
Hybrid BIST Based on Repeating Sequences and Cluster Analysis1

Lei Li † and Krishnendu Chakrabarty‡

†Wireless & Mobile Systems Group ‡Department of Electrical & Computer Engineering
Freescale Semiconductor, Inc. Duke University

Austin, TX 78735, USA Durham, NC 27708, USA
leili@freescale.com krish@ee.duke.edu

Abstract
We present a hybrid BIST approach that extracts the most

frequently occurring sequences from deterministic test patterns;
these extracted sequences are stored on-chip. We use cluster
analysis for sequence extraction, and encode deterministic pat-
terns on the basis of the stored sequences. Experimental results
for the ISCAS-89 benchmark circuits show that the proposed ap-
proach often requires less on-chip storage and test data volume
than other recent BIST methods.

1 Introduction
High test data volume and limited tester channel bandwidth

are two major problems encountered in the testing of today’s
system-on-chip integrated circuits. In order to mitigate these
problems, a number of techniques based on test data compres-
sion, built-in self-test (BIST), and a combination of the two have
been proposed in the literature.

In the test data compression approach, a deterministic test
set is compressed and stored in tester memory. The compressed
test set is transferred through tester channels to the circuit un-
der test (CUT), where it is decompressed by decoding hardware.
Test compression techniques based on on-chip pattern decom-
pression are presented in [1, 3, 9, 12, 14]. In BIST solutions,
test patterns are generated by an on-chip pseudo-random pat-
tern generator, usually a linear-feedback shift-register (LFSR).
A number of BIST techniques based on test point insertion [13],
reseeding [5, 10, 11], bit-flipping [16], and weighted random
pattern testing [15] have been proposed. Deterministic test pat-
terns are applied in BIST by either controlling the state of the
pattern generator [5, 7, 10, 11] or by altering the output of the
pattern generator [15, 16].

Techniques based on the combination of data compression
and BIST have also been developed recently [6, 8]. The hybrid
BIST scheme presented in [6] applies weighted pseudo-random
patterns to the circuit to achieve 100% fault coverage. The com-
pressed weight set is stored on ATE and decompression is car-
ried out using an on-chip look-up table. In [8], the seeds for the
LFSR are compressed using statistical coding.

In this paper, we present a hybrid BIST approach that ex-
tracts the most frequently occurring sequences from determin-
istic test patterns; these extracted sequences are stored on-
chip. The test session consists of three stages. In the first

1This research was supported in part by the National Science Foundation
under grants CCR-9875324 and CCR-0204077.

stage, pseudo-random patterns generated by an LFSR are ap-
plied to the CUT to detect easy-to-detect faults. In the second
stage, semi-random patterns are generated by randomly select-
ing some of the stored sequences and flipping some of their data
bits. Since the semi-random patterns are generated based on the
sequences extracted from deterministic patterns, they are more
likely to detect the hard-to-detect faults than the pseudo-random
patterns. Faults that are not detected by pseudo-random and
semi-random patterns are detected by deterministic patterns in
the third stage. The deterministic patterns are encoded on the
basis of the stored sequences to reduce the test data volume,
and are decoded/generated during the third stage of the test ses-
sion. The overall approach is similar to [14], where repeating
scan slices are stored in a dictionary, and corrections (bit-flips)
are applied to selected scan slices.

The rest of this paper is organized as follows. Section 2
presents the proposed hybrid BIST approach and its associated
synthesis procedure. The cluster analysis algorithms used in
the synthesis procedure are described in Section 3. Section 4
describes the proposed BIST architecture. Section 5 presents
experimental results for the ISCAS-89 benchmark circuits. Fi-
nally, Section 6 concludes the paper.

2 Proposed Approach
The proposed mixed-mode BIST approach is based on the

observation that identical or similar sequences often appear in
many test patterns that are applied to a logic circuit. Consider
the simple circuit shown in Figure 1. In order to detect the
stuck-at faultsd/0, d/1, e/0, e/1, g/0, andg/1, f needs to be
set to 1 to propagate the faulty values to the output, which re-
quires that the primary inputs “abc” be set to “111”. Thus the
sequence “111” appears at the primary inputs “abc” in the six
test patterns to detect the above stuck-at faults. Based on this
observation, we extract a number of more frequently-occurring
sequences from the deterministic test patterns for a logic circuit
and store them on the chip. By selecting sequences and flipping
some of their data bits, we can either generate semi-random pat-
terns or encode deterministic patterns, based on how we select
the sequences and the bits to be flipped.

