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Abstract  
While loop restructuring based code  optimization for 

array intensive applications has been successful in the 
past, it has several problems such as the requirement of 
checking dependences (legality issues) and transformation 
of all of the array references within the loop body 
indiscriminately (while some of the references can benefit 
from the transformation, others may not). As a result, data 
transformations, i.e., transformations that modify memory 
layout of array data instead of loop structure have been 
proposed. One of the problems associated with data 
transformations is the difficulty of selecting a memory 
layout for an array that is acceptable to the entire program 
(not just to a single loop). In this paper, we formulate the 
problem of determining the memory layouts of arrays as a 
constraint network, and explore several methods of 
solution in a systematic way. Our experiments provide 
strong support in favor of employing constraint 
processing, and point out future research directions. 
 
 
1. Introduction 
 

Data locality of array-based computations has been an 
exciting research area for the last decade or so. Most of 
the prior proposals to the problem are based on loop 
transformations [8][11][10][16], i.e., modifying the order 
of loop iterations to make data access pattern more cache 
friendly. Loop transformations have several key 
advantages that make them appealing to compiler writers 
and users alike. First, there is a comprehensive theory 
behind them developed over the years [16] and supported 
through several commercial implementations. Second, 
they are proven to be effective in enhancing both 
temporal and spatial locality. Third, and maybe most 
importantly, transformation of a loop nest is independent 
of transformations of other nests in the same application 
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code. In other words, its impact is localized to the nest in 
question. Consequently, for each loop nest, one can use 
the best loop transformation from the data locality 
perspective without worrying about the interactions 
between neighboring loop nests. 

However, recent research has revealed several 
drawbacks of loop transformations such as the 
requirement of checking dependences (legality issues) 
and transformation all of the references within the loop 
body indiscriminately (while some of the references can 
benefit from the transformation, others may not). As a 
result, data transformations [1][6][12], i.e., 
transformations that modify memory layout of array data 
instead of loop structure have been proposed. While data 
transformations do not have the problems associated with 
loop transformations, it has proven to be difficult to 
implement robust data transformation frameworks, mainly 
because of the fact that a memory layout modification 
affects all references to the array in question in all the 
loop nests of the application (i.e., localized optimization 
is not possible). In other words, its impact is global and 
difficult to capture. Therefore, prior efforts mainly 
concentrated on heuristic approaches whose results could 
not have been validated in formal terms.  

In this work, we focus on data transformations from a 
different perspective, and treat them within the paradigm 
of constraint processing. In more specific terms, we 
formulate the problem of determining the memory layouts 
of arrays for a given application as a constraint network 
[3], and explore several methods of solution in a 
systematic way. In doing so, our ultimate goal is two-fold. 
First, we want to show that constraint processing provides 
an attractive approach to implement a data transformation 
framework. Second, using the solutions returned by this 
framework, we want to take a fresh look at previously 
proposed heuristic solutions to the problem, and check 
how they compare to our constraint network based 
approach. This paper reports on our experience with this 
constraint processing based solution, and presents an 
empirical evaluation. Specifically, we designed and 
implemented a constraint network specialized for solving 
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memory layout problems. Our experiments provide strong 
support in favor of employing constraint processing, and 
point out future research directions.  

The rest of this paper is organized as follows. The next 
section discusses our memory layout representation based 
on linear algebra. Section 3 describes our constraint 
network and gives a formal definition of the problem. 
Section 4 discusses backtracking and backjumping based 
solutions to the problem. An experimental evaluation of 
our approach is presented in Section 5, and we conclude 
the paper in Section 6.  

