
×pipes Lite: A Synthesis Oriented Design Library For Networks on Chips

Stergios Stergiou1, Federico Angiolini2, Salvatore Carta3, Luigi Raffo3, Davide Bertozzi2, and

Giovanni De Micheli1

1Computer Systems Laboratory, Stanford University, Stanford, CA, 94305, USA
2Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna, 40136 Bologna, Italy

3Dipartimento di Ingegneria Elettrica ed Elettronica, University of Cagliari, 09123 Cagliari, Italy

Abstract

The limited scalability of current bus topologies for Sys-
tems on Chips (SoCs) dictates the adoption of Networks on
Chips (NoCs) as a scalable interconnection scheme. Cur-
rent SoCs are highly heterogeneous in nature, denoting ho-
mogeneous, preconfigured NoCs as inefficient drop-in alter-
natives.

While highly parametric, fully synthesizeable (soft) NoC
building blocks appear as a good match for heterogeneous
MPSoC architectures, the impact of instantiation-time flex-
ibility on performance, power and silicon cost has not been
quantified yet. This work details×pipes Lite, a design flow
for automatic generation of heterogeneous NoCs.×pipes
Lite is based on highly customizable, high frequency and
low latency NoC modules, that are fully synthesizeable. Syn-
thesis results provide with modules that are directly compa-
rable, if not better, than the current published state-of-the-
art NoCs in terms of area, power, latency and target fre-
quency of operation measurements.

1. Introduction

Increasing transistor density and system interconnect
scalability limitations necessitate the introduction ofNet-
works On Chip(NoCs) as a viable, scalable packet-switched
micro-network interconnect scheme, alternative to bus ar-
chitectures. Many NoC architectures have recently been
proposed [4, 5, 6, 9]. A NoC is depicted in Figure 1.

Topology selection is an integral part of a NoC de-
sign flow. Regular (such as mesh or fat tree) topologies
have been adopted for interconnecting homogeneous cores
[16, 3, 2, 24] in the first generation of NoC approaches.
For a heterogeneous system however, such as [21], a regular
topology selection may lead to overdesigning and is there-
fore not favorable in most current NoCs [11]. For this rea-
son, several researchers are currently focusing their efforts
on developing complete application-specific NoC synthesis
flows, where topology and network bulding blocks are cus-
tomized at instantiation time [12, 6].

The performance advantage of application-specific

NoCs has been convincingly demonstrated at the architec-
tural level [12, 13, 14]. It is a well-known fact, however,
that instantiation-time flexibility through automatic synthe-
sis has a price in terms of silicon efficiency [22]. Hence,
a key issue for NoC synthesis approaches is to demon-
strate that the architectural headroom of synthesized NoCs
with respect to less flexible, homogeneous NoCs is main-
tained throughout the logic and physical synthesis steps.

Our work addresses precisely this issue. It details a com-
plete NoC design flow based on×pipes Lite, a new,
synthesis-oriented flow for the×pipes library. This new
version maintains most of the architectural advantages of
the original proposed library [9], such as latency insensitive
design, packet-switched communication with source rout-
ing and wormhole flow-control, and interface support for
error control. However,×pipes Litewas re-designed from
scratch to be low-latency and synthesis-friendly. The con-
tribution of this work is two-fold: first, it discusses
architectural optimizations and specification tuning steps
that have been developed to achieve high synthesis
efficiency; second, it provides extensive post-synthesis im-
plementation analysis to bound the design space that can be
spanned by our flexible building blocks.

The outline of this work is as follows: Section 2 surveys
related work. Section 3 analyzes the×pipes Litearchitec-
ture and introduces the proposed design flow. Section 4 pro-
vides a comparison between the proposed and the original
×pipes architecture. Section 5 provides an insight on the is-
sues addressed by utilizing SystemC as a synthesis front-
end language. Section 6 details the synthesis experimental
results. Section 7 concludes the paper.

