
An Application-Specific Design Methodology for STbus Crossbar Generation

Srinivasan Murali, Giovanni De Micheli
Computer Systems Lab

Stanford University
Stanford, California 94305

{smurali, nanni}@stanford.edu

Abstract

As the communication requirements of current and future
Multiprocessor Systems on Chips (MPSoCs) continue to in-
crease, scalable communication architectures are needed to
support the heavy communication demands of the system.
This is reflected in the recent trend that many of the stan-
dard bus products such asSTbus, have now introduced the
capability of designing a crossbar with multiple buses oper-
ating in parallel. The crossbar configuration should be de-
signed to closely match the application traffic characteris-
tics and performance requirements. In this work we address
this issue of application-specific design of optimal crossbar
(usingSTbus crossbar architecture), satisfying the perfor-
mance requirements of the application and optimal binding
of cores onto the crossbar resources. We present a simula-
tion based design approach that is based on analysis of ac-
tual traffic trace of the application, considering local varia-
tions in traffic rates, temporal overlap among traffic streams
and criticality of traffic streams. Our methodology is ap-
plied to several MPSoC designs and the resulting crossbar
platforms are validated for performance by cycle-accurate
SystemC simulation of the designs. The experimental case
studies show large reduction in packet latencies (up to 7×)
and large crossbar component savings (up to 3.5×) com-
pared to traditional design approaches.

Keywords: Systems on Chips, Networks on Chips,
crossbar, bus, application-specific, SystemC.

1 Introduction

As the number of processor/memory cores and the num-
ber and size of applications run onMultiprocessor Sys-
tems on Chips (MPSoCs)increase, the communication be-
tween the cores will become a major bottleneck. Tradi-
tional communication architectures, such as single shared
or bridged buses are inherently non-scalable and will not
be able to support the heavy communication traffic [2].
A communication-centric design approach,Networks on
Chips (NoCs), has recently emerged as the design paradigm
for designing a scalable communication infrastructure for
MPSoCs[2].

The need for scalable communication architectures
is reflected in the recent trend that many of the
standard bus products, such as theSTbus R© (from
STMicroelectronics) have now introduced the ca-
pability of designing a crossbar with multiple buses oper-
ating in parallel, thus providing a low-latency and high-
bandwidth communication infrastructure.

Table 1. Crossbar Performance and Cost
Type Average Maximum Size

Lat (in cy) Lat (in cy) Ratio
shared 35.1 51 1

full 6 9 10.5
partial 9.9 20 4

The communication architecture for the design should
closely match the application traffic characteristics and per-
formance requirements. As an example, let us consider
a 21-core MPSoCrunning a set of matrix multiplication
benchmarks (detailed explanation of theMPSoCand exper-
imental set-up is presented in later sections). We consider
three different communication architectures usingSTbus
interconnection platform: a shared bus, a full crossbar and
a partial crossbar. In Table 1, we present the average and
maximum latency incurred by the packets, obtained from
SystemC simulation of the design using these platforms and
the size of the crossbars (in terms of number of components
used) normalized with respect to the size of the shared bus.
As seen from the table, as expected, both average and max-
imum packet latency is much higher for a single shared bus
than the partial or full crossbars. However, it is interest-
ing to note that an optimal partial crossbar gives almost the
same performance as a full crossbar, even though it uses
fewer resources than a full crossbar. A smaller crossbar
configuration results in reduction in number of communi-
cation components used (such as buses, arbiters, adapters,
etc), design area and design power.

In this research we target the design of the optimal
STbus crossbar configuration for a given application, sat-
isfying the performance characteristics of the application.
The proposed design methodology is based on actual func-
tional traffic analysis of the application, and the gener-
ated crossbar configuration is validated by cycle-accurate
SystemC simulation of the application using that crossbar.
Most previous works on bus generation and NoC topology
generation (which are somewhat similar to crossbar genera-
tion) are either based on average communication traffic flow
between the various cores or based on statistical traffic gen-
erating functions. While the former approaches fail to cap-
ture local variations in traffic patterns (as the average band-
width of communication is a single metric that is calculated
based on the entire simulation time), the latter approaches
are only based on approximations to the functional traffic.

