
Compiler-Based Approach for Exploiting Scratch-Pad in Presence of
Irregular Array Access

M. J. Absar† and F. Catthoor†
†IMEC vzw., Katholieke Universiteit Leuven, Belgium.

{javed.absar, francky.catthoor}@imec.be

Abstract

Scratch-pad memory is becoming an important fixture in
embedded multimedia systems. It is significantly more efficient
than the cache, in performance and power, and has the added
advantage of better timing-predictability. Current techniques
for the management of the scratch-pad are quite mature in
the case of arrays accessed in a regular fashion, i.e. inside
nested-loop by index expressions which are affine functions
of the loop-iterators. Many multimedia codes, however, also
use arrays as subscripted variables in the index expression
of other arrays, thereby making the access pattern irregular.
Existing techniques fail in such cases, bringing down the
performance. In this paper, we extend the framework that
exists today, to the case of irregular access. We provide
a clear and precise compiler-based technique for analyzing
irregular array-access, and efficiently mapping such arrays
to the scratch-pad. On the average, 20% reduction in energy
consumption, for a set of realistic applications, was achieved
using our methods 1.

1. Introduction
Multimedia and signal processing embedded systems access

large amounts of data, abstracted as multi-dimensional arrays,
inside multilevel nested-loop. Such software include audio,
video, image processing, encryption-decryption and network
software, among others. Optimization of the memory access,
therefore, forms an important step in the power-reduction and
performance-enhancement of such applications [3].

Scratch-pad memory (SPM), a relatively small (2-4 KB) on-
chip data-memory, is becoming popular these days. Being a
memory without any control hardware, it operates at a much
lower cost compared to the cache.

In the cache, decisions such as which data-set should
continue to reside in the cache, and which ones must be evicted
to make room for new ones, are made by the hardware. On
the other hand, data-movement to and from the SPM happens
under program control. This implies that the compiler or the
software developer must identify which arrays, and which
section therein, should be mapped to the SPM at any point.

Today, in the industry, this optimization is largely done man-
ually. This makes it difficult to keep track of global trade-offs,
and requires significant effort for exploration and verification.

1This work was partly funded by STMicroelectronics, Asia Pacific Pte Ltd,
under PhD. Fellowship Program.

In the past, investigation has been done [8] [6] of techniques
for SPM-management of arrays indexed using affine functions
of the loop-iterators. We identify this type of array-access as
direct-indexing. Direct-indexing is also sometimes referred to
as regular-access in the current literature. Many multimedia
codes, however, also index arrays using other arrays. Current
techniques map these indirectly-indexed arrays either, as a
whole [12] onto the SPM or, reject it altogether if it does not
fit completely in the SPM. Not incorporating the flexibility
of moving only the relevant parts of the indirectly-indexed
multidimensional-arrays onto the SPM, implies a sub-optimal
solution. The space in the SPM is limited and one array
occupies it at the expense of others.

In this paper, we identify, for indirectly-indexed arrays,
the critical portions that need to be on the SPM at dif-
ferent instances of time. We propose a new framework for
representing indirectly-indexed arrays. This framework builds
upon the existing ones [7] [14] for directly-indexed arrays,
by an important extension. Using a cost-model, we perform
a trade-off exploration between the size of the array that
must be moved to the SPM, and the resulting benefit from
any increased reuse of that data. The right loop level, for a
multilevel loop, at which the transfer-code should be inserted
is analyzed to maximize reuse. To our best knowledge, this is
the first work that investigates dynamic-management of SPM
for arrays that are indirectly-indexed.

2. Motivating Examples

for(i = 0 ; i < N ; i++)
for(j = 0; j < M ; j++)
for(k = 0 ; k < 16 ; k++)
for(l = 0 ; l < 16 ; l++)

...= image[16*i + x[i][j] + k]
[16*j + y[i][j] + l];

The code above is from QSDPCM [13], an inter-frame image
compression algorithm. In the code, three arrays - ’x’, ’y’,
and ’image’ - are referenced. These three, therefore, form
potential candidates for mapping to the SPM. Arrays ’x’ and
’y’ (motion-vectors) are relatively small in size (N*M). So
they can be migrated completely to the SPM. Also, since they
are indexed in a regular manner (only via iterators), we know
precisely, at compile-time, the row-number of each of them
that would be accessed for a given value of ’i’. Therefore, it
is also possible to map only a single row of ’x’ and ’y’, for

