
 1

A Constraint Network Based Approach to Memory Layout Optimization*
G. Chen and M. Kandemir

Computer Science and Engineering Department
The Pennsylvania State University, University Park

 PA 16802, USA
{guilchen, kandemir}@cse.psu.edu

M. Karakoy
Department of Computing

Imperial College
London, SW7 2AZ, UK
m.karakoy@ic.ac.uk

Abstract
While loop restructuring based code optimization for

array intensive applications has been successful in the
past, it has several problems such as the requirement of
checking dependences (legality issues) and transformation
of all of the array references within the loop body
indiscriminately (while some of the references can benefit
from the transformation, others may not). As a result, data
transformations, i.e., transformations that modify memory
layout of array data instead of loop structure have been
proposed. One of the problems associated with data
transformations is the difficulty of selecting a memory
layout for an array that is acceptable to the entire program
(not just to a single loop). In this paper, we formulate the
problem of determining the memory layouts of arrays as a
constraint network, and explore several methods of
solution in a systematic way. Our experiments provide
strong support in favor of employing constraint
processing, and point out future research directions.

1. Introduction

Data locality of array-based computations has been an
exciting research area for the last decade or so. Most of
the prior proposals to the problem are based on loop
transformations [8][11][10][16], i.e., modifying the order
of loop iterations to make data access pattern more cache
friendly. Loop transformations have several key
advantages that make them appealing to compiler writers
and users alike. First, there is a comprehensive theory
behind them developed over the years [16] and supported
through several commercial implementations. Second,
they are proven to be effective in enhancing both
temporal and spatial locality. Third, and maybe most
importantly, transformation of a loop nest is independent
of transformations of other nests in the same application

 *This work is supported in part by NSF Career Award

#0093082.

code. In other words, its impact is localized to the nest in
question. Consequently, for each loop nest, one can use
the best loop transformation from the data locality
perspective without worrying about the interactions
between neighboring loop nests.

However, recent research has revealed several
drawbacks of loop transformations such as the
requirement of checking dependences (legality issues)
and transformation all of the references within the loop
body indiscriminately (while some of the references can
benefit from the transformation, others may not). As a
result, data transformations [1][6][12], i.e.,
transformations that modify memory layout of array data
instead of loop structure have been proposed. While data
transformations do not have the problems associated with
loop transformations, it has proven to be difficult to
implement robust data transformation frameworks, mainly
because of the fact that a memory layout modification
affects all references to the array in question in all the
loop nests of the application (i.e., localized optimization
is not possible). In other words, its impact is global and
difficult to capture. Therefore, prior efforts mainly
concentrated on heuristic approaches whose results could
not have been validated in formal terms.

In this work, we focus on data transformations from a
different perspective, and treat them within the paradigm
of constraint processing. In more specific terms, we
formulate the problem of determining the memory layouts
of arrays for a given application as a constraint network
[3], and explore several methods of solution in a
systematic way. In doing so, our ultimate goal is two-fold.
First, we want to show that constraint processing provides
an attractive approach to implement a data transformation
framework. Second, using the solutions returned by this
framework, we want to take a fresh look at previously
proposed heuristic solutions to the problem, and check
how they compare to our constraint network based
approach. This paper reports on our experience with this
constraint processing based solution, and presents an
empirical evaluation. Specifically, we designed and
implemented a constraint network specialized for solving

1530-1591/05 $20.00 © 2005 IEEE

 2

memory layout problems. Our experiments provide strong
support in favor of employing constraint processing, and
point out future research directions.

The rest of this paper is organized as follows. The next
section discusses our memory layout representation based
on linear algebra. Section 3 describes our constraint
network and gives a formal definition of the problem.
Section 4 discusses backtracking and backjumping based
solutions to the problem. An experimental evaluation of
our approach is presented in Section 5, and we conclude
the paper in Section 6.

2. Hyperplane-Based Memory Layout
Representation

Our memory layout representation is based on linear
algebra and makes use of spatial locality in memory
space. In a k-dimensional space, a hyperplane is defined
as a set of tuples (x1 x2 … xk) that satisfy the equation
x1y1+x2y2+…+xkyk = c, where (y1 y2 … yk) represents
hyperplane coefficients (also called hyperplane vector)
and c is the hyperplane constant. Note that (y1 y2 …yk)
represents a hyperplane family, each member of which
has a different constant (c value) [7]. Two points
represented by column vectors, d1 and d2, are said to
belong to the same hyperplane if:

(y1 y2…yk)•d1 = (y1 y2…yk) •d2,
where • denotes point multiplication.1 As an example, in a
two-dimensional data space, the hyperplane vector (1 0)
indicates that two array elements belong to the same
hyperplane as long as they have the same value for the
row index.