2. Related Work

The most advanced SoC communication architectures
used in industry today represent evolutionary solutions with
respect to shared busses. For instance, the Sonics MicroNet-
work [17] is a TDMA-based bus which can easily adapt to
the data-word width, burst attributes, interrupt schemes and
other critical parameters of the integrated cores, while pro-
viding very high bandwidth utilization. Another example is
the STBus interconnect [25], a high-performance communi-

1530-1591/05 $20.00 © 2005 IEEE

NETWORK IF

CORE

NETWORK IF

CORE

NETWORK IF

CORE

NETWORK IF

CORE

NETWORK IF

CORE

NETWORK IF

SWITCH

SWITCH

SWITCH

CORE

SWITCH

Figure 1. NoC Architecture block diagram

cation infrastructure that allows to instantiate shared busses
as well as more advanced topologies such as partial or full
crossbars.

Early works in [1, 15] pointed out the need for more scal-
able architectures for on-chip communication, and therefore
to progressively replace shared busses with on-chip net-
works. Many NoC architectures have been proposed in the
literature, but in most cases the design methodologies and
tools are still in the early stage.

Most early NoC proposals are packet switched and ex-
hibit regular structure. The NOSTRUM network [3] adopts
a mesh based approach. TheScalable Programmable Inte-
grated Network (SPIN)[2] is another regular, fat-tree-based
network architecture. TheLinkoeping SoCBUS[18] is a
two-dimensional mesh network which uses a packet con-
nected circuit to set up routes through the network. In [5]
the use of theoctagoncommunication topology for network
processors is presented. Moreover, the implementation of a
star-connectedon-chip network supportingplesiochronous
communicationamong system components is described in
[7]. These NoCs provide scalable network fabrics for homo-
geneous system (e.g. symmetric chip-multiprocessors), but
they do not allow arbitrary heterogeneous topology instan-
tiation.

Significant steps in the direction of instantiation-time
flexibility have been taken in theAetherealNoC design
framework, presented in [4], which aims at providing a
complete infrastructure for developing heterogeneous NoCs
with end-to-end quality of service guarantees. The net-
work supportsguaranteed throughput (GT)for real time
applications andbest effort (BE)traffic for timing uncon-
strained applications.Aethereal’s NI is highly configurable
(it supports several session-layer standards, a variable num-
ber of ports, etc.), but the switch architecture is quite rigid.
Furthermore, from the implementation viewpoint, both the
NI and the switch make use of custom hard-macro FIFO
buffers. These structures are not synthesizeable and they
must be manually re-tuned when migrating to new tech-
nologies.

Support for heterogeneous architectures requires highly
configurable network building blocks, customizable at in-
stantiation time for a specific application domain. For in-
stance, theProteo NoC [6] consists of a small library of
predefined, parameterized components that allow the imple-
mentation of a large range of different topologies, protocols
and configurations.×pipes NoCs [9] push this approach to
the limit, by instantiating an application specific NoC from
a library of synthesizeable soft macros (Network Interface
- NI, switch and link). The components are highly parame-
terizable and provide reliable and latency insensitive opera-
tion. The main drawbacks with the first×pipes architecture

APPLICATION

SPECIFIC

NoC

APPLICATION

XPIPES LIBRARY

SYSTEMC
FILES

OF
WHOLE
DESIGN

XPIPESCOMPILER TOOL

INSTANTIATION SOFTWARE

SYNTHESIS

NI

FILES

SWITCH

FILES

LINK

FILES

TABLES
ROUTING

CORE
SOURCE

FILES

Figure 2. NoC synthesis flow

are the high complexity of its basic building blocks, and
the lack of a complete synthesis path to silicon implemen-
tation (NoC cost is only estimated using high level models
[23]). Both issues are fully addressed in this work.

3. ×pipes Lite Architecture and Synthe-
sis Flow

×pipes Lite is a SystemC library of highly parame-
terizable, synthesizeable NoC Network Interface, switch
and link modules, optimized for low-latency and high-
frequency operation. Communication is packet switched,
with source routing (based upon street-sign encoding) and
wormhole flow control.

×pipes utilizes OCP 2.0 [20] as a means to interface with
the SoC cores. Adhering to OCP’s master/slave semantics,
two NI interfaces are implemented for a peer-to-peer com-
munication between two cores. Network communication is
transparent to the application. Transferred packets are frag-
mented into units of fixed size, called flits.

3.1. NI Architecture

The ×pipes NI is designed as a bridge between an
OCP interface and the NoC switching fabric. Its pur-
poses are the synchronization between OCP and×pipes
timings, the packeting of OCP transactions into×pipes
flits and vice versa, the computation of routing informa-
tion, and the buffering of flits to improve performance.