1530-1591/05 $20.00 © 2005 IEEE

region that is moved to SPM
LEGEND motion vector

16i

16j

x[i][j]

y[i][j]
L

U+15

16i

16N

16M

Fig. 1. Migrating the relevant section of an, indirectly-
indexed, image-data onto SPM.

a given value of ’i’. As the computation moves to the next
value of ’i’, the next row of ’x’ and ’y’ can be moved to
the SPM, overwriting the previous one. This is one way of
mapping regularly accessed arrays using data-space tiling [8].

Next, consider the mapping of ’image’ to the SPM. Since
it is indirectly-indexed, current techniques would try to map
it as a whole. But that may not be always possible (e.g. a
256 × 256 image would need 64KB of SPM). Observe that
for a given value of ’i’ and ’j’, the 16×16 block in the ’image’
that is accessed is actually precisely known at (and only at)
run-time. Therefore, one possible mapping of ’image’ to SPM
is by copying the 16× 16 block inside the loop of ’i’ and ’j’,
as shown in the code below:

for(i = 0 ; i < N ; i++)
for(j = 0; j < M ; j++)
{ spm_image[0:15][0:15] <-
image[16*i + x[i][j] + (0:15)]

[16*j + y[i][j] + (0:15)];
for(k = 0 ; k < 16 ; k++)
for(l = 0 ; l < 16 ; l++)
...= spm_image[k][l];}

In the above code, the symbol dest <- src means that the
specified set of elements are moved from the external memory
(src) to the SPM (dest). This can be done efficiently using a
DMA (Direct-Memory Access) controller. Fig. 1 (left-side)
shows pictorially this selection process. The SPM-mapping of
’image’, as described so far, exploits only spatial reuse. In
practice, however, the values that the elements of ’x’ hold, is
much smaller than the dimensions of ’image’. This information
enables our algorithm to do a much better mapping, with
potentially high temporal reuse. Assume that the range of
values in ’x’ is limited to [L,U]. Fig. 1 (right-side) shows
for a given ’i’, the region of ’image’ that should be mapped
to the SPM. All access to ’image’ for that value of ’i’ would,
therefore, always result in hit to the SPM. Temporal reuse
resulting from overlapping blocks are then well exploited.
Simplified code for the transfer is shown below:

for(i = 0 ; i < N ; i++)
{ spm_image[0:(U-L+15)][0:(16*M-1)] <-

image[16*i+(L:(U+15))][0:(16*M-1)];
for(j = 0; j < M ; j++)
for(k = 0 ; k < 16 ; k++)
for(l = 0 ; l < 16 ; l++)

(5,2)

(4,3)

(3,2)

(1,2)

(5,3)

(1,1)

(1,4)

(1,5)

(4,5)

(2,2)

(3,1)(2,3)

(2,1)

(5,1)
(5,4)

(4,1)

(3,3)

(4,2)

(2,4)(1,3)

(2,5)
3,5)

(4,4)
(3,4)

(1,1)

(5,5)

i. No reuse: A[E[i][j]][F[i][j]]

(1,1)(1,2) (1,4)(1,5)(1,3)

(4,1)(4,2) (4,4)(4,5)(4,3)

(5,1)(5,2) (5,4)(5,5)(5,3)

(3,1)(3,2) (3,4) (3,5)(3,3)

(2,1)(2,2) (2,4)(2,5)(2,3)

ii. Spatial Reuse: A[B[i]][C[j]]

iii. Temporal Reuse: A[B[j]][C[j]] iv. Spatial+Temporal: A[B[i]+j][8]

(4,1)

(3,1)

(1,1)

(2,4)
(4,4) (1,4)

(5,4)

(3,4)

(2,1)(4,1)
(1,1)

(5,1)

(3,1)

(2,2)
(4,2) (1,2)
(5,2)

(3,2)

(2,3)
(4,3) (1,3)(5,3)

(3,3)

(2,5)
(4,5) (1,5)

(5,5)

(3,5)

(4,2)
(4,3)
(4,4)
(4,5)

(3,2)
(3,3)
(3,4)
(3,5)(1,2)

(1,3)
(1,4)
(1,5)

(2,1)
(2,2)
(2,3)
(2,4)
(2,5)

(5,1)
(5,2)
(5,3)
(5,4)
(5,5)

Fig. 2. Examples of compile-time discernible spatial
and temporal reuse in indirectly-indexed arrays.

