitration of several initiators for a single shared
target. Our solution breaks arbitration for the target into two parts,
motivated by keeping complexity out of the interconnect core as
much as possible (see Figure 1):

� arbitration in the core of the interconnect to deliver requests from
different initiators to the target

� arbitration at the edge of the interconnect to enforce bandwidth
allocations for different initiators

1530-1591/05 $20.00 © 2005 IEEE

2

Figure 1: QoS mechanism distribution and network topology.

Since there can be multiple arbitration points in the interconnect, it
is important that they each be efficient, and that their individual
decisions combine to fulfil the QoS service model. By breaking the
arbitration mechanisms into two parts, each can be optimized inde-
pendently. The mechanisms in the core of the network must be
simple and fast for minimum latency, while the mechanism at the
edge of the network can be more sophisticated, and potentially tar-
get-specific.

Note that our description focuses on the request network here. The
response network is similar but can generally have simpler arbitra-
tion mechanisms if no contention (i.e. only one active target per
initiator) and no backpressure (i.e. initiator can always accept
responses) is assumed.

Final arbitration at the interconnect edge is between different
threads (or virtual channels [15]), each of which has been assigned
to a quality-of-service level and has received a target bandwidth
allocation. Initiators can either be given their own thread all the
way to the target, or may share a thread with other initiators,
depending on resource/performance trade-offs. In the core of the
interconnect, threads each have their own buffering resources, and
may therefore proceed independently of one another. The arbitra-
tion at the edge of the network sends information back into the
interconnect (using sideband signals) to govern prioritization of
threads within the interconnect. The network core and network
edge arbitration combine to deliver the guarantees of the QoS
model.

Threads leading to a target can be assigned one of the following
quality-of-service levels (highest to lowest priority): priority
threads, bandwidth threads, and best-effort threads. A given thread
can be shared amongst several initiators, dedicated to a single initi-
ator, or be one of several from a single initiator. Priority threads are
optimized for low-latency service, bandwidth threads receive
throughput guarantee within fixed jitter bounds, and best-effort
threads receive service if and when bandwidth is left over by the
other threads. Priority threads and bandwidth threads have a cer-
tain absolute target bandwidth allocation associated with them. As
long as priority threads request service at a rate lower than their
allocation, they receive absolute priority. This leads to low-latency
service, which is why priority threads are typically used for initia-
tors whose performance depends critically on the request service
latency. When priority threads request service at a rate greater than
their allocation, they are demoted to become best effort threads.
This ensures that the QoS contracts of lower-priority threads can
be honored. Bandwidth threads also receive an allocation and are

serviced ahead of best-effort threads when within their allocation.
Similar to priority threads, a bandwidth thread that requests service
at a rate greater than its allocation is demoted to become a best-
effort thread.

In the network core, arbitration resolves contention between
requests from different initiators. A mechanism close to the target
at the edge of the network keeps track of the recent bandwidth
usage of each thread and instructs the interconnect core to demote
a thread if necessary. Each of the two co-operating arbitration
mechanisms is described in more detail below.

2.1 Epoch scheme
In the core of the network, an epoch scheme is used to govern arbi-
tration. Each initiator sharing a target or set of targets sends a
marker with every nth request, thus forming groups of requests or
�epochs� of size n. The requests from different initiators that are
contending for the same target are combined in such a way that no
initiator may advance to the next epoch until all other initiators are
ready to advance, or happen to have no requests to send. At the last
arbitration point, a global epoch (including requests from all initia-
tors) is formed. If all initiators are contending for access, each glo-
bal epoch contains exactly one local epoch�s worth of requests
from each of the initiators. Since each initiator�s epoch size can be
set independently of all others, a non-uniform access scheme
results. Moreover, if epoch markers for each initiator are inserted
at the interconnect boundary, arbitration points within the core of
the interconnect need not even know about the epoch sizes associ-
ated with each initiator. They merely combine requests so as to
include one epoch�s worth from each initiator. As shown in Figure
2, the arbitration point only allows requests from epoch 1 to pro-
ceed. When a request with an epoch marker shows up on one of
the branches, that branch is removed from arbitration consider-
ation, until all other branches either have a request with epoch
marker waiting, or have no request pending. When this event
occurs, the arbiter advances to the next epoch and considers
requests from all branches again. Note that for requests from dif-
ferent initiators that are part of the same epoch, the epoch arbitra-
tion mechanism gives no preference to either request. A tie-
breaker secondary arbitration mechanism is needed. We make use
of a least-recently-serviced mechanism here, which tends to finely
interleave requests from different initiators that are part of the
same epoch.