The×pipes NI is designed to comply with version 2.0 of
the OCP specifications. In addition to the core OCP sig-
nals, support includes for example the ability to perform
both non-posted or posted writes (i.e.writes with or without
response) and various types of burst transactions, including
reads with single request and multiple responses. This al-
lows for thorough exploration of bandwidth/latency trade-
offs in the design of a system.

To provide complete deployment flexibility, the NI is pa-
rameterizable in both the width of OCP fields and of×pipes
flits. Depending on the ratio between these parameters, a
variable amount of flits is needed to encode an OCP trans-
action.

protocol
xpipes

protocol
xpipes

M
em

o
ry

OCP

C
P

U

OCP

response channel

request channel

xpipes

network

NI Initiator NI Target

ni_response

ni_request ni_receive

ni_resend

Figure 3. ×pipes Network Interfaces

For any given transaction, some fields (such as the OCP
MAddr wires, specific control signals, routing information)
can be transmitted just once; in contrast, other fields (such
as the OCPMData or SData wires) need to be transmitted
repeatedly, for example during a burst transaction. Thus, the
NI is built around two registers; one holds the transaction
header, while the second one holds the transaction payload.
The first register samples OCP signals once per transaction,
while the second is refreshed on every burst beat.

A set of flits encodes the header register; subsequently,
multiple sets of flits are sent towards the fabric, each encod-
ing a snapshot of the payload register subsequent to a new
burst beat. Sets of payload flits are pushed out until trans-
action completion. Header and payload content is never al-
lowed to mix in the same flit, thus simplifying the required
logic. Routing information is attached to the header flit of a
packet by checking the transaction address against a Look-
Up Table (LUT).

As shown in Figure 3, two NIs are implemented in
×pipes, named “initiator” (attached to system masters) and
“target” (attached to system slaves). A master-slave device
will need two NIs, an initiator and a target, for operation.
Each NI is additionally split in two submodules, one for the
request and one for the response channel. These submod-
ules are loosely coupled: whenever a transaction requiring a
response is processed by the request channel, the response
channel is notified; whenever the response is received, the
request channel is unblocked. The mechanism is currently
supporting only one outstanding non-posted transaction, but
can be extended should any attached core need this feature.

The×pipes interface of the NI is bidirectional; for exam-
ple, the initiator NI has an output port for the request chan-
nel and one input port for the response channel (the target
NI is dual). The output stage of the NI is identical to that of
the ×pipes switches, for increased performance. The input
stage is implemented as a simple dual-flit buffer with min-
imal area occupation, but still makes use of the same flow
control used by the switches.

3.2. Switch Architecture

The ×pipes switch models the basic building block of
the NoC switching fabric. It implements a 2-cycle-latency,
output-queued router that supports fixed and round robin
priority arbitration on the input lines, and a flow control pro-
tocol with ACK/nACK, Go-Back-N semantics.

Allocation of inputs towards specific output lines is han-
dled at theAllocator module. Multiple Allocators exist in a
switch, each driving one of its output ports (Oi).

Assuming that one input is currently owning access to
Oi, it is maintained in its state until a tail flit arrives. Arbitra-
tion is subsequently performed upon receipt of a header flit

O
ut [0]

Allocator [0]

Allocator [1]

Allocator [2]

Flow
 C

ontrol

In [1]
In [2]

In [3]
In [0]

O
ut [1]

O
ut [2]

O
ut [0]

Figure 4. ×pipes 4x3 Switch

with routing information dictating that the incoming packet
should exit throughOi.

An input flit can be rejected, and therefore nACKed, due
to one or more of the following reasons:

• The output line is occupied by a previous transmitting
packet.

• The buffering space for outputOi is already filled.
• Another header flit requesting the same output is con-

currently appearing on another input port, and arbitra-
tion is won by the latter.

If a flit A is dropped, then all subsequent incoming flits
are dropped as well, until flitA reappears at the input, ad-
hering to a Go-Back-N flow control mechanism.

After a packet has won the arbitration, its header flit is
properly adjusted in order to prepare for the next switch
along the routed path to the slave. More specifically, routing
information pertaining the current switch is rotated away;
this allows positioning of the per-hop routing bits at a fixed
offset within the flits.