 
2. Hyperplane-Based Memory Layout 
Representation 
 

Our memory layout representation is based on linear 
algebra and makes use of spatial locality in memory 
space. In a k-dimensional space, a hyperplane is defined 
as a set of tuples (x1 x2 … xk) that satisfy the equation 
x1y1+x2y2+…+xkyk = c, where (y1 y2 … yk) represents 
hyperplane coefficients (also called hyperplane vector) 
and c is the hyperplane constant. Note that (y1 y2 …yk) 
represents a hyperplane family, each member of which 
has a different constant (c value) [7]. Two points 
represented by column vectors, d1 and d2, are said to 
belong to the same hyperplane if: 

(y1 y2…yk)•d1 = (y1 y2…yk) •d2, 
where • denotes point multiplication.1 As an example, in a 
two-dimensional data space, the hyperplane vector (1 0) 
indicates that two array elements belong to the same 
hyperplane as long as they have the same value for the 
row index.  

Let us now focus explicitly on a two-dimensional space 
(an extension to higher dimensional spaces will be 
discussed later). Note that, a hyperplane family can be 
used to partially describe the memory layout of an array. 
For example, if we do not care about the relative order of 
hyperplanes, we can use hyperplane vector (1 0) to denote 

                                                                 
1 The point multiplication of two vectors (x1 x2 x3 … xk) and (y1 

y2 y3 … yk)T is x1y1+x2y2+x3y3+… +xkyk.  

row-major memory layout in a two-dimensional space. 
This is because two array elements d1 = (d11 d12)T and d2 = 
(d21 d22)T belong to the same row if and only if:  

(1  0) • (d11  d12)T = (1  0) • (d21  d22)T; 
that is, if and only if  d11 = d21. In other words, as long as 
the two array elements have the same row index, they 
belong to the same hyperplane, which corresponds to a 
row in a two-dimensional array. Note that, while all the 
rows of the array have the same hyperplane vector, their 
hyperplane coefficients (c values) are different from each 
other (in fact, a hyperplane coefficient in this example 
corresponds to the row number). Figure 1(a) depicts such 
a row-major layout and shows hyperplanes explicitly. 
Figures 1(b) through 1(d), on the other hand, illustrate 
different memory layouts and give their hyperplane 
vectors. Let us briefly concentrate on the diagonal layout 
shown in Figure 1(c). In this layout, the two data elements 
d1 = (d11 d12)T and d2 = (d21 d22)T are stored in the same 
diagonal if and only if (1  -1) • (d11 d12)T = (1  -1) • (d21 
d22)T, which means d11 - d12 = d21 - d22. For example, (5  
3)T and (7  5) T are stored in the same diagonal, whereas 
(5  3) T and (5  4) T are on two different diagonals. Note 
that, there are other possible diagonal layouts as well. For 
example, hyperplane vectors (1  -2) and (2   -1) also 
indicate diagonal layouts (which are different from (1   -
1)).  

An important point to note here is that, in order to have 
good data locality, data access pattern should be along the 
same direction with the hyperplane vector. Let us focus 
on a row-major memory layout for illustrative purposes 
(see Figure 1(a)). In order to have good spatial locality, 
two successive loop iterations, denoted by I and In (not 
that in a nest with multiple loops I and In are vectors), 
should access the array elements d1 and d2 such that (1 0) 
• d1 =  (1 0) • d2.  

In this paper, however, we are interested in determining 
the best memory layout for a given data access pattern. 
Therefore, our problem is to choose a hyperplane vector 
(y1 y2) such that: 

(y1  y2) • d1 = (y1 y2) • d2, 
assuming that d1 and d2 are the array elements accessed by 
I and In.  As an example, consider the nested loop shown 
in Figure 2. In this nest, we have two references to two 
different arrays (Q1 and Q2). Assuming that I = (i1 i2)T and 
In = (i1 i2+1)T are two successive loop iterations that do 
not cross loop bounds, for array Q1, we should find a 

(1  0)

(a)

(0  1) (1  -1) (1  1)

(b) (c) (d)

 
Figure 1 Different memory layouts for a two-
dimensional array (data space) and the corresponding
hyperplane vectors.  

for (i1=0;i1<N;i1++) 
   for(i2=0;i2<N;i2++) 
       …Q1[i1+i2][i2]…Q2[i1+i2][i1]… 

Figure 2. An example loop nest.  
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hyperplane vector (y1 y2) representing its memory layout 
such that the following equality should be satisfied: 

(y1  y2)•(i1+i2  i2)T = (y1  y2)•(i1+i2+1  i2+1)T, 
which means (y1 y2) = (1  -1), i.e., the diagonal layout.2 
Similarly, for array Q2, we need to satisfy:  

(y1 y2)•(i1+i2  i1)T = (y1  y2)•(i1+i2+1  i1)T, 
which gives us (y1  y2) = (0  1), i.e., the column-major 
layout.  