Similar to other BIST approaches, we first apply a num-
ber of pseudo-random patterns to the CUT to detect easy-to-
detect faults. Next we generate deterministic patterns for the
remaining faults, and extract a number of frequently occurring
sequences from these deterministic patterns. The extraction of
repeating sequences is carried out in two steps. First, the data
bits in the test vectors are reorganized such that the positions

1530-1591/05 $20.00 © 2005 IEEE

a

b

c

d

e

f

g

Figure 1. A simple circuit used to motivate the
clustering-based approach.

012345678

xxxx010xx
x100xxx1x
xxxx111xx
x101xxx01
x101xxx1x
xxxx111xx
x111xxx1x

1237 456 8 0

xxxx 010 x x
1001 xxx x x
xxxx 111 x x
1010 xxx 1 x
1011 xxx x x
xxxx 111 x x
1111 xxx x x

1237 456 8 0

1001 010 1 x
1010 111
1011
1111

(a) (b) (c)

Position index Position index Position index

Test

cubes

Test

cubes

Repeating

sequences

Figure 2. An example to illustrate the extraction of fre-
quently occurring patterns.

that are specified in the same test vectors are grouped together.
This is illustrated in Figure 2, where positions 1, 2, 3 and 7 are
grouped, and positions 4, 5 and 6 are grouped. Corresponding
to the reorganization of the data bits in the test set, the scan
cells in the scan chain also need to be reorganized. Repeating
sequences are next identified for each group. As shown in the
figure, four sequences are extracted for the first group. Finally,
we need 23 bits to store the sequences (the x in the last group
does not need to be stored). In other words, the test set can be
viewed as a matrix in which each row is a test vector. First,
columns are grouped/reorganized to bring together the speci-
fied bits in a row. Then the grouped columns are regarded as a
submatrix and repeating sequences/rows are determined.

In the simple example of Figure 2, the position groups and
the repeating sequences are easy to identify, and the number
of groups and sequences are small. However, a test set for a
real-life circuit can lead to a large number of groups and se-
quences. We need to reduce the number of groups such that the
encoding of a deterministic pattern is beneficial, and we need
to merge some of the sequences in each group to make the stor-
age requirement manageable. We use cluster analysis for both
position grouping and sequence merging; the details of these
procedures are discussed in Section 3.

After grouping the positions in the scan chain and extract-
ing the most occurring sequences in each group, we generate
semi-random patterns based on the extracted sequences. As-
suming that the positions in the scan chain are grouped intoG
groups, andR sequences are identified for each group, we use
log2 R outputs from the LFSR to generate a random number
r, 0 ≤ r < R, which selects a sequence from each group. Sev-
eral outputs of the LFSR are then AND-ed to generate a flip
indication sequence with a small proportion of 1s. The semi-
random patterns shifted into the scan chain are obtained by do-
ing an exclusive-or between the randomly selected sequences

0 00 00 1 00 1 01 00 1 10

Not the

last group

The last

bit

The last

bit

The last

group

sequence(0, 0) flip(0), sequence(1, 0) flip(2)

Figure 3. The encoded data for the deterministic test
cube “x000011x1”.

and the flip indication sequence.
After a number of semi-random test patterns are generated,

we run fault simulation to determine the faults that are not de-
tected by both the pseudo-random patterns and the semi-random
patterns. Then we use an ATPG tool to generate deterministic
test cubes for the remaining undetected faults. These determin-
istic cubes are then encoded by indicating the selection of se-
quence and bits to be flipped. For example, if we need to en-
code the cube “x000011x1” based on the sequence obtained in
Figure 2(c), we first reorder the sequence to “000x”, “011”, “1”
and “x”, then encode it as “sequence(0, 0)flip(0),sequence(1, 0)
flip(2)”, wheresequence(i, j) means selecting thejth sequence
in the ith group, andflip(k) means flipping thekth bit. In this
example, the number of groups is 4, the maximum number of
sequence in a group is 4, and the maximum number of bits in
a sequence is 4. So we need 2 bits each to encode the group
index, sequence index and the bit index. Since multiple groups
might be needed for encoding a deterministic pattern, and mul-
tiple bits might need to be flipped in one sequence, a prefix is
needed before the group index and the bit index to indicate if
it is the last group for this pattern or if it is the last flipping bit
in the current sequence. The encoded data for the deterministic
pattern “x000011x1” is shown in Figure 3.