The switch is parameterizable in the number of its inputs
and outputs, its arbitration policy (fixed priority or round-
robin,) as well as in the size of the buffering at the outputs.
A 4x3 instantiation is depicted in Figure 4.

3.3. Link Architecture

A solution to overcome the interconnect-delay problem
consists of pipelining links. The link data introduction rate
is decoupled from link delay by trading it with latency. The
NoC NI and Switch modules are designed in such a way that
their behavior does not depend on the latency of the com-
munication channels (latency insensitive operation) [19].
Pipelining has been used both for data and control lines.

3.4. Design Flow

The design flow is shown in Figure 2. The×pipes com-
piler instantiates the desired NoC by means of configura-
tion scripts that are either automatically generated in a pre-
vious step, or manually specified [12].

Configuration scripts detail general, core (NI), switch,
and link specific parameters. General parameters comprise
flit size, and core address space. Core (NI) parameters in-
clude type(master/slave/both), address on the NoC and the
switch connection endpoint.

Flit Output Buffer Stages
Width (bits) 4 16 64

Initiator NIs
16 22.7 30.4 59.6
32 33.5 47.7 104.8
64 49.3 77.1 194.8
128 87.8 144.5 379.3

Target NIs
16 27.5 34.8 62.6
32 36.9 51.1 106.9
64 55.4 82.0 194.3
128 93.3 151.1 382.5

Table 1. Cell power (mW) for initiator and tar-
get NIs.

Switch parameters include the number of inputs and out-
puts, along with the output buffering capacity. Finally, link
parameters comprise the switch endpoints that they connect
to, along with the number of their pipeline stages.

4. ×pipes Lite Design Revision

The original×pipes design is essentially a full-featured
NoC specification, addressing all aspects of a NoC design
flow, including error control at the switch level, with para-
meterization pushed to the extreme.×pipes Litehas instead
been designed from the ground up to be a library of fully
synthesizeable, low-latency, high-frequency NoC modules.
In this context, architectural changes have been performed
onto the original×pipes library [9].

One key observation driving the development of×pipes
Lite is that NoCs typically provide abundant and scalable
bandwidth, but they lack in providing low-latency services.
In order to address this limitation, one of the most notice-
able differences between×pipes Liteand the first version
of ×pipes is the dramatic reduction in pipeline depth, with
no compromises on the frequency target. Switches, for ex-
ample, now incur in a latency of just two cycles, against
seven in the previous design. Network interfaces underwent
a similar redesign, with four fewer pipeline stages in out-
put channels and one less in input channels. This significant
improvement was achieved by removing the logic related
to virtual channel management and to error detection, even
though the switch protocol still supports retransmissions. A
side benefit of the shortening of×pipes pipelines is greatly
reduced buffering requirements, which drastically reduces
synthesized area and increases achievable frequency.

Additional area savings, again compounded with latency
improvements, were achieved by slightly constraining the
×pipes packet format. In contrast with the original spec-
ification, which aimed at maximum packing of informa-
tion within the flits, a format with fixed field offsets and
an immediate forwarding policy was chosen as more effec-
tive area- and latency-wise. Unnecessary bloat of synthe-
sized hardware was also avoided by assuming routing in-
formation to fit in the first flit of a packet, by enforcing a
fixed worst-case width, and by preventing header and pay-
load content to mix within the same flit.

From the point of view of the core interface, OCP sup-
port was updated from version 1.0 to 2.0 of the specifica-

Flit Output Buffer Stages
Width (bits) 4 16 64

Initiator NIs
16 0.025 0.037 0.093
32 0.036 0.061 0.179
64 0.051 0.111 0.361
128 0.092 0.186 0.724

Target NIs
16 0.035 0.053 0.110
32 0.045 0.078 0.193
64 0.063 0.114 0.352
128 0.117 0.230 0.701

Table 2. Area (mm 2) for initiator and target
NIs.

tions, significantly improving the support for burst transac-
tions in the process. Single request, multiple responses burst
reads are now possible, and write commands can be either
with or without response, trading speed for reliability.