When the same array is accessed in multiple nests, 
however, the problem of determining memory layouts 
program-wide becomes a complex problem (e.g., different 
loop nests may require different memory layouts). In 
Section 3, we discuss our constraint processing based 
solution to the problem of memory layout determination.  

It is to be noted that, if a loop restructuring is applied to 
the nest being optimized, one can have a different data 
access pattern from the original one, and this can affect 
the memory layout selection as well. For example, if the 
two loops shown in Figure 2 are interchanged, the best 
memory layouts for arrays Q1 and Q2 would be (0  1) and 
(1  -1), respectively.  

We now briefly discuss how we handle arrays with 
more than two dimensions. In such cases, to define a 
memory layout, instead of a hyperplane vector/family, we 
use an ordered set of hyperplane vectors/families. For 
example, two data elements in a three dimensional array 
stored as column-major have spatial locality with respect 
to (0  0  1) and (0  1  0); that is, if they have the same 
indices except for the first dimension. Therefore, to 
represent such a layout, we use a matrix with two rows: 
Y1 = (0  0  1) and Y2 = (0  1  0). Then, the two data 
elements, d1 and d2, map on the same column if and only 
if both of the following equalities are satisfied: 

Y1 • d1 = Y1 • d2     and     Y2 • d1 = Y2 • d2. 
The idea is easily generalized to higher 

dimensionalities as well. 
 

3. Constraint Network Formulation 
 

A constraint network (CN) can be described as a triple 
CN = <P,M,S>, where P is a finite set of variables, M is a 
list of possible values for each variable, and S is a set of 
constraints on P [3]. In our context, P = {Q1, Q2, …, Qz} 
is the set of arrays manipulated by the application code to 
be optimized. M, which represents the domain for 
variables, contains the set of memory layouts for each 
array (variable). Specifically, for every array Qi where 1 
≤ i ≤ z, we have a set Mi = {hi1, hi2, …, hif(i)}, which 
                                                                 
2 While one can claim that we could have used (2   -2) or other 

similar vectors as well instead of (1   -1), this would increase 
the resulting data space size as some elements of the 
transformed data space would not be used. 

contains the hyperplane vectors that can be assumed by 
Qi.  Here, f(i) is the number of potential layouts for array 
Qi. The set S, on the other hand, contains s constraints. 
Each Sij ∈ S contains a set of (hyperplane) pairs that 
capture the allowable layouts for arrays Qi and Qj from 
the locality viewpoint. Each pair represents the best 
layout choice under a given loop restructuring. In the rest 
of our discussion, when there is no confusion, we use the 
terms “array” and “variable” interchangeably. As an 
example, consider the following constraint network that 
captures layout information for a program that 
manipulates four different arrays (Q1,Q2,Q3,Q4):  
 
CN = <P,M,S>, where 
P={Q1,Q2,Q3,Q4} 
M={M1,M2,M3,M4}, where  
       M1={(1  0), (0  1), (1  1)};  
       M2={(1  -1), (1  1)};  
       M3={(0  1), (1  1), (1  2)};  
       M4={(1  0), (0  1), (1  1)};  
S={S12,S13,S14,S23,S24,S34}, where 
       S12={[(1  0), (1  1)], [(0  1), (1  -1)]} 
       S13={[(1  0), (0  1)], [(0  1), (1  1)], [(1  1), (1  2)]} 
       S14={[(1  0), (1  0)], [(0  1), (0  1)]} 
       S23={[(1  1), (0  1)], [(1  -1), (1  1)]} 
       S24={[(1  0), (0  1)], [(1  1), (1  0)]} 
       S34={[(0  1), (1  0)]}. 