...= spm_image[-L + x[i][j] + k]
[16*j + y[i][j] + l];}

We now show some general cases where spatial and tem-
poral reuse can (or cannot) be identified at compile-time.
We show four different access patterns of the same array
A[20][30]. Array A is accessed inside a two-level nested-loop:
for(i = 1...5)for(j = 1...5)... = A[· · ·][· · ·]. In Fig 2.i,
A is referenced as A[E[i][j]][F [i][j]]. The rectangle in Fig.
2.i represents the 2-D data-space of A. The pair of numbers
(i, j) beside each black dot (element of A) shows points
in the iteration-space at which that particular element of A

is accessed. Fig 2.i has low compile-time detectable reuse,
because for each value of i and j, a potentially different
row of A (via array E) and a different column of A (via
array F) can be selected. In Fig. 2.ii, A is referenced as
A [B[i]] [C[j]]. In this case, as long as i remains constant,
the same row of A would be accessed, independent of the
contents of C. Therefore, before the start of each j-loop, the
entire row A [B[i]] [0 : 29] can be copied to the SPM. Fig. 2.iii
shows an instance of temporal reuse. With the reference as
A [B[j]] [C[j]], the same set of elements of A are reused over
each value of i. Fig. 2.iv, with reference A[B[i]+j][15], shows
a case where both temporal and spatial reuse exist. Since the
number of access (25) exceeds the distinct number of elements
accessed (20), we clearly have reuse (pigeon-hole principle).
Fig. 2.iv shows one possible reuse pattern.

Exactly which elements are reused may not be known at
compile-time. However, even without that precise information,
in many cases, as in the above examples, it is often clear at
compile-time, itself, that reuse exists. This is often sufficient
to enable a good SPM-mapping.

3. Related Work

Techniques for improving the performance of hierarchal
memories in the case of regular (directly-indexed) array access
have been deeply studied. Over a decade ago, Utpal Banerjee
[2] showed that unimodular matrices could be used to repre-
sent loop transformations, such as interchange, skewing and
reversal, in a mathematically elegant form. Wolf and Lam

have shown that using unimodular matrices simplifies data-
dependence checks [14] when a nested-loop undergoes a series
of loop-transformations, each instrumented as a unimodular
transformation. Lam and others use loop-transformations to
take advantage of any data-reuse. That is, loop structure is
changed so that all the consumption of the same data is moved
closer in time. Though proposed with cache-based system in
mind, temporal locality enhancement is a fundamental step
in improving code for any hierarchical memory structure,
including scratch-pad based systems.

In addition to changing the loop-structure, which affects all
arrays inside the loop sometimes in a conflicting way, several
researchers, in the recent past, have focused on applying data
transformations to improve spatial locality for the cache [7]
[11]. Kandemir proposed an efficient compiler-based technique
for mapping applications to the scratch-pad [8]. His technique,
however, applies only to arrays with regular access.

The Chaos Group has studied partitioning and reorgani-
zation of data at run-time [4], in order to balance compu-
tational load across processors. They introduce the concept
of inspector-executor. The inspector first analyzes the pattern
of access, and then the executor changes the loop-structure
(computation) and layout to exploit the reuse. The analysis,
grouping and loop transformations are all performed at run-
time. Using this technique, problems such as ocean simulation,
n-body problem and molecular dynamics [5] can be optimized.
This technique, however, requires expensive run-time process-
ing to isolate temporal and spatial locality. Run-time analysis
is unavoidable in some cases. But based on our observation
that multimedia codes, even those with irregular access, can
be quite well analyzed at compile time for locality, we take a
different approach in this paper. A more thorough analysis is
possible in our case, because it is performed at compile-time
and not at run-time.