5. Synthesis and Simulation Back-ends

While the original×pipes library was mostly targeted to
functional simulation, the structure and design choices of
the ×pipes LiteNoC modules were heavily influenced by
the target goals of high-speed, low-latency soft core synthe-
sizeability. Still, simulation functionality was kept as a de-
sign objective, with the issue of instantiation-time parame-
terizability in the foreground. For this reason, we chose to
keep a single codebase for the×pipes Litelibrary, condi-
tionally adding simulation- or synthesis-specific code when
appropriate.

One of the main issues in keeping the simulation and
synthesis flows consistent was the need for different con-
figurations of individual instances of the same module. For
example, two switches with different numbers of I/O ports
or amounts of buffering may coexist in a×pipes Litede-
sign. While such configuration is easily achieved in a sim-
ulation environment, simply by building a generic SystemC
class and by passing appropriate parameters to the con-
structor of every instance at runtime, the issue is more se-
rious if the module needs to be synthesized, because syn-
thesis tools require static code. Our approach was to use
a single configurable class for simulation, and adding pre-
processor directives when needed to automatically but stat-
ically differentiate every instance to be synthesized. For ex-
ample, the singleclass switch() used for simulation
would be renamedclass switch 4 4() and class
switch 7 2() , and then appropriately configured, when
synthesizing a 4x4 and a 7x2 switch simultaneously.

For increased flexibility, switch I/O ports are instanti-
ated differently during simulation. Code likeIN = new
sc in<sc bv<FLIT WIDTH> > [SWITCHINPUTS]
is utilized, while synthesis resorts to static defini-
tions and multiple class naming. In a dual manner, sig-
nal widths which are defined by means of templates in
SystemC, can be accurately tuned for synthesis (e.g.
sc bv<LOG INPUTS> mux sel), and are set to up-
per limit values for simulation.

Various non synthesizeable syntactical alternatives were

Flit Output Buffer Stages
Width (bits) 4 16

4x4 Switches
16 0.054 @ 1 GHz 0.126 @ 1 GHz
32 0.091 @ 1 GHz 0.214 @ 1 GHz
64 0.161 @ 1 GHz 0.378 @ 1 GHz
128 0.311 @ 1 GHz 0.777 @ 1 GHz

4x6 Switches
16 0.091 @ 990 MHz 0.226 @ 950 MHz
32 0.151 @ 970 MHz 0.389 @ 950 MHz
64 0.287 @ 970 MHz 0.777 @ 915 MHz
128 0.518 @ 925 MHz 1.637 @ 900 MHz

6x4 Switches
16 0.070 @ 980 MHz 0.167 @ 900 MHz
32 0.112 @ 950 MHz 0.268 @ 900 MHz
64 0.213 @ 935 MHz 0.533 @ 890 MHz
128 0.400 @ 875 MHz 1.028 @ 830 MHz

Table 3. Area (mm 2) and timing for 4x4, 4x6,
6x4 switches.

adopted for simulation, in order to improve performance.
For example, missing synthesis support for range selection
(sc uint<>.range(a, b)) on non-constanta, b led
to a code fork, where simulation used the above syntax,
while synthesis resorted to a bit-by-bit assignment.

One more complex issue arose with synthesis of NI rout-
ing LUTs. Our choice was to integrate the LUT generation
and the related code changes within the×pipes compiler
tool. This tool, leveraging on the codebase hooks described
above and on its own topology view, generates the cus-
tomized code base for both simulation and synthesis along
with the suitable Design Compiler synthesis scripts, as spec-
ified on the provided input script file.

6. Experimental Results

The feasibility of automatic generation of NoC topolo-
gies from parameterizable SystemC source code was thor-
oughly verified by performing extensive synthesis experi-
ments in 0.13µm technology with Synopsys Design Com-
piler for all modules. Results were obtained for worst case
commercial conditions under an average switching pattern
for power.

Configuration parameters for the NIs comprise the flit
width and the size of the output buffers. For a variety of NI
configurations, total cell power and area results are depicted
in Tables 1 and 2. A frequency of 1 GHz was achieved for
all variations, and is therefore not reported in the tables.

Switches are also parameterizable in terms of flit width
and size of the output buffers. In order to study the effect
of the number of input and output ports, three switch in-
stances were analyzed, namely 4x4, 4x6 and 6x4. The re-
sulting area and frequency results are depicted in Table 3;
a frequency of 1 GHz was achieved for all the 4x4 switch
variations. Total cell power results are reported in Table 4.