 
In this constraint network, M1 indicates that array Q1 

can assume three different memory layouts, represented 
by hyperplane vectors (1  0), (0  1), and (1  1), which 
correspond to row-major, column-major, and anti-
diagonal layouts, respectively. Other domain sets can be 
interpreted in a similar fashion. S12 indicates that, as far 
as arrays Q1 and Q2 are concerned, there are two 
preferable memory layout combinations. The first 
combination is that Q1 has layout (1  0) and Q2 has 
layout (1 1), whereas the second combination is that Q1 
and Q2 have layouts (0  1) and (1  -1), respectively. Note 
that this is similar to the situation given in Figure 2. Other 
constraints can be interpreted similarly. Note that, based 
on the way that it is encoded above, this constraint 
network is a binary constraint network [3] as each 
constraint is defined on a pair of variables. While a non-
binary formulation is also possible, there are also 
techniques that can be used to convert non-binary 
formulations to binary ones. However, since it is not the 
main focus of this paper, we do not elaborate on this issue 
any further.  

A solution to a constraint network problem is to select a 
pair from each Sij such that all the selected pairs are 
consistent with each other, i.e., there is no contradiction 
when all the members of S are considered, meaning that 
each array has a single memory layout.  For our example 
above, we obtain a solution by selecting hyperplanes (1  
0), (1  1), (0  1), and (1  0) for arrays Q1, Q2, Q3 and Q4, 
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respectively. The next section discusses our strategy for 
finding solutions for a given constraint network (when a 
solution exists). 
 
4. Proposed Solutions 
 

In this section, we first discuss a backtracking based 
solution to the problem of memory layout determination. 
After that, we discuss how we can shorten the solution 
time by enhancing the backtracking based solution with 
several heuristics. Before moving into the discussion of 
backtracking however, let us make an important 
definition: consistent partial instantiation.  

In a constraint network, a partial instantiation of a 
subset of variables is an assignment to each variable from 
its domain. A consistent partial instantiation, on the other 
hand, is a partial instantiation that satisfies all the 
constraints that involve only the instantiated variables [3]. 
A backtracking algorithm traverses the state space of 
partial instantiations in a depth-first manner. It starts with 
an assignment of a variable (e.g., randomly selected) and 
then increases the number of partial instantiations. When 
it is found that no solution can exist based on the current 
partial instantiation, it backtracks to the previous variable 
instantiated, and re-instantiates it with a different value 
from its domain.  Therefore, a backtracking algorithm has 
both forward (where we select the next variable and 
instantiate it with a value) and backward phases (where 
we return to the previously instantiated variable and 
assign a new value to it). In the rest of the paper, this 
backtracking based scheme is referred to as the base 
scheme.  

The base scheme makes random decisions at several 
points. The first random decision is to select the next 
variable (array) to instantiate during the forward phase. 
The second random decision occurs when selecting the 
value (layout) with which the selected variable is 