Figure 2: Epoch scheme in operation.

Since the epoch scheme is governed by markers associated with
requests, it distributes well across arbitration trees, no matter how
unbalanced their topology is. It is also robust through data width

CPU MPEG VID GEN

0 1 2 3

staging
buffers

interconnect
core

arbitration
points

interconnect
edge enforces

bandwidth
allocations

control

MEM

datapath

to
other

targets

BA C
1

1
1

1
1

1
1

1

2

2
2

2

2
2

2

2

1
1
1
1

request

request with
epoch marker

number
indicates epoch

3

conversion, which may require aggregation or splitting of requests.
Finally, it can easily handle frequency domain crossings, including
asynchronous ones. These properties make it well-suited for use in
high-speed on-chip networks for SOCs.

In the interconnect arbitration mechanism presented here, the
epoch scheme is used for arbitration between different initiators
sharing the same thread to a shared target. A version of the epoch
scheme is also used to arbitrate amongst multiple threads at the
same QoS level. For threads at different levels, a strict priority
scheme is used, with the additional twist that priority and band-
width threads can be demoted to bring them to the same level as
best effort threads. The demotion is controlled from a bandwidth
tracking mechanism at the edge of the network, close to the target
core, which is described next.

2.2 Bandwidth allocation and enforcement
Bandwidth is allocated to different threads by the user and this
allocation is enforced near the target core using a per-thread credit
counter mechanism as shown in Figure 3. Each priority and band-
width thread has a copy of this mechanism. The credit counter
starts at 0 and is periodically incremented according to the band-
width allocation. For example, if 25% of the target bandwidth has
been allocated to a thread, it receives one credit every 4 cycles.
When a request from a given thread is serviced, the corresponding
credit counter is decremented. The counter thus keeps a moving
window of bandwidth usage history over time. The counter has
both an upper and lower saturation limit, set by the user. If a thread
sends infrequent requests, its allocation count grows until it hits
the positive limit, where it saturates. Similarly, if a thread sends
requests more frequently than its allocation, the count decreases
until it hits the negative limit. A thread that has a 0 count has been
getting exactly as much service as its allocation allows.

Figure 3: Bandwidth allocation enforcement using counters.

The credit counters are used to demote priority and bandwidth
threads. If the count is negative, the corresponding thread is
demoted.

The positive limit determines how much a given thread can request
above its allocation, before it gets demoted. The positive limit
must be at least large enough to account for the arrival jitter intro-
duced by the request network. For threads with bursty arrival it is
advantageous to set a higher positive limit, because it allows a
larger burst to be serviced at once, without being smoothed out to
the allocated bandwidth by demotion. It is often useful to set a

larger positive limit for priority threads. However, there is a down-
side to a large positive limit: a large positive limit on priority
threads can lead to large intervals of non-service for bandwidth
threads (seen as increased jitter on the bandwidth threads).

The negative limit determines how long a thread�s overusage of
bandwidth will be remembered. If a thread is sending requests at a
rate faster than its allocation, and that bandwidth is available
(because other initiators are currently not sending requests), then
the credit count becomes negative and is demoted. Once other ini-
tiators start requesting again, the demoted thread does not get ser-
vice until its credit count becomes positive again. So a large
negative limit can lead to larger service jitter after a period of ser-
vice above the allocation.

2.3 Other arbitration schemes
Several other popular arbitration mechanisms are also used in the
later experiments for comparison purposes.

One of the simplest mechanism for arbitration amongst several ini-
tiators is the fixed priority scheme. In this scheme, each initiator is
assigned a position within a fixed priority order. Whenever a deci-
sion must be made between contending requests from different ini-
tiators, the request from the highest-priority initiator wins.