An exploration of the area/frequency tradeoff was per-
formed on 32-bit 5x5 switches. By varying the target syn-
thesis clock, different area results were reported (see Fig-
ure 6). The maximum operating frequency achieved for the
5x5 switch module was 925 MHz. As expected, area re-

Flit Output Buffer Stages
Width (bits) 4 16

4x4 Switches
16 31.1 62.7
32 55.5 116.9
64 104.4 219.3
128 199.1 430.5

4x6 Switches
16 42.8 90.1
32 79.7 170.8
64 148.2 334.4
128 283.2 617.3

6x4 Switches
16 35.9 69.1
32 62.9 123.2
64 117.2 237.6
128 223.4 453.5

Table 4. Cell power (mW) for 4x4, 4x6, 6x4
switches.

quirements are almost constant until a certain frequency
(800 MHz in this case), after which synthesis efforts to
achieve higher operating frequencies result in a steep area
increase.

An example illustrating the importance of the estimation
of the area and clock frequency of a NoC can be shown by
referring to Figure 6 and Figure 5. The diagram in Figure 5
features two alternative topologies for the same system,
comprising four processors, four privately accessible mem-
ories, and three shared slave devices. Topology (a) lever-
ages upon a single 11x11 switch in a crossbar-like fashion,
while topology (b) creates three clusters with 5x5 switches.
We integrated these×pipes topologies within a complete
cycle-true simulation environment ([8]), and ran an oper-
ating system-based benchmark on them, thus stressing the
platforms with functional traffic. To complete a benchmark
involving interprocessor communication, topology (a) re-
quired, as expected, less clock cycles, with about a 10%
advantage due to lower access latency towards shared de-
vices.

However, 11x11×pipes switches have a maximum
working frequency of approximately 780 MHz, while 5x5
switches can reach 925 MHz (a 19% gain). Area-wise, one
11x11 switch requires 0.48 mm2, while three 5x5 switches
(synthesized for maximum frequency) take 0.51 mm2 over-
all. The net result is that the designer can choose the
topology with 5x5 switches at maximum frequency, achiev-
ing 10% overall faster performance than the “crossbar”

switch
5x5 5x5

switch

M0

M1 M3

M2P0

P1

P2

P3

shared system slaves

11x11
switch

5x5
switch

system

shared slaves(a)
(b)

M1

M0

M2

M3

P0

P1

P2

P3

Figure 5. Test ×pipes topologies

Figure 6. Area-frequency tradeoff

topology despite a comparable area footprint. Alterna-
tively, the designer can clock the 5x5 switches about
10% higher than the 11x11 one (850 MHz), achiev-
ing roughly similar performance with a total area of 0.42
mm2, a saving of 14%. A third alternative is synthe-
sizing 5x5 switches with a frequency constraint of 800
MHz, about the same as the 11x11 one, thus achiev-
ing about 10% lower performance but with an overall area
of just 0.38 mm2 - a 34% saving over the 11x11 solu-
tion.

Finally, we performed place&route tests on a 5x5×pipes
switch instance. The layout analysis shows that the area re-
ported by the synthesis tools was an underestimate by less
than 10%.

7. Conclusion

We have presentedxpipes Lite, a design flow for the
generation of synthesizeable and simulateable models for
application-specific Networks on Chip. Synthesis results
with commercial tools prove the value and competitiveness
of automatic NoC generation. Whereas higher performance
can be achieved by custom layout of NoCs,xpipes Liteben-
efits designers by reducing their effort and allowing them to
explore the design space spanned by various NoC topolo-
gies and parameters.

8. Acknowledgement

This research is supported by MARCO Gigascale Sys-
tems Research Center (GSRC) and NSF, under contract
CCR-0305718 and a grant by STMicroelectronics for DEIS.

References

[1] L.Benini and G.De Micheli, “Networks on Chips: A New SoC
Paradigm”, IEEE Computers, pp. 70-78, Jan. 2002.

[2] P.Guerrier, A.Greiner,”A generic architecture for on-chip
packet switched interconnections”, DATE 2000, pp. 250-256,
March 2000.

[3] S.Kumar et al., ”A network on chip architecture and design
methodology”, ISVLSI 2002, pp.105–112, Apr 2002.