Our design methodology differs from the existing ap-
proaches in the fact that, it is based on the analysis of sim-
ulated traffic patterns in windows, considering local vari-
ations in the communication traffic and reducing the tem-

1530-1591/05 $20.00 © 2005 IEEE

poral overlap among traffic streams mapped onto the same
resource. Moreover, our methodology is based on the ac-
tual traffic characteristics of the application obtained from
SystemC simulations and the designed crossbar configura-
tion is also validated by cycle-accurate simulations. Even
though our design approach is fine-tuned forSTbus cross-
bar architecture, it can be easily modified for other crossbar
architectures as well. Several experimental case studies on
MPSoCdesigns show large reduction in packet latencies (up
to 7×) and large network component savings (up to 3.5×)
compared to traditional design approaches.

2 Previous Work

A component-based design methodology for SoC design
is presented in [1]. The synthesis and instantiation of single
bus and multiple bridged buses has been explored in many
research works such as [5], [6], [7], [8]. In [9], the authors
present an approach for mapping the system’s communica-
tion requirements and optimizing the communication pro-
tocols for a given communication architecture template. In
[10], the use of communication architecture tuners to adapt
to runtime variability needs of a system is presented.

The need for scalable communication architectures and
a communication centric design paradigm,Networks on
Chips (NoCs), is presented in [2]. A large body of research
such as [12], [13], [11], [16], focus on developing design
tools and architectures for NoCs. A detailed survey of many
of the NoC research works is presented in [3]. Mapping of
communication requirements of a system onto a fixed set of
NoC topologies is explored in [20], [21], [14], [15].

In [18] design methodologies for application-specific bus
design and in [19], [15], for application-specific NoC topol-
ogy design are presented. These works are based on average
communication transferred between the various cores. In
[4], designing application-specific topologies based on ac-
tual simulation traces in presented. However, the method-
ology is based on eliminating contention and can lead to
over-sizing of network components, as even a small amount
of overlap between two traffic streams would result in the
need for separate communication resources for them. In
[17], the analysis is based on statistical traffic generators
and not functional application traffic.

In this work, our design methodology is based on actual
functional traffic of the application. We divide the entire
simulation period into a number of fixed-sized windows.
Within each window, we guarantee that the application
communication requirements (such as the bandwidth re-
quirements) are met. We minimize the overlap among traf-
fic streams mapped onto the same resource, thereby reduc-
ing the latency for data transfer. We also consider the crit-
icality and real-time requirements of streams and guaran-
tee that the performance constraints (such as bandwidth and
delay constraints) for these streams are met. Our methodol-
ogy spans an entire design space spectrum with the analysis
based on average communication traffic (as done in many
previous works) and on peak bandwidth (as done in [4])
being the two extreme design points. Thus our methodol-
ogy also applies to cases where application traces are not
available and only rough estimates of the traffic flows be-
tween the various cores is known. The design point in the
spectrum is varied by controlling the window size used for
the traffic analysis and design, which is explained further in
Section 7.2.

I1

I2

I3

A1

A2

I4

T2

T1

T3

Initiators

Targets

Bus 1

Bus 2

BusesArbiters

(a) Partial crossbar

I1

I2

I3

A1

A3

I4

Initiators

A2

T3

T1

T2

Targets

Bus 1

Bus 2

Bus 3

Arbiters Buses

(b) Full crossbar

Figure 1. STbus crossbars

.

.

...
ARM 1

ARM 0

ARM 8

Private
Memory0

Private

Private

Memory1

Memory8

Shared
Memory

Memory
Semaphore

Interrupt
Device

.

(a) Application

.

. . .

. .