4. Irregularity over an Iterator

In this section, we describe the concept of regularity and
irregularity of an array over an iterator. We use this concept,
later, to optimize the SPM-mapping of indirectly-indexed
arrays. Our context is a nested-loop represented by an iteration
vector, ~I , which contains the loop iterators from the outermost
position to the innermost. The arrays are accessed inside the
body of the loop-nest. Each array may contain other arrays in
its index expression, in addition to the iterators and constants.
We use Example 3 below to explain our representation.

EXAMPLE 3
for(i = ...) for(j = ...) for(k = ...)
... = A[B[C[k][k+1] + D[j]] + i][i+j]

Definition (Indirectly-Indexed Array) 1: An array is de-
fined as indirectly-indexed if its index expression contains one
or more arrays. Otherwise, it is termed as directly-indexed. �
In the reference B [C[k][k + 1] + D[j]], the arrays C and D

are directly-indexed, while array B is indirectly-indexed. In the
current literature [7], a directly-indexed array such as C[k][k+

1], is represented as:

<C = RC
~I + ~oC =

[
0 0 1
0 0 1

]




i

j

k



 +

[
0
1

]

We extend this representation to incorporate indirect-indexing.
We consider an m-dimensional array X , with reference <X ,
as composed of three components:

•
~SX : an m × 1 vector of array elements that indirectly-
index X . Each element of ~SX is an affine function of
such arrays.

• RX
~I: represents the iterators involved in the direct-

indexing of X . For an m-dimensional array in an n-level
nested-loop, R will be an m× n matrix.

• ~oX : m× 1 vector of constants.

The arrays in ~SX have these three same components, as well,
in their reference.

The reference C[k][k + 1] (directly-indexed) is represented

as: <C =

[
0
0

]

︸ ︷︷ ︸

~SC

+

[
0 0 1
0 0 1

]




i

j

k





︸ ︷︷ ︸

RC
~I

+

[
0
1

]

︸ ︷︷ ︸

~oC

. Reference

B[C[k][k + 1] + D[k]] (indirectly-indexed) is expressed as:

<B =
[

C〈<C〉+ D〈<D〉
]

︸ ︷︷ ︸

~SB

+
[

0 0 0
]





i

j

k





︸ ︷︷ ︸

RB
~I

+
[

0
]

︸ ︷︷ ︸

~oB

Operator 〈·〉 takes as input a reference (column) vector, and re-

turns the corresponding element. For example, C〈

[
k

k + 1

]

〉

translates to element C[k][k + 1].
We now give the generic representation for any directly or

indirectly-indexed access. Consider an m-dimensional array
X , referenced as <X , inside an n-level loop-nest. In the pth

dimension of X , the qth indirectly-indexing array is denoted
as Up,q . For example: X[U11〈·〉 + U12〈·〉 . . .][U21〈·〉 . . .]. The
reference of Up,q is denoted as <Up,q

. A generic reference is,
therefore, represented as:

<X =






∑

q U1,q〈<U1,q
〉

∑

q U2,q〈<U2,q
〉

...




 + RX

~I + ~oX

To keep it simple, we have omitted coefficients for Up,q .
Definition (Irregular over an Iterator in a Dimension) 2:

An m-dimensional array with reference <X is defined as
“irregular in the pth dimension, over iterator i”, if at least
one of the two hold:

1) for some q, i appears in the index expression of Up,q

2) for some q, Up,q is irregular over i in at least one of its
dimensions. �

For example, array C, with reference C[k][k + 1], is
regular over {k} in both its dimension. Array B in
B [C[k][k + 1] + D[j] + i], is irregular over {j, k}, but is

regular over {i}. Array Y , in Y [Z[i][j] + j] [k], is irregular
over {i, j}, and regular over {j}, in the first dimension.
It is regular over {k} in the second dimension. Technique
for computing the regular and irregular sets is given in the
Appendix.

5. Identifying and Exploiting Locality
Here, we describe an algorithm for SPM mapping of indi-

rectly and directly indexed arrays, using the concept of regular
and irregular sets developed in the previous section.