[4] E.Rijpkema et al., ”Trade-offs in the design of a router with
both guaranteed and best-effort services for networks on
chip”,DATE 2003, pp. 350-355, Mar 2003.

[5] F.Karim et al., ”On-chip communication architecture for OC-
768 network processors”, Design Automation Conference, pp.
678-678, June 2001.

[6] I.Saastamoinen, D.Siguenza-Tortosa, J. Nurmi, “Interconnect
IP node for future system-on-chip designs”, Proc. of The First
IEEE International Workshop on Electronic Design, Test and
Applications, pp. 116-120, Jan. 2002.

[7] S.J.Lee et al.,“ An 800MHz Star-Connected On-Chip Net-
work for Application to Systems on a Chip”, Digest of Tech-
nical papers, ISSCC 2003, pp.468-469, Feb. 2003.

[8] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon,
“Analyzing on-chip communication in a MPSoC environ-
ment”, Proc. DATE 2004.

[9] M. Dall’Osso et. al, “×pipes : a Latency Insensitive Para-
meterized Network-on-chip Architecture For Multi-Processor
SoCs”, pp. 536-539, ICCD 2003.

[10] A.Jalabert et. al, “×pipesCompiler : A Tool For Instan-
tiating Application Specific Networks on Chips”, Proc. DATE
2004.

[11] S.Murali, G.De.Micheli, “Bandwidth Constrained Mapping
of Cores onto NoC Architectures”, Proc. DATE 2004.

[12] S. Murali, G. De Micheli, “SUNMAP: A Tool for Automatic
Topology Selection and Generation for NoCs”, Proc. DAC
2004.

[13] A. Pinto , L. Carloni , A. L. Sangiovanni-Vincentelli, ”Effi-
cient Synthesis of Networks On Chip”,International Confer-
ence on Computer Design, 2003.

[14] W. H. Ho , T. Pinkston, ”‘A Methodology for Design-
ing Efficient On-Chip Interconnects on Well-Behaved Com-
munication Patterns”,International Symposium on High-
Performance Computer Architecture, 2003.

[15] W.J.Dally, B.Towles, ”Route Packets, not Wires: On-Chip
Interconnection Networks”, Design and Automation Confer-
ence DAC 2001, pp. 684-689, Jun 2001.

[16] W.J.Dally, S.Lacy, ”VLSI Architecture: Past, Present and Fu-
ture”, Conf. Adv. Research in VLSI, pp. 232-241, 1999.

[17] D.Wingard,”MicroNetwork-Based Integration for SoCs”,
Design Automation Conference DAC 2001, pp. 673-677, Jun
2001.

[18] D.Wiklund, D.Liu, ”SoCBUS: switched network on chip for
hard real time embedded systems”, Proc. International Paral-
lel and Distributed Processing Symposium 2003, pp. 78-85,
2003.

[19] L.P.Carloni, K.L.McMillan, A.L.Sangiovanni Vincentelli,
”Theory of Latency-Insensitive Design”, IEEE Trans. on CAD
of ICs and Systems, Vol.20, No.9, pp. 1059-1076, Sep 2001.

[20] Open Core Protocol, “http://www.ocpip.org/”
[21] H.Yamauchi et al., “A 0.8 W HDTV video processor with si-

multaneous decoding of two MPEG2 MP@HL streams and
capable of 30 frames/s reverse playback”, ISSCC, Vol.1, pp.
473-474, Feb. 2002

[22] D. G. Chinnery, and K. Keutzer,Closing the Gap Between
ASIC & Custom: Tools and Techniques for High-Performance
ASIC Design, Kluwer 2002.

[23] H.-S. Wang, X. Zhu, L.-S. Peh, S. Malik, ”Orion: A Power-
Performance Simulator for Interconnection Networks.”,Inter-
national Symposium on Microarchitecture, 2002.

[24] J. Liang, S. Swaminathan, R. Tessier, ”aSOC: A Scal-
able, Single-Chip communications Architecture”’,Interna-
tional Conference on Parallel Architectures and Compilation
Techniques, 2000.

[25] G. Strano, S. Tiralongo, C. Pistritto, ”OCP STBUS Plug-in
Methodology”The International Embedded Solutions Event,
2004.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