. . .

simulation period

T2

T1

T3

(b) Traffic Trace

Figure 2. Application Traffic Analysis

3 Problem Definition and Analysis
3.1 Problem Definition

TheSTbus can be instantiated in three ways: as a shared
bus, a partial crossbar or a full crossbar. The partial and full
crossbars are actually composed of many buses to which
the processor/memory cores are connected (refer Figure 1).
Two separateSTbus crossbars are instantiated for a design:
one for the communication from initiators (masters) to tar-
gets (slaves) and the other for communication from targets
to initiators. Theinitiator-target partial and full crossbars
are shown in Figure 1. In this crossbar, all initiators are
connected to all buses of the crossbar and one or more tar-
gets are connected onto every bus. There are additional
interface components: arbiters and frequency/data width
adapters (not shown in the figure for clarity) that facilitate
the interconnection of heterogeneous processor and mem-
ory cores onto the bus. Thetarget-initiator crossbar has a
similar structure.

The type and size of crossbar needed for an application
should closely match the traffic characteristics and perfor-
mance requirements of the application. A full crossbar, al-
though provides the best performance in terms of minimiz-
ing communication latency or maximizing communication
throughput, results in a large increase in the number of net-
work components used, design area and power. Note that
the size of the two crossbars (theinitiator-target and the
target-initiator) can be different.

3.2 Application Traffic Analysis
In this subsection, we explore the traffic characteristics

of applications and formulate the performance constraints
to be satisfied by the crossbar designed for the system. As
an example, we consider the21-core matrix multiplication

2

Crossbar
Simulation

Full

Processing
Pre−

Design

Crossbar
Optimal

simulation
SystemC

Data Rate

on each Window
Traffic Collection

Phase 1 Phase 2 Phase 3

Phase 4

Overlap

Criticality

Figure 3. Design Methodology

application shown in Figure 2(a). In this example, there
are 9 ARM cores, their private memories, a shared mem-
ory for inter-processor communication, a semaphore mem-
ory for maintaining locks for shared memory accesses and
an interrupt device. TheARM cores act as initiators and
the memory cores act as targets. TheARM cores run a set
of pipelined matrix multiplication benchmarks that involve
accesses to their private memory and inter-processor com-
munication through the shared memory. We performed a
cycle-accurate simulation of the system with fullSTbus
initiator-targetandtarget-initiatorcrossbars. A small trace
of the traffic to three of the targets is shown in Figure 2(b).

Even though the aggregate traffic (measured over the en-
tire simulation period) to the three targets is lower than that
can be supported by a single bus, using a single bus to con-
nect all three targets will lead to high average and peak la-
tency due to overlap in traffic patterns during some regions
of the simulation. Another related point is that if overlap are
not considered, connecting targets1 and2 on to the same
bus is better than connecting targets1 and3 onto the same
bus, as the former results in lower bandwidth needs. How-
ever, the latter solution will result in better performance(re-
duced latency) while still satisfying the bandwidth needs.
Note that using peak bandwidth instead of the average band-
width will solve this problem, but lead to an over-design of
the crossbar (in terms of number of buses needed or their
frequency of operation). The design methodology needs to
consider overlap among the various traffic streams into ac-
count and should consider local variations in traffic rates.
Moreover, the designed crossbar should be such that, while
minimizing the average latency, should also minimize the
maximum latency that any packet or traffic stream can in-
cur. Also, some of the traffic streams can be more critical
than the others and such real-time traffic streams need to be
given guaranteed real-time performance.

4 Design Methodology
The design flow for the crossbar design is shown in

Figure 3. The application is initially designed using full
crossbar forinitiator-target and target-initiator communi-
cation and a SystemC simulation of the design is carried
out. For the simulations, we use theMPARM simulation en-
vironment [22] that allows interconnection ofARM cores to
several interconnection platforms (such asAMBA, STbus,
...) and to perform cycle accurate simulations for a va-
riety of benchmark applications. We present here only
the design of theinitiator-target crossbar, as the
target-initiator crossbar can be designed in a sim-
ilar fashion.