A. The Cost Model
Consider a loop-nest with ~I = [i1 i2 · · · in]T . Sup-

pose the iterator ik assumes the values 1, 2 · · · , Ik. An array X

referenced inside the body of such a loop-nest will be accessed
I1 × I2 × . . .× In times. We have two scenarios:

• Array X not mapped to SPM: In this case, the access
is always directly to the external-memory. If mE is the
cost per access for a word in the external memory, then
Total Cost = I1 × I2 × · · · × In ×mE .

• Array X mapped to SPM: In this case, Total Cost =
Transfer Cost+Access Cost. Transfer Cost is the
cost of all the transfers of X to the SPM. Access Cost

is the cost of all the access to X on the SPM.
Transfer Cost: Suppose the transfers to SPM, of the
relevant portion of array X , is done at loop-level k, i.e.
inner to loop-nest [i1, i2, · · · , ik] but outer to the loop-nest
[ik+1, ik+2, · · · , in]. Therefore, there will be in total I1×
I2×· · ·×Ik number of transfers. We model each of those
transfers as composed of N number of sub-transfers. For
each sub-transfer, the DMA is programmed to move Q

contiguous elements to the SPM from the external mem-
ory. A DMA-transfer incurs a fixed startup cost, C, and
a cost that is proportional to number of elements, `, that
are transfered [8], i.e. DMA transfer cost = C + `t.
Therefore, each sub-transfer has a cost C + Qt. And so,
Transfer Cost = (C + Qt)×N × I1 × I2 × · · · × Ik.
Access Cost: Let mS be the cost per access for a word
in the SPM. Thus: Access Cost = I1×I2×· · ·×In×mS .

B. Search-Space Exploration
1) Illustrating Example: We explain our algorithm, firstly,

with an example. Fig. 3 (left-column) shows a four-level
nested-loop with ~I = [i1 i2 i3 i4]T . In this loop, array
A[100][200] is referenced as A[B[i2]+i3][C[i1]+i4].

We can choose to do transfers of A, to the SPM, at five
possible points. For instance, we could make a copy just before
the start of loop i4. That point is labeled as migration-point
m4 in the figure. At the point m4, i1, i2 and i3 each have a
fixed value, temporary albeit. Starting at row B[i2] + i3 and
column C[i1] + 2, the next four locations in that row can be
copied to the SPM. These five locations, therefore, form a
copy-candidate. The SPM-Mapping (third) column in Fig. 3
shows how much of the SPM gets filled with that copy. The
number of times this transfer would happen equals the number

PROGRAM Copy-candiate for A SPM Mapping

C[i1]+i4

B[i2]+i3

*50*50*80*4

C[i1]+2

B[i2]+i3

*50*50*80

5

C[i1]+2

B[i2]+1

*50*50

5

80

C[i1]+2

*50

5

SPM

SPM

SPM

SPM

*1

SPMint A[100][200]

migration point

migration point

for(i1 = 1 to 50){

 for(i2 = 1 to 50){

migration point

 for(i3 = 1 to 80){

migration point

 for(i4 = 2 to 6){

..=A[B[i2]+i3][C[i1]+i4]

migration point

}}}}

copy-candidate size
 exceeds SPM-Size

No SPM Mapping
 Required

(m1)

(m2)

(m3)

(m4)

(m5)

Fig. 3. Trade-off between number of transfers and the
size of each transfer.

of times the program comes to migration-point m4. That is,
50× 50× 80 = 200000 times. The Total Cost at m4 is:

Total Cost = (C + 5t)× 200000
︸ ︷︷ ︸

Transfer Cost

+50× 50× 80××5×mS
︸ ︷︷ ︸

Access Cost

Rather than m4, we could choose migration-point m3. In
that case we have to transfer 5× 80 elements of A, starting at
row: B[i2] + 1 and column: C[i1] + 2. But then, we have to
do it only 50× 50 times.

If we next try to do the copying at migration-point m2,
we must copy the entire 100 rows for the column C[i1]+2 to
column C[i1]+6 (inclusive). The transfer will have to be done
only 50 times. As pictorially illustrated in the Fig. 3, with a
slight increase in copy size we get an enormous reduction in
the number of transfers (from 250, down to 50).