The fixed priority scheme is very unfair because low-priority initi-
ators can be completely starved by high-priority initiators. A sim-
ple fair mechanism is the round-robin arbitration mechanism. In
round-robin arbitration, there is also a fixed order of requestors,
but the priority is adjusted dynamically after each successful arbi-
tration to give the lowest priority to the previous winner. When all
initiators are constantly requesting service, each initiator is ser-
viced in turn.

The round-robin scheme gives every initiator equal access to the
target. It may be desirable to have some initiators have a higher
bandwidth of access to the target. The time-division-multiplexed-
access (TDMA) scheme is one way of achieving this. Time is
divided into equal-sized intervals, such as clock cycles, and each
interval is assigned to a particular initiator. An uneven assignment
of intervals to different initiators allows for different bandwidths to
the target. Another characteristic of the TDMA mechanism is that
time intervals are typically assigned to initiators in recurring peri-
ods, so that service is very regular. A downside of this strict
assignment is that it does not allow an initiator to claim another
initiator�s interval (no preemption) which means that very-low
latency service is typically not possible. Another downside of the
TDMA mechanism is that it does not readily distribute to multiple
arbitration points without including smoothing buffers between
them to deal with misaligned TDMA wheels. This is especially
true if there are data width conversion or clock domain crossings
to accomplish.

The fixed weight scheme solves the round-robin equal allocation
issue a different way: initiators are allowed to transfer more than
one request when they are the highest-priority initiator, according
to a set of fixed weights. The weights are set per arbitration point
branch and are fixed in that arbitration point.

3 Experimental set-up
Simulations were performed at the cycle level. The models con-
sisted of master models to drive a workload into the system, a
slave model to service read and write requests, and an intercon-
nect/arbitration model that contained the bulk of the different
mechanisms under investigation. While bursts of requests are
sourced by some initiators, arbitration takes place on a per-request
basis. Also, the response network model is extremely simple,

Credit
Count

0

positive

negative

increment

Service
request

decrement

positive limit

negative limit

Periodic event
(based on allocation)

4

because no contention or backpressure are assumed.

The system set-up used in this paper is shown in Figure 4. We
study four different initiators accessing a single shared target. For
the early experiments, we generate artificial workloads to expose
the characteristics of the different arbitration schemes. For the later
experiments, we generate traffic that represents a more realistic
system problem.

The data flows issued by the different initiators and the service
requirements for these data flows are different for each initiator
and represent a typical system problem with many conflicting per-
formance goals. Initiator CPU represents a cached processor, with
an 800 MHz internal core frequency, and assumed cpi of 1.0
resulting in a theoretical (no cache miss) upper bound of 800
MIPS. The performance of the processor (measured in MIPS)
depends on the cache miss rate and the cache miss penalty. During
the studies, we vary the cache miss rate to represent different
application scenarios. The cache miss penalty is determined by the
latency and bandwidth of the interconnect and target. Since the
overall MIPS depends critically on the miss penalty when the
cache miss rate is everything but negligibly small, a very important
requirement for traffic from initiator CPU is that read requests be
serviced with minimal latency.

The traffic generated by initiator CPU is a mix of 4-word burst
reads and writes representing cache fills and writebacks. The char-
acteristics are summarized in the table below.

Table 1: CPU traffic.

Initiators MPEG and VID represent stream-processing (audio,
video, for example) initiators. These typically have some amount
of buffering to deal with service interruptions, and are generally
not very latency sensitive. The main service requirement for these
data flows is that a minimum bandwidth must be sustained, and
that bandwidth jitter must not exceed certain limits which would
cause buffer overflow or underflow with a resultant loss of data.

The traffic generated by MPEG is somewhat bursty, with varying
burst lengths, to represent the different alignment of memory
blocks being read/written from memory.

Table 2: MPEG traffic.

We require the full maximum 800 MBytes/s bandwidth to properly
service the MPEG traffic.

The traffic generated by VID represents reading a frame buffer and
displaying it on a screen. Therefore it is all reads and very regular.

Table 3: VID traffic.

We require 200 MBytes/s bandwidth to properly service the VID
traffic.

Finally, initiator GEN represents some generic initiator that does
not have high bandwidth needs and no specific service require-
ments (some non-system critical initiator).

Table 4: GEN traffic.