Let us now focus explicitly on a two-dimensional space
(an extension to higher dimensional spaces will be
discussed later). Note that, a hyperplane family can be
used to partially describe the memory layout of an array.
For example, if we do not care about the relative order of
hyperplanes, we can use hyperplane vector (1 0) to denote

1 The point multiplication of two vectors (x1 x2 x3 … xk) and (y1

y2 y3 … yk)T is x1y1+x2y2+x3y3+… +xkyk.

row-major memory layout in a two-dimensional space.
This is because two array elements d1 = (d11 d12)T and d2 =
(d21 d22)T belong to the same row if and only if:

(1 0) • (d11 d12)T = (1 0) • (d21 d22)T;
that is, if and only if d11 = d21. In other words, as long as
the two array elements have the same row index, they
belong to the same hyperplane, which corresponds to a
row in a two-dimensional array. Note that, while all the
rows of the array have the same hyperplane vector, their
hyperplane coefficients (c values) are different from each
other (in fact, a hyperplane coefficient in this example
corresponds to the row number). Figure 1(a) depicts such
a row-major layout and shows hyperplanes explicitly.
Figures 1(b) through 1(d), on the other hand, illustrate
different memory layouts and give their hyperplane
vectors. Let us briefly concentrate on the diagonal layout
shown in Figure 1(c). In this layout, the two data elements
d1 = (d11 d12)T and d2 = (d21 d22)T are stored in the same
diagonal if and only if (1 -1) • (d11 d12)T = (1 -1) • (d21
d22)T, which means d11 - d12 = d21 - d22. For example, (5
3)T and (7 5) T are stored in the same diagonal, whereas
(5 3) T and (5 4) T are on two different diagonals. Note
that, there are other possible diagonal layouts as well. For
example, hyperplane vectors (1 -2) and (2 -1) also
indicate diagonal layouts (which are different from (1 -
1)).

An important point to note here is that, in order to have
good data locality, data access pattern should be along the
same direction with the hyperplane vector. Let us focus
on a row-major memory layout for illustrative purposes
(see Figure 1(a)). In order to have good spatial locality,
two successive loop iterations, denoted by I and In (not
that in a nest with multiple loops I and In are vectors),
should access the array elements d1 and d2 such that (1 0)
• d1 = (1 0) • d2.

In this paper, however, we are interested in determining
the best memory layout for a given data access pattern.
Therefore, our problem is to choose a hyperplane vector
(y1 y2) such that:

(y1 y2) • d1 = (y1 y2) • d2,
assuming that d1 and d2 are the array elements accessed by
I and In. As an example, consider the nested loop shown
in Figure 2. In this nest, we have two references to two
different arrays (Q1 and Q2). Assuming that I = (i1 i2)T and
In = (i1 i2+1)T are two successive loop iterations that do
not cross loop bounds, for array Q1, we should find a

(1 0)

(a)

(0 1) (1 -1) (1 1)

(b) (c) (d)

Figure 1 Different memory layouts for a two-
dimensional array (data space) and the corresponding
hyperplane vectors.

for (i1=0;i1<N;i1++)
 for(i2=0;i2<N;i2++)
 …Q1[i1+i2][i2]…Q2[i1+i2][i1]…

Figure 2. An example loop nest.

 3

hyperplane vector (y1 y2) representing its memory layout
such that the following equality should be satisfied:

(y1 y2)•(i1+i2 i2)T = (y1 y2)•(i1+i2+1 i2+1)T,
which means (y1 y2) = (1 -1), i.e., the diagonal layout.2
Similarly, for array Q2, we need to satisfy:

(y1 y2)•(i1+i2 i1)T = (y1 y2)•(i1+i2+1 i1)T,
which gives us (y1 y2) = (0 1), i.e., the column-major
layout.

When the same array is accessed in multiple nests,
however, the problem of determining memory layouts
program-wide becomes a complex problem (e.g., different
loop nests may require different memory layouts). In
Section 3, we discuss our constraint processing based
solution to the problem of memory layout determination.