3 Cluster Analysis
Cluster analysis is used for numerical classification in many

fields [2]. We use an agglomerative clustering algorithm for
both position grouping and sequence merging [2]. The test
set is first represented as a graph, to which the agglomera-
tive algorithm is applied. The basic idea is to first view each
node in the graph as a cluster, then continuously merge pairs
of closest clusters until a predefined threshold is reached. This
threshold can be either the number of clusters in the system,
referred to asmaxClusterNum, or the minimum distance
between a pair of clusters that can be merged, referred to as
minMergeDistance.

The details of the agglomerative algorithm are described in
Figure 4. The input to the procedure is the systemS containing
a given number of clusters, where each cluster corresponds to a
node in the graph. The distance between each pair of clusters
is calculated and stored in the distance matrixD. In each loop
of the procedure, the minimum distance and its associated clus-
ter indicesi andj are found. If the minimum distance is not

Procedure Agglomerate (S, maxClusterNum, minMergeDistance)

1 /* Initialize the distance matrix. */
2 D = initialize (S);
3 while (size (S) > maxClusterNum)
4 (minDistance, i, j) = getMinimum(D)
5 if (minDistance > minMergeDistance)
6 break; /* Jump out of the while loop. */
7 else
8 merge(i, j); deleteNode(S, |);
9 deleteRomColumn(D, j); updateDistance(D, j);
10 end if; end while;

Figure 4. The agglomerative algorithm.

larger than the preset thresholdminMergeDistance, the clus-
tersi andj are merged andj is deleted from the graph and the
distance matrix. All the elements in the distance matrix related
to i are also updated. The procedure terminates when either
maxClusterNum or minMergeDistance is reached.

Although the agglomerative algorithm is used for both po-
sition grouping and sequence merging, the calculation of the
distance between a pair of clusters is different for the two prob-
lems. In position grouping, there areL nodes in the graph,
whereL is the length of the scan chain, and each node repre-
sents a position in the scan chain. Each nodej has an associated
index setIj that records all the test vectors for which this posi-
tion is specified. The distance between two nodesi andj is cal-
culated as the number of test vectors in which one node/position
is specified while the other is unspecified, i.e., it simply equals
|(Ii−Ij)

⋃
(Ij−Ii)|. As described above, the initial cluster sys-

tem containsL clusters, each of which consists of one node. In
order to calculate the distance between two clusters, we define
the centroid of a cluster as follows. Thecentroid of a cluster is
a dummy node whose associated index set is the union of the
associated index sets of all the nodes contained in this cluster.
The distance between two clusters is calculated as the distance
between their centroids of the two clusters. We adopt this defi-
nition of a centroid because we are trying to group the positions
that are specified in the same test vectors. After several posi-
tions are merged into a group, the corresponding group appears
in a test vector as long as one of its position is specified.

Figure 5 illustrates position grouping. We use the same
test data as in Figure 2. However, we set the threshold
maxClusterNum to 2, excluding a group that contains all the
positions that are unspecified in all the test vectors. In this ex-
ample, position 0 is unspecified in all the 7 test vectors; there-
fore it is not considered for cluster analysis. As shown in Fig-
ure 5(b), the initial system consists of eight clusters, each of
which contains one position. The test vector index set associ-
ated with the centroid of each cluster is also listed. The dis-
tances between each pair of clusters are listed in Figure 5(c).
First, all pairs of clusters with mutual distance 0 are merged;
the remaining clusters and their pairwise distances are shown in
Figures 5(d) and 5(e). Next, the Clusters 1 and 8 are merged
because the distance between them is the minimum entry in

012345678

xxxx010xx
x100xxx1x
xxxx111xx
x101xxx01
x101xxx1x
xxxx111xx
x111xxx1x

Cluster Position

Associated

index set

1 1 1, 3, 4, 6

2 2 1, 3, 4, 6

3 3 1, 3, 4, 6

4 4 0, 2, 5

5 5 0, 2, 5

6 6 0, 2, 5

7 7 1, 3, 4, 6

8 8 3

 1 2 3 4 5 6 7 8

1 0 0 7 7 7 0 3

2 0 7 7 7 0 3

3 7 7 7 0 3

4 0 0 7 4

5 0 7 4

6 7 4

7 3

8

 1 4 8

1 7 3

4 4

8

Cluster Position

Associated

index set

1 1, 2, 3, 7 1, 3, 4, 6

4 4, 5, 6 0, 2, 5

8 8 3

Cluster Position

Associated

index set

1 1, 2, 3, 7, 8 1, 3, 4, 6

4 4, 5, 6 0, 2, 5

 1 4

1 7

4

12378 456 0

xxxxx 010 x
1001x xxx x
xxxxx 111 x
10101 xxx x
1011x xxx x
xxxxx 111 x
1111x xxx x