All 4 initiators access a shared target MEM, which represents an
on-chip SRAM core. For the MEM target we assume it has an 8-
byte interface and runs at 200 MHz for a maximum bandwidth of
1.6 GBytes/s. It is modelled like an on-chip SRAM with full band-
width capability and a latency of 1 cycle.

4 Experiments and results
This section describes the experiments and their results. Round-
robin arbitration is not considered, since it is not especially inter-
esting - the available resource is simply shared among all request-
ors.

4.1 System experiments
The experiments were run using the system workloads described
in section 3. As shown in Figure 1, we have two arbitration points.
Initiators VID and GEN arbitrate at one point, and the result is
combined with requests from CPU and MPEG at a second arbitra-
tion point. We study priority, TDMA, and epoch-based arbitration
with dynamic demotion in the two arbitration points.

When allowing multiple initiators to share a target, there needs to
be some way to assign a portion of the service capability of the tar-

Parameter Value Notes

burst size 4 words cache line size

RD/WR 4:1

arrival bursty, averag-
ing a burst 4
cycles after last
miss response

high miss rate (25% of
instructions are loads/
stores, 25% miss the
cache, cpi = 1)

bursty, averag-
ing a burst 35
cycles after last
miss response

low miss rate (25% of
instructions are loads/
stores, 2.85% miss the
cache, cpi = 1)

Parameter Value Notes

burst size 1-8 words varies dynamically

RD/WR 2:1

arrival bursty, 800 MB/s

Parameter Value Notes

burst size 8 words = smoothing buffer

RD/WR all reads

arrival regular, 200 MB/s

Parameter Value Notes

burst size 1-8 words random

RD/WR 1:1

arrival bursty, 100 MB/s

Parameter Value Notes

5

get to the different initiators. For our system scenario, we require
the CPU initiator to be serviced with minimum latency, while the
MPEG and VID initiators need a certain bandwidth within the
given jitter limits.

A simple way to guarantee low-latency access to the CPU is to use
a fixed-priority scheme and give the highest priority to the CPU.
Other initiators are assigned lower priorities in decreasing order of
bandwidth, i.e. MPEG is next, followed by VID and GEN.

The results for a low CPU miss rate are shown in Figure 4. Each
initiator gets its required bandwidth and the CPU achieves
678 MIPS.

Figure 4: System results, priority scheme (low miss scenario)

However, when the CPU miss rate increases to the high miss rate,
as shown in Figure 5, it ends up stealing too much bandwidth from
the other initiators, and the VID core does not get its required
bandwidth. This would manifest itself as screen flicker, which is
very undesirable.

Figure 5: System results, priority scheme (high miss scenario)

At the other end of the spectrum, we can use a TDMA scheme to
assure that the MPEG and VID initiators get their required band-
width within tight jitter bounds. We allocate every second cycle to
the MPEG initiator, every 4th to the CPU, and one each out of 8 to
the VID and GEN initiators.

The results are shown in Figures 6 and 7. While the MPEG and
VID initiators now receive the bandwidth they require, and the jit-
ter is naturally very low in this scheme, the CPU latency has gone
up dramatically. For the low miss rate we now see only 524 MIPS,
which is only 77% of what the priority scheme achieves. For the
high miss rate, the degradation is even worse, as the CPU dips
below 167 MIPS.

Figure 6: System results, TDMA scheme (low miss scenario)

Figure 7: System results, TDMA scheme (high miss scenario)

Our arbitration scheme with bandwidth allocation achieves the
best of both worlds. We have allocated 800 MBytes/s to MPEG,
240 MBytes/s to VID, and the rest to the CPU. With low CPU
misses (Figure 8) we see that the MPEG and VID initiators receive
their required service, while the CPU gets to the same 678 MIPS
that the priority scheme achieved. When the CPU miss rate
increased to the high setting (Figure 9), MPEG and VID remain
protected (as in TDMA) but the CPU achieves a MIPS value of
280, which is 68% higher than the TDMA scheme.

Figure 8: System results, QoS scheme (low miss scenario)

Figure 9: System results, QoS scheme (high miss scenario)

The CPU thread has been optimized for latency. When within its
allocation, the CPU always sees the minimum request service
latency of 1 cycle. Once above its allocation (as happens fre-
quently in the high miss scenario), service drops back to the allo-
cated bandwidth and queueing latencies are much higher. The
MPEG and VID initiators are allocated their required bandwidth.