It is to be noted that, if a loop restructuring is applied to
the nest being optimized, one can have a different data
access pattern from the original one, and this can affect
the memory layout selection as well. For example, if the
two loops shown in Figure 2 are interchanged, the best
memory layouts for arrays Q1 and Q2 would be (0 1) and
(1 -1), respectively.

We now briefly discuss how we handle arrays with
more than two dimensions. In such cases, to define a
memory layout, instead of a hyperplane vector/family, we
use an ordered set of hyperplane vectors/families. For
example, two data elements in a three dimensional array
stored as column-major have spatial locality with respect
to (0 0 1) and (0 1 0); that is, if they have the same
indices except for the first dimension. Therefore, to
represent such a layout, we use a matrix with two rows:
Y1 = (0 0 1) and Y2 = (0 1 0). Then, the two data
elements, d1 and d2, map on the same column if and only
if both of the following equalities are satisfied:

Y1 • d1 = Y1 • d2 and Y2 • d1 = Y2 • d2.
The idea is easily generalized to higher

dimensionalities as well.

3. Constraint Network Formulation

A constraint network (CN) can be described as a triple
CN = <P,M,S>, where P is a finite set of variables, M is a
list of possible values for each variable, and S is a set of
constraints on P [3]. In our context, P = {Q1, Q2, …, Qz}
is the set of arrays manipulated by the application code to
be optimized. M, which represents the domain for
variables, contains the set of memory layouts for each
array (variable). Specifically, for every array Qi where 1
≤ i ≤ z, we have a set Mi = {hi1, hi2, …, hif(i)}, which

2 While one can claim that we could have used (2 -2) or other

similar vectors as well instead of (1 -1), this would increase
the resulting data space size as some elements of the
transformed data space would not be used.

contains the hyperplane vectors that can be assumed by
Qi. Here, f(i) is the number of potential layouts for array
Qi. The set S, on the other hand, contains s constraints.
Each Sij ∈ S contains a set of (hyperplane) pairs that
capture the allowable layouts for arrays Qi and Qj from
the locality viewpoint. Each pair represents the best
layout choice under a given loop restructuring. In the rest
of our discussion, when there is no confusion, we use the
terms “array” and “variable” interchangeably. As an
example, consider the following constraint network that
captures layout information for a program that
manipulates four different arrays (Q1,Q2,Q3,Q4):

CN = <P,M,S>, where
P={Q1,Q2,Q3,Q4}
M={M1,M2,M3,M4}, where
 M1={(1 0), (0 1), (1 1)};
 M2={(1 -1), (1 1)};
 M3={(0 1), (1 1), (1 2)};
 M4={(1 0), (0 1), (1 1)};
S={S12,S13,S14,S23,S24,S34}, where
 S12={[(1 0), (1 1)], [(0 1), (1 -1)]}
 S13={[(1 0), (0 1)], [(0 1), (1 1)], [(1 1), (1 2)]}
 S14={[(1 0), (1 0)], [(0 1), (0 1)]}
 S23={[(1 1), (0 1)], [(1 -1), (1 1)]}
 S24={[(1 0), (0 1)], [(1 1), (1 0)]}
 S34={[(0 1), (1 0)]}.

In this constraint network, M1 indicates that array Q1

can assume three different memory layouts, represented
by hyperplane vectors (1 0), (0 1), and (1 1), which
correspond to row-major, column-major, and anti-
diagonal layouts, respectively. Other domain sets can be
interpreted in a similar fashion. S12 indicates that, as far
as arrays Q1 and Q2 are concerned, there are two
preferable memory layout combinations. The first
combination is that Q1 has layout (1 0) and Q2 has
layout (1 1), whereas the second combination is that Q1
and Q2 have layouts (0 1) and (1 -1), respectively. Note
that this is similar to the situation given in Figure 2. Other
constraints can be interpreted similarly. Note that, based
on the way that it is encoded above, this constraint
network is a binary constraint network [3] as each
constraint is defined on a pair of variables. While a non-
binary formulation is also possible, there are also
techniques that can be used to convert non-binary
formulations to binary ones. However, since it is not the
main focus of this paper, we do not elaborate on this issue
any further.