(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 5. Clustering for position grouping.
the distance matrix. After the merging of clusters 1 and 8, the
maxClusterNum threshold is reached. Figures 5(f) and 5(g)
show the eventual outcome of cluster analysis. The positions
are then grouped as shown in Figure 5(h).

After position grouping, we reorder the columns of the test
data matrix to bring the positions/columns in a group together.
The basic idea was illustrated in Figure 2. For each group, i.e., a
submatrix, an initial cluster system is generated and the agglom-
erative algorithm is used for sequence merging. The number of
nodes for a group is equal to the number of test vectors in which
the group appears, i.e., the number of rows in the submatrix that
contain at least one specified bit. A 3-valued sequence (with
elements from{0, 1, x}) is associated with each node. The dis-
tance between a pair of nodes is the number of bits that are in
conflict for the two sequences that are associated with them.
Two bits are in conflict with each other if both of them are spec-
ified and they are set to different values. In the initial cluster
system, each cluster contains exactly one node.

We define the centroid of a cluster as a dummy node associ-
ated with a three-value sequence, which is obtained as follows.
The length of the sequence is the same as the sequences asso-
ciated with the nodes in this cluster. For each bit in the string,
we count the number of 0s (zeroCounts) and the number of 1s
(oneCounts) in this bit position for all the sequences associated
with the nodes in this cluster. If both numbers are equal to 0, this
bit is set to ‘x’. Otherwise this bit is set to 0 ifzeroCounts ≥
oneCounts, and 1 if zeroCounts < oneCounts. The dis-
tance between a pair of clusters is then calculated as the prod-
uct of the distance between the centroids of the pair of clusters
and the total number of nodes in these two clusters. The above
method for determining the centroid of a cluster and the dis-
tance between a pair of clusters has been developed to ensure
that only a small number of bits need to be flipped to generate
all the sequences in a cluster from the centroid sequence of the
cluster.

Figure 6 illustrates cluster analysis for sequence merg-

12378

xxxxx
1001x
xxxxx
10101
1011x
xxxxx
1111x

Cluster Vector

Associated

sequence

1 1 1001x

2 3 10101

3 4 1011x

4 6 1111x

 1 2 3 4

1 4 2 4

2 2 4

3 2

4

Cluster Vector

Associated

sequence

1 1, 4 1001x

2 3 10101

4 6 1111x

 1 2 4

1 6 6

2 4

4

Cluster Vector

Associated

sequence

1 1, 4 1001x

2 3, 6 10101

 1 2

1 8

2

(a) (b) (c)

(d) (e) (f) (g)

Figure 6. Clustering for sequence merging.

ing. The input data in this example corresponds to the first
group of sequences in Figure 5(h). We set the threshold
maxClusterNum to 2. Figure 6(b) shows the initial clusters
and the sequences associated with their centroids. The distance
matrix is shown in Figure 6(c). Note that the distance between
a pair of clusters is the product of the number of conflict bits
with the number of nodes in this pair of clusters. Thus although
there are 2 conflict bits between Clusters 1 and 2, their dis-
tance is 4 as shown in the distance matrix. First, Clusters 1
and 3 are merged because the distance between them (2) is the
smallest entry in the distance matrix. After merging Clusters
1 and 3, the distance matrix is updated. Then Clusters 2 and
4 are merged. This concludes the cluster analysis because the
thresholdmaxClusterNum is reached. The final sequences
extracted for this group are “1001x” and “10101”.

4 Proposed BIST Architecture
Figure 7 shows the proposed BIST architecture. We first de-

scribe the architecture for a CUT with a single scan chain. We
then discuss the extension for multiple scan chains. For a single
scan chain, the signals connected to the two multiplexers and
the exclusive-or gate are all 1-bit wide.