That leaves us with two additional migration points: m1,
where we attempt to copy the entire array, but it is not possible
because of limited SPM size; and m5, where it is cheaper to
access the external memory directly.

For each of the migration-points above, we can compute the
Transfer Cost. We chose the point that has the least cost.
Note that Access Cost is independent of the migration-point.

2) Search-Space Exploration Algorithm: Consider a nested-
loop with ~I = [i1 i2 · · · in]T . In our algorithm, we will
need to describe subsets of the iterators. The set of all iterators
is denoted as I = {i1, i2, · · · , in}. We define Ik, subset of I,
as {ik, ik+1, · · · , in}; e.g. I2 = {i2, i3, · · · , in}.

The m-dimensional, indirectly-indexed, array X is ac-
cessed inside the loop-nest ~I described above. The size of
X is D1 × D2 × · · · × Dm. In C-Language, X could be
declared as int X[D1][D2] · · · [Dm]. X is referenced as
X[E1][E2] · · · [Em], where each Ep is a linear expression of
iterators and indirectly-indexing arrays (Up,q). That is, <X =
[∑

q U1,q〈<U1,q
〉

∑

q U2,q〈<U2,q
〉 · · ·

]T
+ RX

~I + ~oX .
We refer to Up,q’s as the indirectly-indexing arrays at the first-
level. The iterators over which X is regular (irregular) in the
pth dimension is represented as αp (βp).

The n-level input loop-nest has n! possible permutations.
In practice, n is usually small (less than 7). For each permu-
tation, σ, we do the following. Starting from the innermost
loop (in), we traverse to the outermost loop (i1), computing
the Transfer Cost for each migration-point. The migration
point mk is located inner to the loop of iterator ik−1 but outer
to loop of ik (e.g. see Fig. 3). Note that, during the execution,
each time the program reaches the point mk, the iterators in
the set I − Ik have a fixed valid value.

Our main data-structure for the algorithm is config. It has
three components: 1. An array called range, 2. A num-
ber k which specifies the migration-point mk, and 3. The
Transfer Cost for the migration-point mk. The element
range[p] contains the lower and upper limits of the pth

dimension that must be transferred. As seen in Algorithm
1, the search-space is traversed via two loops. The outer
loop, k = n . . . 1, is over the migration-points, starting from
mn (inner-most) and moving up to m1. The second loop,
p = 1 . . . m, is over the dimensions of the array X . For a
given mk, and a particular dimension p, our focus is to: find
the range of the pth dimension of X that must be transferred
to the SPM, assuming that the migration-point has been fixed
as mk.

We, first of all, check if any of the iterators in Ik are present
in the irregular set (βp). Recall that iterators in βp are those
used to indirectly index X in the pth dimension. Also, iterators
in the set Ik are those not having a definite fixed value at
mk. They cover a range. Therefore, if any iterator in Ik is
also present in βp, we cannot know the exact locations in
pth dimension of X that would be accessed. Therefore, if
Ik ∩ βp 6= φ (φ is the null-set), we copy the entire range
(0 . . . Dp − 1) to the SPM (see Algo. 1).

If Ik ∩ βp = φ, then we check the regular set, αp, which
represents iterators generating regular access in the index-
expression Ep. Iterators in I − Ik have a fixed value at mk.
Therefore, the free-iterators in Ep - those representing not one
particular value at mk, but a range - is the set αp ∩Ik. These
iterators in Ep are analyzed to determine the range of the pth

dimension of X that should be transferred to the SPM. We
use the Omega Library to do symbolic range computation [9].
If Ik ∩ αp = φ, then only a single point in this dimension is
to be transferred.

For each mk, a configk is generated. It contains the range

information and associated Transfer Cost. If the sizes in
range amount to more than the allocated SPM-size, the cost
is set to infinity (not shown in Algo. 1). We choose the optimal
config as one with the minimum cost. This is compared with
the No SPM-Mapping, i.e. direct access from external memory.