To effectively capture local variations in traffic patterns
and to perform overlap calculations, we define a window-
based traffic analysis. The entire simulation period is di-
vided into a number of windows and the traffic characteris-
tics to the various targets in each window are obtained. The

traffic characteristics recorded include: the amount of data
received by each target in every window, amount of pair-
wise overlap between the traffic streams to the targets in
every window, the real-time requirements of traffic streams,
etc. Without loss of generality, in the rest of the paper we
assume that all the windows are of equal size, although the
methodology also applies to windows with varying sizes.
The size of the window is parameterizable and depends
on the application characteristics and performance require-
ments. The effect of the window size on the quality of the
solution is explored in Section 7.2.

After the data collection phase, a pre-processing phase
is carried out in which the targets that have large overlap in
any window and need to be put on different buses are identi-
fied. In this phase, the overlapping critical streams that need
to be on separate buses are also identified. The maximum
number of targets that can be connected to a single bus, to
bound the maximum latency, is also identified in this phase.

In the next phase, the optimal crossbar configuration for
the application, satisfying the performance constraints is
obtained. To generate the optimal crossbar configuration,
we use the traffic information collected in each window and
check whether the bandwidth, overlap and criticality con-
straints are satisfied in each window.

In the final phase, the resulting crossbars are instanti-
ated in theMPARM environment and SystemC simulations
are carried out.

5 Problem Formulation
In this section we formulate the mathematical models of

the crossbar design problem.

Definition 1 The set of all targets is represented by the set
T . The set of all windows used for traffic analysis is rep-
resented by the setW , with the length of each window (in
terms of number of cycles) represented byWS. The set of
buses used in the crossbar is represented by the setB.

Definition 2 The number of cycles that each targetti, ∀i ∈
1 .. |T |, receives data in every windowm, ∀m ∈ 1.. |W |,
is represented bycommi,m

1. The amount of data overlap
(in number of cycles) between every pair of targets (ti, tj)
in each windowm is represented bywoi,j,m.

The overlap between every pair of targetsti andtj , over
the entire simulation period is obtained by summing the
overlap between them in all the windows and represented
by the entries of the overlap matrixOM :

omi,j =
∑

m

woi,j,m : ∀i, j (1)

In the pre-processing step of the design flow (refer Fig-
ure 3), those pair of targets that have overlap exceeding the
threshold value (which is parameterizable) in any window
are identified. By placing such targets onto separate buses,
the maximum and average latency of data transmission can
be reduced and in some cases can also speed up the process
of finding the optimal crossbar configuration. The effect of
this pre-processing step is explored in detail in Section 7.3.
Also in this pre-processing step, the real-time traffic streams
that overlap with each other in any window are identified.
Such targets with overlapping real-time streams should not

1In the rest of this paper we follow the convention that variables i and
j are defined for1..|T |, variablek is defined for1..|B| andm for 1..|W |.

3

be placed on the same bus as real-time communication guar-
antee to the streams cannot be given in this case. We define
the set of all targets that cannot be on the same bus by the
conflict matrix:

ci,j =

{

1 , if ti & tj should be on different buses
0 , otherwise : ∀i, j (2)

We model the performance constraints that need to be
satisfied by the crossbar configuration in each window as
constraints of a Mixed Integer Linear Program (MILP).

Definition 3 The setX represents the set of binding vari-
ablesxi,k, such thatxi,k is one when targetti is connected
to the busbk and zero otherwise.

In theSTbus crossbar, each target has to be connected
to a single bus (while a single bus can connect multiple tar-
gets, as shown in Figure 1(a)). This is implemented by the
following constraint:

∑

k

xi,k = 1 : ∀i (3)

In every window of the traffic analysis, the individual
buses in the crossbar have to support the traffic through
them in that window. By evaluating the bandwidth con-
straints over a smaller sample space of a window (which is
typically few thousand cycles) instead of the entire simula-
tion sample space (which can be millions of cycles) we are
better able to track the local variations in the traffic charac-
teristics. This window-based bandwidth constraint is repre-
sented by the equation:

∑

i

commi,m × xi,k ≤ WS : ∀k, m (4)

Definition 4 The setSB represents the set of sharing vari-
ablessbi,j,k, such thatsbi,j,k is one when targetsti andtj
share the same busbk and zero otherwise. The setS repre-
sents the set of sharing variablessi,j , such thatsi,j is one
when targetsti andtj share any of the buses of the crossbar
and zero otherwise.