In the first stage of the test session, the signal
Select random is set to 0. Hence the pseudo-random patterns
generated by the LFSR are shifted into the scan chain through
MUX I and applied to the CUT. In this stage, Bit counter A is
also used to indicate the end of each test pattern.

In the second stage, the signalSelect random is set to 1,
andSelect f lip is set to 0. The test data is obtained by doing
an the exclusive-or between theFlip indication R signal and
the ROM output. The signalFlip indication R is obtained by
AND-ing several bits from the LFSR. Thus it contains much
more 0s than 1s, a feature that is used to flip some of the bits in
the data sequence obtained from the ROM. The ROM contains
R × C bits organized as a matrix[M]R×C with R rows andC
columns. Let the content of the ROM for the location addressed
by the pair (i, j), 0 ≤ i < R and0 ≤ j < C, beMi,j . The num-
ber of columnsC in the ROM is often less than the scan chain
lengthL. Note that theColumn select signal comes from Bit

ROMBit counter

B

(with buffer)

Bit counter

A

Group counter

(with buffer)

Group-end

decoder

(comb.Logic)

Data input

counter

Column_selectFinite-state

machine

(27 states)

Row-select

register

(with buffer)

Reset_A

End_A

Load_r

Group_end

Load_g

Zero_g

Shift_g

Zero_d

Reset_s

Reset_g

Reset_b

Shift_b

Load_b

Zero_b

Input_en

Data_in

From LFSR

LFSR

To Row-select register

0

II

1
Flip_indication_D

Select_flip

To scan

chains

0

I

1

Select_random

Flip_indication_R

Reset_r

Dec_g

Dec_b

Select_r

Shift_r

Stage

2

2

11

11

3

2

2

Figure 7. Proposed BIST architecture.

counter A and it can be larger thanC. In this case, the ROM
simply outputs the value 0. The data in the ROM is divided hor-
izontally intoG groups, where each row in a group corresponds
to an extracted sequence. The Group end decoder always out-
puts 0, except at the last bit of each group, when it outputs 1 to
indicate the end of the current group. The signalsLoad r and
Select r are then set to 1 to load the random number from the
LFSR into the Row select register such that a random sequence
is selected from the next group.

In the third stage, bothSelect random andSelect f lip are
set to 1. Thus the test data shifted into the scan chain is obtained
via an exclusive-or operation betweenFlip indication D sig-
nal and the ROM output.Flip indication D is generated
by the finite-state machine based on the encoded data from
Data in. The Group counter contains an extra buffer besides
the standard counter in it. The extra buffer is used to store the
data that is shifted in fromData in while the standard counter
is operating. With the signalLoad g set to 1, the data stored
in the buffer is loaded into the standard counter, which is then
ready for counting down. The same pipeline structure is used
for Bit counter B and Row select register. The Group counter is
used to indicate whether the selected group is reached. After the
selected group is reached, the Row-select register is loaded with
the selected sequence index which is stored in its buffer. The Bit
counter B is also loaded with the flipping bits index stored in its
buffer and it then starts to count down. When the Bit counter B
decrements to 0,Flip indicationD is set to 1 to flip the data
bit from the ROM. The Data input counter is used to count the
number of bits shifted fromData in and indicate whether the
data for the group index, sequence index or bit index has been
completely shifted into its buffer.

For multiple scan chains, the ROM is reorganized as shown

b00 b04 b08 b00 b04

b10 b14 b18 b10 b14

b20 b24 b28 b20 b24

b30 b04 b08 b00 b04

b01 b05 b09 b01 b05

b11 b14 b18 b10 b14

b21 b24 b28 b20 b24

b31 b04 b08 b00 b04

b02 b06 X b02 b06

b12 b14 b18 b10 b14

b22 b24 b28 b20 b24

b32 b04 b08 b00 b04

b03 b07 X b03 b07

b13 b17 X b13 b17

b23 b27 X b23 b27

b33 b07 X b03 b07

…
…

…
…
…
…
…

Group 0 Group 1 …
Sequence 0

Sequence 1

Sequence 2

Sequence 3

Bank 0 (to scan chain 0)

Bank 1 (to scan chain 1)

Bank 2 (to scan chain 2)

Bank 3 (to scan chain 3)

Figure 8. Organization of the stored sequences.