5 Related work
There has been much research into providing quality-of-service
guarantees in high-speed networks. Various service models and
traffic models for packet-switching networks that provide (deter-
ministically) guaranteed service, best-effort service, predicted ser-
vice, and statistically guaranteed service have been described [8, 9,
10, 11]. For on-chip interconnects, latency requirements are typi-
cally much tighter, making solutions that require a set-up phase for
a connection impractical. Complex algorithms that require much
intermediate storage also do not readily apply to on-chip, all hard-
ware implementations. Fortunately, the on-chip problem is typi-
cally more bounded in terms of interconnect size, distance in clock
cycles, and initiator traffic behavior, so a mechanism that provides
deterministic (rather than statistical) guarantees is feasible.

50

12.5
6.47

9.68

0

10

20

30

40

50

60

MPEG VID GEN CPU

B
an

dw
di

th
 (%

)

678

0

100

200

300

400

500

600

700

800

CPU
C

P
U

 M
IP

S

49.6

5.89
0.02

44.2

0

10

20

30

40

50

60

MPEG VID GEN CPU

B
an

dw
di

th
 (%

)

354

0

100

200

300

400

500

600

700

800

CPU

C
P

U
 M

IP
S

49.2

12.4
6.43 5.24

0

10

20

30

40

50

60

MPEG VID GEN CPU

B
an

dw
di

th
 (%

) 524

0

100

200

300

400

500

600

700

800

CPU

C
PU

 M
IP

S

49.2

12.4
6.43

20.9

0

10

20

30

40

50

60

MPEG VID GEN CPU

B
an

dw
di

th
 (%

)

167

0

100

200

300

400

500

600

700

800

CPU

C
PU

 M
IP

S

50

12.5
6.47

9.68

0

10

20

30

40

50

60

MPEG VID GEN CPU

B
an

dw
di

th
 (%

)

678

0

100

200

300

400

500

600

700

800

CPU

C
PU

 M
IP

S

49.2

12.4

3.1

35

0

10

20

30

40

50

60

MPEG VID GEN CPU

B
an

dw
di

th
 (%

)

280

0

100

200

300

400

500

600

700

800

CPU

C
PU

 M
IP

S

6

Work focussed on quality-of-service specifically for on-chip inter-
connects is much sparser and more recent. One of the major chal-
lenges in implementing a shared on-chip interconnect (without
overdesigning) is to provide service guarantees to some initiators
while at the same time keeping resource utilization high. We are
aware of three other efforts to give both some form of quality-of-
service guarantee while at the same time allowing for best-effort
traffic to keep utilization high. The SiliconBackplane mechanism
[16] makes use of a TDMA wheel for guaranteed throughput, and
allows unused slots to be filled by �best effort� traffic. It does not,
however, provide any optimizations for low-latency service. The
AETHEREAL NOS [12, 13] emphasizes the need for guaranteed
services in systems-on-chips and provides a router implementation
that combines best-effort with guaranteed services. From this
standpoint, we are very much aligned with the thrust of this work.
The major differences with our work is that we not only provide
bandwidth guarantees, but also offer a service class optimized for
low-latency. The LOTTERYBUS [14] addresses the long latency
issues of traditional TDMA schemes by implementing a statistical
TDMA to enforce bandwidth allocations. This helps somewhat,
but we go further by giving priority to initiators with requirements
for low-latency service, rather than just a statistical chance
amongst contending initiators. The only way to achieve low
latency in LOTTERYBUS is to overallocate bandwidth to the cor-
responding initiator, making the rest of the system vulnerable to
bandwidth spurts from that initiator. Note that in LOTTERYBUS
statistical rather than absolute guarantees are given, which means
system designers must still account for the (small) chance that a
bandwidth allocation fails. Finally, there seems to be no obvious
way to extend this scheme to more than a single arbitration point.