The sbi,j,k can be computed as a product ofxi,k and
xj,k. However, this results in non-linear (quadratic) equal-
ity constraints. To break the quadratic equalities into linear
inequalities, we use the following set of equations:

sbi,j,k ∈ {0, 1}

xi,k + xj,k − 1 ≤ sbi,j,k

0.5 xi,k + 0.5 xj,k ≥ sbi,j,k : ∀i, j, k (5)

and thesi,k are computed using the equation:

si,j =
∑

k

sbi,j,k : ∀i, j (6)

The condition that certain targets are forbidden to be on
the same bus, obtained from Equation 2, is represented by:

ci,j × si,j = 0 : ∀i, j (7)

As the number of targets onto a single bus increases,
even for traffic streams that don’t have substantial overlap,
the maximum latency that can be incurred by a packet/traffic
stream can increase substantially. In the worst case, pack-
ets to all the targets onto a bus can arrive in the same cycle,

which need to be serialized on the bus, thereby making the
maximum latency incurred by packets to some of the targets
higher. In order to reduce the maximum delay that can be
incurred by any packet, we can restrict the maximum num-
ber of targets that can be connected to the same bus below
a threshold (maxtb) that is parameterizable. This is repre-
sented by the following constraint:

∑

i

xi,k ≤ maxtb : ∀k (8)

The fact that all the integer variables introduced above
take values of either 0 or 1 only, is represented by:

xi,k, si,j , ci,j ∈ {0, 1} : ∀i, j, k (9)

6 Crossbar Design Algorithm
The algorithm for theSTbus crossbar design has two

major steps: the first is to find the minimum crossbar config-
uration that satisfies the performance constraints (that were
presented in the above section) and the second step is to
find the optimal binding of the targets to the chosen cross-
bar configuration.

In order to find the best crossbar configuration, all pos-
sible configurations are tested in a binary search manner
to find the minimum configuration that satisfies the perfor-
mance constraints that were modeled as MILP constraints
in the previous section.

The following MILP is tested for a feasible solution for
each configuration until the best configuration is obtained:

obj: Feasibility Analysis
subject to Equations (3) to (9). (10)

Note that the MILP has no objective function as the aim
is to just test for feasibility.

Once the best crossbar configuration is obtained, in the
next step, the optimal binding of the targets onto buses of
the crossbar is obtained. A binding of targets to the buses
that minimizes the amount of overlap of traffic on each bus
will result in lower average and peak latency for data trans-
fer. For this, the above MILP is solved with the objective
of reducing the maximum overlap on each of the bus, and
satisfying the performance constraints, as follows:

min: maxov

s.t.
∑

i

∑

j

omi,j × sbi,j,k ≤ maxov : ∀k

and subject to Equations (3) to (9). (11)

By splitting the problem into two MILPs, we speed up
the execution time of the algorithm as solving MILP1 for
feasibility check is usually faster than solving the MILP2
with objective function and additional constraints. The
MILPs are solved using the CPLEX package [23]. The
runtime of the algorithm for all our simulation studies was
under few hours, when run on a 1GHz SUN machine. The
runtime for the MILP is not that large as the largest possi-
bleSTbus crossbar size (and maximum number of targets)
is 32 and hence the number of integer variables is less than
few thousand.