instantiated (again in the forward phase). In addition, in 
the base scheme, when we find out that the current 
instantiation cannot generate a solution, we always 
backtrack to the previously assigned variable, which may 
not necessarily be the best option. One can improve these 
three aspects of the base scheme as follows. As for the 
first random decision, we replace it with an improved 
approach that instantiates, at each step, the variable that 
maximally constrains the rest of the search space. The 
rationale behind this is to be able to detect a dead-end as 
early as possible during the search. Similarly, when 
selecting the values to be assigned to the instantiated 
variable, instead of selecting a value randomly, we can 
select the value that maximizes the number of options 
available for future assignments. The rationale behind this 
is to increase the chances for finding a solution quickly (if 
one exists). Finally, we can expedite our search by 
backjumping, i.e., instead of backtracking to the 
previously instantiated value, we can backtrack further 
when it is beneficial to do so. This can be best explained 
using the following scenario. Suppose that, in the 
previous step, we selected the layout hid for array Qi, and 
in the current step we selected the layout hje for array Qj. 
If, at this point, we see that there cannot be any solution 
based on these assignments, the base approach returns to 
array Qi and assigns a new layout (say hil) to it (assuming 
that we tried all alternatives for Qj). However, it must be 
noted that, if there is no constraint in the network in 
which both Qi and Qj (i.e., their layouts) appear together, 
assigning a new value (layout) to Qi would not generate a 
solution, as Qi is not the culprit for reaching the dead-end. 
Instead, backjumping skips Qi and determines an array 
(say Qk) among the arrays that have already been 
instantiated that co-appears with Qj in a constraint, and 
assigns a new value (layout) to it (i.e., different from its 
current value).  In this way, backjumping can prevent 

Qi QjQk

Instantiated Variables Uninstantiated Variables

Backtracking

Qi QjQk

Instantiated Variables Uninstantiated Variables

Backjumping

(a)

(b)

 
Figure 3. (a) Backtracking. (b) Backjumping.  

Table 1. Benchmark codes.  
Benchmark Brief 

Description 
Domain 
Size 

Data Size 

Med-Im04 medical image 
reconstruction 

258 825.55KB 

MxM triple matrix 
multiplication 

34 1,173.56KB 

Radar radar imaging 422 905.28KB 
Shape pattern 

recognition and 
shape analysis 

656 1,284.06KB 

Track visual tracking 
control 

388 744.80KB 
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useless assignments and, as a result, expedite our search. 
Figure 3 gives an illustration that compares backtracking 
and backjumping. In the remainder of the paper, the 
solution scheme supported by these three improvements is 
referred to as the enhanced scheme. The next section 
presents experimental data for both the base and enhanced 
schemes. Before going into our experimental analysis 
though, we need to make one point clear. If a solution 
exists to the problem under consideration, both the base 
and enhanced schemes will find it. However, if multiple 
solutions exist, they can find different solutions. 

 
5. Empirical Analysis 

 
In this section, we present an experimental analysis of 

our constraint processing based approach to the memory 
layout determination problem. To conduct such an 
analysis, we used five array-based embedded 
benchmarks, whose important properties are given in 
Table 1. The third column gives the total search space 
size (i.e., the sum of the domain sizes of the arrays in the 
corresponding application). The last column of this table 
gives the total data size manipulated by each application.  
We implemented our constraint network using C++. 
Excluding the libraries linked and comment lines, the 
network code itself is about 1700 C++ lines. 

In our experimental evaluation, our focus is on two 
metrics: solution time and quality of solution. The first of 
these gives the time it takes for determining the memory 
layouts of arrays, and the second one gives the execution 
time of the resulting optimized code (or percentage 
improvement brought by the optimized code over the 
original one). To be fair in our evaluation, we also 

compare our approach to a previously proposed heuristic 
solution to memory layout optimization approach. This 
previous approach [9] is linear algebra based and can be 
summarized as follows. First, the loop nests in the 
program are ordered according to an importance criterion 
(e.g., time taken by each nest). After that, the heuristic 
approach processes each nest in turn, starting with the 
most important one (as determined by the previous step). 
For each loop nest being processed, it determines a good 
combination of loop transformation and memory layouts 
(for the arrays accessed by that nest). It then propagates 
these layouts to the second most important nest, and 
proceeds the same way as in the first nest except that it 
only determines the layouts of the arrays which are not 
accessed in the first nest (but accessed in the current one). 
In this way, it keeps propagating the memory layouts 
across the nests until all the layouts have been 
determined. Notice that, since the loop nests are ordered 
beforehand, this approach tends to give priority to 
satisfying the layout requirements of costly nests. 