A solution to a constraint network problem is to select a
pair from each Sij such that all the selected pairs are
consistent with each other, i.e., there is no contradiction
when all the members of S are considered, meaning that
each array has a single memory layout. For our example
above, we obtain a solution by selecting hyperplanes (1
0), (1 1), (0 1), and (1 0) for arrays Q1, Q2, Q3 and Q4,

 4

respectively. The next section discusses our strategy for
finding solutions for a given constraint network (when a
solution exists).

4. Proposed Solutions

In this section, we first discuss a backtracking based
solution to the problem of memory layout determination.
After that, we discuss how we can shorten the solution
time by enhancing the backtracking based solution with
several heuristics. Before moving into the discussion of
backtracking however, let us make an important
definition: consistent partial instantiation.

In a constraint network, a partial instantiation of a
subset of variables is an assignment to each variable from
its domain. A consistent partial instantiation, on the other
hand, is a partial instantiation that satisfies all the
constraints that involve only the instantiated variables [3].
A backtracking algorithm traverses the state space of
partial instantiations in a depth-first manner. It starts with
an assignment of a variable (e.g., randomly selected) and
then increases the number of partial instantiations. When
it is found that no solution can exist based on the current
partial instantiation, it backtracks to the previous variable
instantiated, and re-instantiates it with a different value
from its domain. Therefore, a backtracking algorithm has
both forward (where we select the next variable and
instantiate it with a value) and backward phases (where
we return to the previously instantiated variable and
assign a new value to it). In the rest of the paper, this
backtracking based scheme is referred to as the base
scheme.

The base scheme makes random decisions at several
points. The first random decision is to select the next
variable (array) to instantiate during the forward phase.
The second random decision occurs when selecting the
value (layout) with which the selected variable is

instantiated (again in the forward phase). In addition, in
the base scheme, when we find out that the current
instantiation cannot generate a solution, we always
backtrack to the previously assigned variable, which may
not necessarily be the best option. One can improve these
three aspects of the base scheme as follows. As for the
first random decision, we replace it with an improved
approach that instantiates, at each step, the variable that
maximally constrains the rest of the search space. The
rationale behind this is to be able to detect a dead-end as
early as possible during the search. Similarly, when
selecting the values to be assigned to the instantiated
variable, instead of selecting a value randomly, we can
select the value that maximizes the number of options
available for future assignments. The rationale behind this
is to increase the chances for finding a solution quickly (if
one exists). Finally, we can expedite our search by
backjumping, i.e., instead of backtracking to the
previously instantiated value, we can backtrack further
when it is beneficial to do so. This can be best explained
using the following scenario. Suppose that, in the
previous step, we selected the layout hid for array Qi, and
in the current step we selected the layout hje for array Qj.
If, at this point, we see that there cannot be any solution
based on these assignments, the base approach returns to
array Qi and assigns a new layout (say hil) to it (assuming
that we tried all alternatives for Qj). However, it must be
noted that, if there is no constraint in the network in
which both Qi and Qj (i.e., their layouts) appear together,
assigning a new value (layout) to Qi would not generate a
solution, as Qi is not the culprit for reaching the dead-end.
Instead, backjumping skips Qi and determines an array
(say Qk) among the arrays that have already been
instantiated that co-appears with Qj in a constraint, and
assigns a new value (layout) to it (i.e., different from its
current value). In this way, backjumping can prevent

Qi QjQk

Instantiated Variables Uninstantiated Variables

Backtracking

Qi QjQk

Instantiated Variables Uninstantiated Variables

Backjumping

(a)

(b)

Figure 3. (a) Backtracking. (b) Backjumping.

Table 1. Benchmark codes.
Benchmark Brief

Description
Domain
Size

Data Size

Med-Im04 medical image
reconstruction

258 825.55KB

MxM triple matrix
multiplication

34 1,173.56KB

Radar radar imaging 422 905.28KB
Shape pattern

recognition and
shape analysis

656 1,284.06KB

Track visual tracking
control

388 744.80KB

 5

useless assignments and, as a result, expedite our search.
Figure 3 gives an illustration that compares backtracking
and backjumping. In the remainder of the paper, the
solution scheme supported by these three improvements is
referred to as the enhanced scheme. The next section
presents experimental data for both the base and enhanced
schemes. Before going into our experimental analysis
though, we need to make one point clear. If a solution
exists to the problem under consideration, both the base
and enhanced schemes will find it. However, if multiple
solutions exist, they can find different solutions.