7 Experiments and Case Studies
7.1 Application Benchmark Analysis

We applied our design methodology for crossbar de-
sign of severalMPSoCs: Matrix suite-1 (Mat1-25 cores),
Matrix suite-2 (Mat2-21 cores), FFT suite (FFT-29 cores),
Quick Sort suite (QSort-15 cores) and DES encryption sys-
tem (DES-19 cores). For comparison purposes, we also de-
signed crossbars based on average communication traffic

4

Mat1 Mat2 FFT QSort DES
0

2

4

6

8

Applications

Re
la

tiv
e

Pa
ck

et
 L

at
en

cy avg
win

(a) Average Latency

Mat1 Mat2 FFT QSort DES
0

2

4

6

8

10

Applications

Re
la

tiv
e

Pa
ck

et
 L

at
en

cy avg
win

(b) Maximum Latency

Figure 4. Application relative latencies

Table 2. component savings
Appli Full Designed Ratio
cation crossbar crossbar

bus count bus count
Mat1 25 8 3.13
Mat2 21 6 3.5
FFT 29 15 1.93

QSort 15 6 2.5
DES 19 6 3.12

flows (as done in previous approaches), by relaxing over-
lap constraints and using a single window for analysis. The
SystemC simulation of the applications were carried out
on theSTbus platform using the designed crossbars. We
briefly analyze here the quality of the crossbar design ob-
tained for the matrix multiplication benchmark,Mat2 (re-
fer Figure 2). In this benchmark, there are9 initiators and
12 targets. Of the 12 targets, accesses to 3 of the targets
(the shared memory, semaphore memory and interrupt de-
vice) is much lower than the accesses to private memories,
as these are only used for inter-processor communication.
There is substantial temporal overlap between the traffic
flows from the various ARM cores to their private memo-
ries, as the ARM cores perform similar computations and
thus access their memories at almost the same time. In or-
der to satisfy the window bandwidth constraints, only few
of them can share a single bus. Our methodology, when ap-
plied to this benchmark, results in the use of3 buses for the
initiator-target crossbar. Each of the bus has 3 pri-
vate memories and one of the common memories connected
to it. Moreover, the bindings are such that, the targets with
highly overlapping streams are placed on different buses, an
important design constraint explained in detail in Section
3.2. As a result, the designed crossbar has acceptable per-
formance (in terms of average and maximum latency con-
straints) with3.5× reduction in the number of buses used,
when compared to a full crossbar.

The average and maximum packet latencies for the ap-
plications obtained from the simulations, normalized with
respect to the latencies incurred in a full crossbar system,
are presented in Figures 4(a) and 4(b). As seen from the
figure, the latencies incurred by crossbar designs based on
average traffic flows are4× to 7× higher than the cross-
bars designed using our scheme. Also, the latencies in-
curred in the designs generated by our scheme are within
acceptable bounds from the minimum possible latencies (of
a full crossbar). Moreover, depending on the design objec-
tive, crossbar size-performance trade-offs can be explored
in our approach by tuning the analysis parameters (such as
the window size, overlap threshold, etc.), as explained in
the next subsections. In Table 2, we compare the number of
buses used in the crossbar designed by our approach with
that of full crossbar for the applications. We get large re-
duction (up to3.5×) in the crossbar size by using our design
approach.

7.2 Window Sizing
The size of the window used during the design process

is an important parameter that determines the efficiency of

the design methodology to capture the application perfor-
mance parameters. A small window size results in much
finer control of the application performance parameters and
the resulting crossbars have lower latencies. However, a
very small window size will lead to over-design of the net-
work components. On the other hand, a large window size
results in lesser control over the performance parameters of
the application, but results in a more conservative design
approach where higher packet latencies can be tolerated.

To illustrate these effects, we applied our design method-
ology with different window sizes for a synthetic bench-
mark with 20 cores. The typical burst sizes (we refer to a
burst as a stream of packets generated by the same core) for
the benchmark were around 1000 cycles. When the win-
dow size is much smaller than the burst size, the size of the
crossbar generated is very close to that of a full crossbar (re-
fer Figure 5(a)). When the window size is around few times
that of the burst size (from 1-4 times), crossbar designed
by our approach has much smaller size (typically around
25%) and acceptable latencies (around1.5×) of that of a
full crossbar. For aggressive designs, the window size can
be set closer to the burst size and for conservative designs
(where larger packet latencies can be tolerated), the window
size can be set to few times the typical burst size. The ac-
ceptable window sizes for various burst sizes is presented
in Figure 5(b). It can be seen from the plot that the window
size varies almost linearly with the burst size, consolidating
the above arguments.