 Our experiments have been performed using the 
SimpleScalar infrastructure [13].  Specifically, we 
modeled an embedded processor that can issue and 
execute two instructions in parallel. The machine 
configuration we use includes separate L1 instruction and 
data caches; each is an 8KB, 2-way set-associative with a 
line size of 32 bytes, and a unified 64KB L2 cache (4-way 
associative with a 64 bytes line size). The L1 and L2 
latencies are 1 and 6 cycles respectively; and, the main 
memory latency is 70 cycles. 

Table 2 gives the solution times for different optimized 
versions (in seconds) obtained on a 500MHz Sun Sparc 
architecture. The second, third and fourth columns give 
the solution times taken by the heuristic, base and 
enhanced schemes, respectively. We see that our base 
scheme takes much more time compared to the heuristic 
method. However, the enhanced scheme reduces these 
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Figure 4.  Breakdown of benefits coming from the 
enhanced scheme.  

Table 2.  Solution times taken by different versions.   
Benchmark Heuristic Base Enhanced 

Med-Im04 7.14sec 97.34sec 12.22sec 
MxM 5.18sec 36.62sec 9.24sec 
Radar 11.33sec 129.51sec 53.81sec 
Shape 16.52sec 197.17sec 82.06sec 
Track 10.09sec 155.02sec 68.50sec 

 

Table 3. Execution times achieved by different versions.  
Benchmark Original Heuristic Base Enhanced 

Med-Im04 204.27sec 128.14sec 82.55sec 81.07sec 

MxM 69.31sec 28.33sec 28.33sec 28.33sec 

Radar 192.44sec 110.78sec 83.92sec 85.15sec 

Shape 233.58sec 140.30sec 106.45sec 106.45sec 

Track 231.00sec 127.61sec 97.28sec 95.30sec 
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solution times dramatically, making them even 
comparable to those of the heuristic solution in two cases. 
Overall, we see that the solution times taken by our 
approaches are not excessive for an embedded system. 

To explain how the enhanced scheme improves the 
solution times over the base scheme, we give in Figure 4 
the percentage of reductions (in solution times) brought 
by each of the three enhancements discussed earlier in 
Section 4 (i.e., their individual contributions to the overall 
savings achieved by the enhanced scheme). The first 
enhancement is to do with the selection of the variable to 
instantiate next; the second one is related to the selection 
of the value to be assigned to the selected variable; and 
the last one is to employ backjumping instead of 
backtracking. We see the results from Figure 4 that, while 
most of the benefits come from backjumping, all three 
enhancements are very useful in general and contribute a 
lot to the overall reduction in solution times. 

Table 3 gives the execution times for our benchmarks 
achieved by the original codes, heuristic approach and our 
constraint based approach. We see from these results that, 
while the heuristic solution improves over the original 
codes significantly (42.49% on average), the savings 
brought by the base and enhanced schemes are much 
larger: 57.17% and 57.95% on average respectively. The 
additional improvements are due to more comprehensive 
search space traversal implemented by the constraint 
network based approach.  We also observe a small 
difference between the base and enhanced schemes. This 
difference is due to the fact that these two schemes can 
find “different solutions” if there are multiple solutions to 
the underlying network (as in the case of Med-Im04, 
Radar, and Track). 

 
6. Conclusions and Future Directions 
 

Recent years have witnessed, from both embedded 
system community and scientific computing community, 
a large number of studies targeting at improving data 
cache behavior of array based codes. Data 
transformations in particular have been found attractive as 
they do not have the drawbacks of commonly used loop 
transformations. This paper presents a novel constraint 
processing based approach to data transformations, where 
the problem of memory layout determination is captured 
as finding solutions in a constraint network. Our empirical 
analysis shows that the proposed approach is very 
effective in practice, and further enhancements are 
possible to expedite the search in the constraint graph.  

We plan to extend this work in two directions. First, we 
would like to give weights to constraints. This will help 
us distinguish between different solutions to a given 

network. Second, we would like to expand our constraint 
network formulation to accommodate dynamic memory 
layouts, i.e., the layouts that can change during execution 
based on the requirements of the different segments of the 
program.  
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