5. Empirical Analysis

In this section, we present an experimental analysis of

our constraint processing based approach to the memory
layout determination problem. To conduct such an
analysis, we used five array-based embedded
benchmarks, whose important properties are given in
Table 1. The third column gives the total search space
size (i.e., the sum of the domain sizes of the arrays in the
corresponding application). The last column of this table
gives the total data size manipulated by each application.
We implemented our constraint network using C++.
Excluding the libraries linked and comment lines, the
network code itself is about 1700 C++ lines.

In our experimental evaluation, our focus is on two
metrics: solution time and quality of solution. The first of
these gives the time it takes for determining the memory
layouts of arrays, and the second one gives the execution
time of the resulting optimized code (or percentage
improvement brought by the optimized code over the
original one). To be fair in our evaluation, we also

compare our approach to a previously proposed heuristic
solution to memory layout optimization approach. This
previous approach [9] is linear algebra based and can be
summarized as follows. First, the loop nests in the
program are ordered according to an importance criterion
(e.g., time taken by each nest). After that, the heuristic
approach processes each nest in turn, starting with the
most important one (as determined by the previous step).
For each loop nest being processed, it determines a good
combination of loop transformation and memory layouts
(for the arrays accessed by that nest). It then propagates
these layouts to the second most important nest, and
proceeds the same way as in the first nest except that it
only determines the layouts of the arrays which are not
accessed in the first nest (but accessed in the current one).
In this way, it keeps propagating the memory layouts
across the nests until all the layouts have been
determined. Notice that, since the loop nests are ordered
beforehand, this approach tends to give priority to
satisfying the layout requirements of costly nests.

 Our experiments have been performed using the
SimpleScalar infrastructure [13]. Specifically, we
modeled an embedded processor that can issue and
execute two instructions in parallel. The machine
configuration we use includes separate L1 instruction and
data caches; each is an 8KB, 2-way set-associative with a
line size of 32 bytes, and a unified 64KB L2 cache (4-way
associative with a 64 bytes line size). The L1 and L2
latencies are 1 and 6 cycles respectively; and, the main
memory latency is 70 cycles.

Table 2 gives the solution times for different optimized
versions (in seconds) obtained on a 500MHz Sun Sparc
architecture. The second, third and fourth columns give
the solution times taken by the heuristic, base and
enhanced schemes, respectively. We see that our base
scheme takes much more time compared to the heuristic
method. However, the enhanced scheme reduces these

0%

20%

40%

60%

80%

100%

M
ed

-Im
04

M
xM

R
ad

ar

S
ha

pe

Tr
ac

k

B
en

ef
it

B
re

ak
do

w
n

Backjumping

Value Selection

Variable Selection

Figure 4. Breakdown of benefits coming from the
enhanced scheme.

Table 2. Solution times taken by different versions.
Benchmark Heuristic Base Enhanced

Med-Im04 7.14sec 97.34sec 12.22sec
MxM 5.18sec 36.62sec 9.24sec
Radar 11.33sec 129.51sec 53.81sec
Shape 16.52sec 197.17sec 82.06sec
Track 10.09sec 155.02sec 68.50sec

Table 3. Execution times achieved by different versions.
Benchmark Original Heuristic Base Enhanced

Med-Im04 204.27sec 128.14sec 82.55sec 81.07sec

MxM 69.31sec 28.33sec 28.33sec 28.33sec

Radar 192.44sec 110.78sec 83.92sec 85.15sec

Shape 233.58sec 140.30sec 106.45sec 106.45sec

Track 231.00sec 127.61sec 97.28sec 95.30sec

 6

solution times dramatically, making them even
comparable to those of the heuristic solution in two cases.
Overall, we see that the solution times taken by our
approaches are not excessive for an embedded system.

To explain how the enhanced scheme improves the
solution times over the base scheme, we give in Figure 4
the percentage of reductions (in solution times) brought
by each of the three enhancements discussed earlier in
Section 4 (i.e., their individual contributions to the overall
savings achieved by the enhanced scheme). The first
enhancement is to do with the selection of the variable to
instantiate next; the second one is related to the selection
of the value to be assigned to the selected variable; and
the last one is to employ backjumping instead of
backtracking. We see the results from Figure 4 that, while
most of the benefits come from backjumping, all three
enhancements are very useful in general and contribute a
lot to the overall reduction in solution times.