7.3 Real-Time Streams & Effect of Binding
In each simulation window, the critical traffic streams

that require real-time guarantees are recorded. During the
pre-processing step of the design flow (refer Figure 3), the
real-time traffic streams that overlap with each other in any
window are identified. In order to provide real-time guaran-
tees to such streams, in our methodology the cores with the
overlapping critical streams are placed on separate buses of
the crossbar. Experimental results on the benchmark appli-
cations show a very low packet latency (almost equal to the
latency of perfect communication using a full crossbar) for
such streams.

After finding the best crossbar configuration, we do an
optimal binding of the cores onto the buses of the crossbar,
minimizing the total overlap on each bus. By minimizing
the overlap on each bus, the packet latencies reduce signifi-
cantly. To illustrate this effect, we compare the crossbars
designed using our approach with two binding schemes:
random binding of cores onto the buses, satisfying the de-
sign constraints (Equations 3-9) and optimal binding that

5

2 3 4 7.5 10 20 30 40 500 750
0

2

4

6

8

10

Cr
os

sb
ar

 S
ize

Window Size (in 100s of cycles)

(a) Initiator-Target crossbar vs. window size

1 2 3 4 5
0

5

10

15

20

25

Burst Size

W
ind

ow
 S

ize
(in

 1
00

0s
 o

f c
yc

les
)

(in 1000s of cycles)

(b) Burst vs. Window size

Figure 5. Effect of window size variations

0% 5% 10% 20% 30% 40% 50%
0

2

4

6

8

10

Overlap Threshold %

C
ro

ss
ba

r
S

iz
e

Figure 6. Overlap threshold
effects

minimizes overlap on each bus, satisfying the design con-
straints. The average latency incurred by the random bind-
ing scheme for the benchmark applications was on an aver-
age2.1× higher than that incurred by the optimal binding
scheme.
7.4 Overlap Threshold Setting

By varying the three parameters: window size, overlap
threshold and maximum number of targets (or initiators) on
a bus, the crossbar can be designed such that the average
and, more so, the maximum packet latencies incurred in the
design are acceptable. The effect of the overlap threshold
parameter on the size of theinitiator-target cross-
bar generated for the synthetic benchmark is presented in
Figure 6. The plots end at 50% overlap between targets
because, if the pair-wise overlap between two targets ex-
ceeds50% of the window size (in any of the windows), then
the window bandwidth constraints cannot be satisfied. So,
the maximum value of the overlap parameter can be set at
50% of the slot size. This will also speed-up the process
of finding the best crossbar configuration, as such overlap-
ping targets will be identified in the pre-processing phase
(refer Figure 3) and will be forbidden to be on the same
bus of the crossbar. From experiments, we found that for
aggressive designs (where there are tight requirements on
the maximum latencies) the threshold can be set to around
10% and for conservative designs, the threshold can be set
to 30%-40% of the window size.

8 Conclusions and Future Work
To accommodate the growing communication demands

of Multiprocessor Systems on Chips (MPSoCs), scalable
communication architectures and related design methodolo-
gies are needed. In this work, we have presented a design
methodology for designing the optimal crossbar configura-
tion for an application and for binding the cores onto the
crossbar resources. Our design approach is based on a simu-
lation window-based analysis of the application traces, con-
sidering the local variations in traffic rates, temporal overlap
among traffic patterns and criticality of traffic streams. The
methodology has several parameters that can be tuned to ex-
plore the design space of the crossbar design and to match
the application characteristics. The design methodology,
though fine-tuned toSTbus crossbar architecture, can be
easily extended to other crossbar architectures as well. Sev-
eral experimental studies show large reduction in latency
and crossbar components usage, compared to traditional de-
sign approaches. In future, we plan to analyze the effect of
using variable simulation window sizes for the design for
guaranteeingQuality-of-Service (QoS)for applications.

9 Acknowledgements

This research is supported by MARCO Gigascale Sys-
tems Research Center (GSRC) and the US National Science
Foundation (under contract CCR-0305718).