The data-layout of X should be changed so that the di-
mension that has the largest range is the fastest changing
dimension [7]. This data-layout will result in the least number
of DMA-transfers. In other words, based on the dimensions
of the hyper-cuboid that must be transferred, the layout must
be such that the longest edge is stored contiguous in memory.
Now we consider the case when the range of values assumed
by the elements of (at least some) indirectly-indexing arrays

Algorithm 1 Scratch-Pad Mapping Technique.
function Find configopt for a given permutation σ

for k = n . . . 1 do
for p = 1 . . . m do

if Ik ∩ βp 6= φ then
range[p]← (0 . . . Dp − 1)

else
if Ik ∩ αp 6= φ then

range[p] ← compute range based on iterator-
variables Ik ∩ αp in Ep, treating rest as con-
stants

else
range[p]← (0 . . . 0)

end if
end if

end for
s← size(range), c← transfer cost(range)
configk ← 〈range, k, c〉

end for
configopt ← configk with the minimum cost

end function

are provided to the algorithm. In real embedded application,
this is usually possible because, even for data-dependent
parameters, the designers typically apply some bounds. With
that information, in Algo. 1, for the case Ik∩βp 6= φ, we do not
automatically extend the range to full-length (0 . . . DP − 1).
Instead, arrays, such as Up,1, Up,2, . . ., which indirectly index
X at the first-level in the pth dimension, are treated as
variables that can assume any value in the specified range.
Also, iterators in Ep belonging to the set Ik ∩ αp, i.e. those
iterators whose value is not fixed at mk, are also treated as
variables. Treating the rest of the iterators in Ep as constants,
the total range is computed. Note: only those indirectly-
indexing arrays that are regular or irregular, in any dimension,
over the set Ik, are treated as variables with a range. The rest
of the first-level arrays are to be treated as constants, because
they will compute to a fixed value at the point mk.

6. Experiments and Results
We have implemented our algorithm on top of an in-house

optimizing compiler framework. For these experiments we
ran our algorithm with the following parameters: C (constant
factor in DMA-Transfer)= 15, t (cost per element, for the
transfer) = 1, mE (cost for data in external memory) = 5,
and mS (cost for data in SPM) = 1. These are typical values
also used by other researchers [8].

We evaluated the resulting codes on an ARM (Advanced
Risc Machine) Simulator. The simulator contains an ARM
processor with a 4KB on-chip scratch-pad and a 4KB two-
way associative data-cache. A DMA is available to transfer
data between SPM and external memory. All components
have an incorporated timing and power models. We present
performance results on four realistic applications kernels, with
relatively large code and many data arrays:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
xe

cu
ti

o
n

-T
im

e
(n

o
rm

al
iz

ed
)

QSDPCM Cavity Pegwit AC-3

Non-Opt

Opt-Reg

Opt-Irreg

Fig. 4. Total execution-time for- 1. Non-Opt, 2. Opt-Reg,
3. Opt-Irreg.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
n

er
g

y
(n

o
rm

al
iz

ed
)

QSDPCM Cavity Pegwit AC-3

Non-Opt

Opt-Reg

Opt-Irreg

Fig. 5. Total Energy consumed by each application and
each version.

• PEGWIT: A Public-Key Encryption algorithm from
Media-Bench [10].

• QSDPCM (Quad-Tree Structured Difference Pulse Code
Modulation) which is an inter-frame compression tech-
nique for video images [13].

• Cavity-Detector: A medical imaging algorithm.
• AC-3 Encoder: 5.1 channel audio compression algorithm

(also known as Dolby-Digital) [1]. The bit-allocation part
has several two level array-indexing.

For each application, Fig. 4 has a group of three columns.
The first col. shows the execution time for the original
program. No SPM mapping (Non-Opt) was done but the
arrays were accessed through the cache. The second col.
shows the execution-time when all the arrays with only regular
access (directly-indexed) were mapped to the SPM, in the
best possible way (Opt-Reg). Arrays not mapped to the SPM
were put in the cacheable-section of the external memory. The
third col. shows the execution time when both regularly and
irregularly accessed arrays were allowed to be mapped to the
SPM, using our technique (Opt-Irreg). Fig. 5, similarly, shows
the energy values. Clearly, banishing large, indirectly-indexed,
arrays from the SPM can result in significant penalties.