Table 3 gives the execution times for our benchmarks
achieved by the original codes, heuristic approach and our
constraint based approach. We see from these results that,
while the heuristic solution improves over the original
codes significantly (42.49% on average), the savings
brought by the base and enhanced schemes are much
larger: 57.17% and 57.95% on average respectively. The
additional improvements are due to more comprehensive
search space traversal implemented by the constraint
network based approach. We also observe a small
difference between the base and enhanced schemes. This
difference is due to the fact that these two schemes can
find “different solutions” if there are multiple solutions to
the underlying network (as in the case of Med-Im04,
Radar, and Track).

6. Conclusions and Future Directions

Recent years have witnessed, from both embedded
system community and scientific computing community,
a large number of studies targeting at improving data
cache behavior of array based codes. Data
transformations in particular have been found attractive as
they do not have the drawbacks of commonly used loop
transformations. This paper presents a novel constraint
processing based approach to data transformations, where
the problem of memory layout determination is captured
as finding solutions in a constraint network. Our empirical
analysis shows that the proposed approach is very
effective in practice, and further enhancements are
possible to expedite the search in the constraint graph.

We plan to extend this work in two directions. First, we
would like to give weights to constraints. This will help
us distinguish between different solutions to a given

network. Second, we would like to expand our constraint
network formulation to accommodate dynamic memory
layouts, i.e., the layouts that can change during execution
based on the requirements of the different segments of the
program.

7. References

[1] F. Catthoor, K. Danckaert, C. Kulkarni, E. Brockmeyer, P.G.

Kjeldsberg, T. V. Achteren, and T. Omnes. “Data Access and
Storage Management for Embedded Programmable
Processors,” Kluwer Academic Publishers, 2002.

[2] T. M. Chilimbi, M. D. Hill, and J. R. Larus, “Cache
conscious structure layout,” In Proc. Programming Languages
Design and Implementation, May 1999.

[3] R. Dechter. “Constraint Processing”. Morgan Kaufmann,
San Francisco, 2003.

[4] P. Grun, N. Dutt, A. Nicolau, “Memory Architecture
Exploration for Programmable Embedded Systems,” Kluwer
Academic Press, Norwell, MA, 2003.

[5] M. Kandemir and I. Kadayif. “Compiler-directed selection of
dynamic memory layouts”. In Proc. the 9th International
Symposium on Hardware/Software Co-design, April 2001,
Denmark, pp.219-224.

[6] M. Kandemir, J. Ramanujam, and A. Choudhary. “A
compiler algorithm for optimizing locality in loop nests.” In
Proc. the ACM International Conference on Supercomputing,
Vienna, Austria, July 1997.

[7] B. Kolman. “Linear Algebra with Applications”, Prentice
Hall, 1997.

[8] M. Lam, E. Rothberg and M. E. Wolf, “The cache
performance and optimizations of blocked algorithms.” In
Proc. 4th International Conference on Architectural Support
for Programming Languages and Operating Systems, 1991,
pp. 63–74.

[9] S.-T. Leung and J. Zahorjan, “Optimizing data locality by
array restructuring,” Technical Report, Computer Science
Department, University of Washington, Seattle, WA, 1995.

[10] W. Li. Compiling for NUMA Parallel Machines. Ph.D.
Thesis, Computer Science Department, Cornell University,
Ithaca, NY, 1993.

[11] W. Li and K. Pingali, “A singular loop transformation
framework based on nonsingular matrices,” International
Journal of Parallel Programming, April 22(2):183-205, 1994

[12] M. O’Boyle and P. Knijnenburg. “Nonsingular data
transformations: definition, validity, and application” in Proc.
International Conference on Supercomputing, Vienna,
Austria, 1997.

[13] SimpleScalar Simulator. http://www. simplescalar.com
[14] Y. Song, R. Xu, C. Wang, and Z. Li. “Data locality

enhancement by memory reduction.” In Proc. 15th ACM
International Conference on Supercomputing, June, 2001.

[15] D. Wilde and S. Rajopadhye. “Memory reuse analysis in
the polyhedral model.” Parallel Processing Letters, 1997.

[16] M. Wolfe. “High Performance Compilers for Parallel
Computing.” Addison Wesley, CA, 1996.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