6 Summary
This paper has outlined a simple quality-of-service scheme for on-
chip interconnects. It offers service guarantees to each initiator,
regardless of the other initiators� offered traffic load, which greatly
simplifies the system performance optimization problem. Three
levels of quality of service are available for each initiator: priority
(optimized for low-latency up to a maximal throughput), band-
width (offering a guaranteed throughput) and best-effort (no ser-
vice guarantees). While some existing schemes can offer
bandwidth guarantees, we offer the ability to provide both low-
latency service and bandwidth guarantees. Initiators that require
low latency will always experience the lowest possible latency
except in the situation where servicing them will violate the band-
width guarantees of other initiators. This feature is critical for shar-
ing resources between latency-sensitive dataflows from initiators
such as general-purpose processors and real-time dataflows such
as video traffic, which is an increasingly common scenario in
SOCs. The functionality of the arbitration mechanisms distributes
well over non-uniform interconnects with multiple arbitration
points, and naturally handles such bandwidth discontinuities as
data width conversion and clock domain crossings. Division into
network core and network edge functions allows for very high-
speed implementations.

7 References
[1] Drew Wingard. MicroNetworks-based integration for SOCs.

In Design Automation Conference, 2001.

[2] Paul Wielage and Kees Goossens. Networks on silicon:
Blessing or nightmare? Keynote speech, Euromicro Sympo-
sium On Digital System Design, Dortmund, Germany, Sep-
tember 2002.

[3] Ron Ho, Kenneth W. Mai, and Mark A. Horowitz. The
Future of Wires. In Proceedings of the IEEE, Vol. 89, No. 4,
pages 490 - 504, April 2001.

[4] Willian J. Dally and Brian Towles. Route Packets, Not
Wires: On-Chip Interconnection Networks. In Design Auto-
mation Conference, pages 684 - 689, June 2001.

[5] Luca Benini and Giovanni De Micheli. Networks on Chips:
A New SoC Paradiagm. In IEEE Computer, Vol. 35, No. 1,
pages 70 - 78, 2002.

[6] Axel Jantsch and Hannu Tenhunen, Editors. Networks on
Chip. Kluwer Academic Publishers, 2003.

[7] Wolf-Dietrich Weber. Enabling Reuse via an IP Core-centric
Communications Protocol: Open Core Protocol. In Proceed-
ings of the IP 2000 System-on-Chip Conference, pages 217-
224, March 2000.

[8] Jim Kurose. Open issues and challenges in providing quality
of service guarantees in high-speed networks. ACM Com-
puter Communication Review, Vol. 23, No. 1, pages 6 - 15,
January 1993.

[9] Hui Zhang. Service disciplines for guaranteed performance
service in packet-switching networks. Proceedings of the
IEEE, Vol. 83, No. 10, pages 1374 - 1396, October 1995.

[10] Martin Reisslein, Keith W. Ross, and Srinivas Rajagopal. A
Framework for Guaranteeing Statistical QoS. In IEEE/ACM
Transactions on Networking, Vol. 10, No. 1, pages 27 - 42,
February 2002.

[11] Dimitrios Stiliadis and Anujan Varma. Latency-Rate Serv-
ers: A General Model for Analysis of Traffic Scheduling
Algorithms. In Proceedings of IEEE INFOCOM 96, pages
111 - 119, April 1996

[12] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage.
Networks on Silicon: Combining Best-Effort and Guaran-
teed Services. In Proceeding of DATE, 2002.

[13] E.Rijpkema, K. Goossens, A. Radulescu, J. van Meerbergen,
P. Wielage, and E. Waterlander. Trade offs in the design of a
router with both guaranteed and best-effort services for net-
works on chip. In Proceedings of Design Automation and
Test Conference in Europe, March 2003.

[14] K. Lahiri, A. Raghunathan, G. Lakshminarayana. LOTTERY-
BUS: A New High-Performance Communication Architec-
ture for System-on-Chip Designs. In Proceddings of Design
Automation Conference, page 15 - 20, Las Vegas, June
2001.

[15] William J. Dally. Virtual-channel Flow Control. In Proceed-
ings of the 17th Int. Symp. on Computer Architecture, ACM
SIGARCH vol. 18, no. 2, pages 60 - 68, May 1990.

[16] D. Wingard and A. Kurosawa, Integration Architecture for
System-on-a-Chip Design. In Proc. of the 1998 Custom Inte-
grated Circuit Conference, pages 85 - 88, May 1998.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