7. Conclusion
Arrays indexed through both iterators and other arrays,

occur commonly in many programs. In this paper, we
showed, using several examples, that the access pattern of
many indirectly-indexed arrays can be quite well analyzed at
compile-time for spatial and temporal locality. The analysis
was used to efficiently map such arrays to the SPM. We see

our main contribution as extending the current framework,
and providing an unambigious compiler-based technique for
handling irregular arrays access.

References

[1] M. J. Absar and S. George. Development of ac-3 digital audio encoder.
105th Proceedings of the Audio Engineering Society (AES), 1998.

[2] U. Banerjee. Data Dependenies. Kluwer Aacdemic Publishers, 1988.
[3] F. Catthoor, F. Balasa, E. D. Greef, and L. Nachtergaele. Custom Memory

Management Methodology: Exploration of Memory Organization for
Embedded Multimedia System Design. Kluwer Academic Publisher,
1998.

[4] R. Das, D. Mavriplis, J. Saltz, and S. Gupta. Communication opti-
mizations for irregular scientific computation on distributed memory
architectures. Journal of Parallel and Distributed Computing, 1994.

[5] C. Ding and K. Kennedy. Improving cache performance in dynamic
applications through data and computation reorganization at run time.
ACM SIGPLAN Conference on Programming Language, Design and
Implementation (PLDI), 1999.

[6] I. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt. Data reuse
analysis technique for software-controlled memory hierarchie. Design
Automation and Test in Europe, pages 202–207, 2004.

[7] M. T. Kandemir, J. Ramanujan, and A. Chowdhury. Improving cache
locality by a combination of loop and data transformation. IEEE
Transaction on Computers, 48(2), 1999.

[8] M. T. Kandemir, J. Ramanujan, M. J. Irwin, N. Vijayakrishnan, I. Ka-
dayif, and A. Parikh. A compiler-based approach for dynamically man-
aging scratch-pad memories in embedded systems. IEEE Transaction
on Computer Aided Design of Integrated Circuits and Systems, 23(2),
2004.

[9] W. Kelly, V. Maslov, and W. Pugh. The omega library: Framework
and algorithm for analysis and transformation of scientific programs.
http://www.cs.umd.edu/projects/omega, 1996.

[10] C. Lee, M. Potkonjak, and M. Smith. Mediabench: a tool for evaluating
and synthesizing multimedia and communication systems. International
Symposium on Microarchitecture, 1997.

[11] M. O’Boyle and P. Knijnenburg. Non-singular data transformations:
Definition, validity and applications. International Conference on
Parallel Architectures and Compilation Techniques.

[12] P. R. Panda, N. Dutt, and A. Nicolau. Efficient utilization of scratch-pad
memory in embedded processor applications. Design Automation and
Testing in Europe, 1997.

[13] P. Stobach. A new technique in scene adpative coding. European Signal
Processing Conference (EUSIPCO), 1998.

[14] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm.
ACM SIGPLAN Conference on Programming Language, Design and
Implementation (PLDI), 1988.

8. Generating Irregular and Regular Sets
For a reference <X = ~SX + RX

~I + ~oX , in a loop-nest with
iterators I = {i1, i2, · · · , in}, we define some operators:

Operator θ1, when applied to a m×n matrix, RX , returns a m×1
column vector θ1(RX) = [d1 d2 . . . dm]T , such that: dp =
{ik | ik ∈ I ∧ rp,k 6= 0 ∧ rp,k ∈ RX} Therefore, each component
of θ1(RX) is a subset of I. For a vector ~a = [a1 a2 . . . am]T ,
where each element ai is a subset of I, we define

⊎
~a = ∪kak. That

is,
⊎

~a forms a set union of all the iterators present in ~a.

θ2(~SX) = θ2











∑

q
U1,q〈<U1,q 〉∑

q
U2,q〈<U2,q 〉

...









 =






⋃

q
Θ

(
<U1,q

)

⋃

q
Θ

(
<U2,q

)

...






Finally: Θ(<X) =
⊎

θ2(~SX) ∪
⊎

θ1(RX). The reference
<X , of m-dimensional array X , is with respect to its pth dimension:

• Regular over the set of iterators in pth row of θ1(RX).
• Irregular over the set of iterators in the pth row of the column-

vector θ2(~SX).
• Independent over the iterators which do not appear in the above

two.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