References
[1] W.Cesario et al., “Component-Based Design Approach forMulti-Core

SoCs”, DAC 2002, pp.789-794, June, 2002.
[2] L.Benini, G.D.Micheli, “Networks on Chips: A New SoC Paradigm”,

IEEE Computers, pp. 70-78, Jan. 2002.
[3] A.Jantsch, H.Tenhunen, “Networks on Chip”, Kluwer Academic Pub-

lishers, 2003.
[4] W.H.Ho, T.M.Pinkston, “A Methodology for Designing Efficient

On-Chip Interconnects on Well-Behaved Communication Patterns”,
HPCA 2003, pp. 377-388, Feb 2003.

[5] T. Yen, W. Wolf, “Communication synthesis for distributed embedded
systems”, Proc. ICCAD, pp.288-294, Nov. 1995.

[6] J. Daveau et al., “Synthesis of system-level communication by an al-
location based approach”, Proc. ISSS, pp. 150-155, Sept. 1995.

[7] M. Gasteier, M. Glesner, “Bus-based communication synthesis on sys-
tem level”, ACM Trans. Design Automation Electron. Syst., ACM
TODAES, vol.4, no.1, pp. 1-11, 1999.

[8] K. Ryu, V. Mooney, ”Automated Bus Generation for Multiprocessor
SoC Design, Proc. DATE, pp. 282-287, March 2003.

[9] K.Lahiri et al., ”Design Space Exploration for Optimizing On-Chip
Communication Architectures”, IEEE TCAD, vol.23, no.6, pp. 952-
961, June 2004.

[10] K.Lahiri et al., ”Design of High-Performance System-on-Chips us-
ing Communication Architecture Tuners”, IEEE TCAD, vol.23, no.5,
pp. 620-636, May 2004.

[11] E.Rijpkema et al., ”Trade-offs in the design of a routerwith both
guaranteed and best-effort services for networks on chip”,DATE
2003, pp. 350-355, Mar 2003.

[12] P.Guerrier, A.Greiner,”A generic architecture for on-chip packet
switched interconnections”, Proc. DATE, pp. 250-256, March 2000.

[13] S.Kumar et al., ”A network on chip architecture and design method-
ology”,ISVLSI 2002, pp.105–112, 2002.

[14] S.Murali, G.De Micheli, Bandwidth Constrained Mapping of Cores
onto NoC Architectures, vol. 2, pp. 20896-20902, Proc. DATE2004.

[15] S.Murali, G.DeMicheli, SUNMAP: A Tool for Automatic Topology
Selection and Generation for NoCs, pp.914-919, DAC 2004.

[16] D. Bertozzi, A. Jalabert, S. Murali, R. Tamahankar, S. Stergiou, L.
Benini, G. De Micheli, NoC Synthesis Flow for Customized Domain
Specific Multiprocessor Systems-on-Chip, IEEE Transactions On Par-
allel And Distributed Systems, Vol. 16, No. 2 February 2005.

[17] E. Bolotin, et l., “QNoC: QoS architecture and design process for
Network on Chip”, The Journal of Systems Architecture, Dec 2003.

[18] A. Pinto et. al, “Constraint-Driven Communication Synthesis”, Proc.
DAC 02, p. 783-788, June 2002.

[19] A.Pinto et. al, “Efficient Synthesis of Networks on Chip”, ICCD
2003, pp. 146-150, Oct 2003.

[20] J.Hu, R.Marculescu,“Energy-Aware Mapping for Tile-based NOC
Architectures Under Performance Constraints”, ASP-DAC 2003.

[21] J.Hu, R.Marculescu, “Exploiting the Routing Flexibility for En-
ergy/Performance Aware Mapping of Regular NoC Architectures”,
Proc. DATE 2003, March 2003.

[22] M. Loghi et al., ”Analyzing On-Chip Communication in a MPSoC
Environment”, Proc. DATE 2004, pp. 20752-20757, Feb 2004.

[23] ILOG CPLEX, “http://www.ilog.com/products/cplex/”

6

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