c0 c4 c8 c0 c4

c1 c5 c9 c1 c5

c2 c6 cx c2 c6

c3 c7 cx c3 c7

Group 0 Group 1 …

…
…
…

…Scan chain 0

Scan chain 1

Scan chain 2

Scan chain 3

Figure 9. Reorganization of the scan cells.

in Figure 8, which corresponds to the case of 4 scan chains for
the CUT. The number of banks in the ROM equals the number
of scan chains, i.e., four in this example. In each scan cycle,
one bit from each bank is shifted into the scan chain. All of
the four bits are from the same position of the banks, which is
indicated by the same column select and row select signals. The
organization of the sequences is also shown in the figure, where
bi,j denotes thejth bit of theith sequence in a group, the groups
of the sequences are divided by the solid line, and the sequences
in each group are divided by the dashed line. As shown in the
figure, the data bits of theith sequence are placed in theith row
of the ROM banks, and the current columns of all the banks
are filled before proceeding to the next columns. The number
of bits in a group may not always divide the number of ROM
banks (the number of scan chains) exactly, thus some cells in
the last column of this group need to be filled randomly.

The cells in the scan chains also need to be reorganized, i.e.,
the cells belonging to the first group are first placed at the first
positions of the scan chains, then at the second positions of the
scan chains, and so on. Figure 9 shows the reorganization of the
scan cells corresponding to the data organization in the ROM
shown in Figure 8. In Figure 9, Group 0 contains 10 scan
cells. The first 4 cells are placed at the first position of each
scan chain, the next 4 cells are place at the second position of
each scan chain, and the remaining 2 cells are placed at the third
position of scan chain 0 and scan chain 1. Scan cells that are un-
specified in all the deterministic patterns are used to fill the third
position of scan chain 2 and scan chain 3.

For a CUT withm scan chains (m > 1) and the above or-
ganization of the ROM, the decoding architecture operates in
nearly the same fashion as a single scan chain. The differences
are as follows. First, the output from the ROM, the signals
Flip indication R andFlip indication D, and the input sig-
nals to MUX I are allm-bit wide. Second, in the third stage of
the test session, recall that for a single scan chain, the bit in-

Table 1. Results for ISCAS-89 benchmarks.
No. of

No. of No. of remaining No. of No. of
groups bits faults after test bits
for the used to application vectors needed for

No. of sequence store the of 10000 need encoding
total extraction extracted semi-random to be test

Circuits patterns N1 N2 proceduresequences patterns encoded patterns
s5378 4563 51 38 8 136 3 3 85
s9234 6475 735 317 8 719 81 38 1447
s13207 9664 624 366 16 1021 43 30 610
s15850 11336 667 248 16 962 2 2 36
s35932 35110 0 — — — — — —
s38417 31015 2245 1006 32 1899 105 71 2301
s38584 34797 448 271 32 1007 34 28 668

N1: No. of faults left undetected by 10000 pseudo-random patterns
N2: No. of test patterns generated by Atalanta for the undetected faults

dex is completely shifted into the Bit counter B to determine
the scan cycle in which the signalFlip indication D is set
to 1. The bit index is divided into two parts. The lower-order
log2 m bits are used to determine which of them bits in the
signalFlip indication D are set to 1; the remaining bits are
shifted into the Bit counter B to determine in which scan cycle
to set the selected bit ofFlip indication D to 1.

We first implemented the BIST architectures for a single scan
chain using the lsi10k library of Synopsys Design Compiler.
Using the wire load model for the lsi10k library, we designated
the normalized area for a unit-length of wire to be 0.2 (assuming
that the area of an inverter is 1 unit) to take into account the
additional area due to interconnects. The area overhead for the
FSM, measured in Synopsys gate equivalents, is 187.97, which
includes 10 flip-flips and 61 logic gates. The maximum area
overhead for the Group-end decoder is 120.53, which includes
65 logic gates (for circuit s38417). The hardware overhead for
the architecture shown in Figure 7, excluding the LFSR and the
ROM, is 834.07 for the circuit s38417, including 47 flip-flops
and 158 gates. This amounts to only 2.04% overhead.

To extend the BIST architecture to multiple scan chains, the
FSM needs to be modified to generatem data bits in each scan
clock cycle, wherem is the number of scan chains. The data in
the ROM needs to be reorganized as discussed above, but with-
out any change in the storage requirements. The other compo-
nents are the same as for the single scan chain architecture. The
hardware overhead for the extended architecture for four scan
chains, excluding the LFSR and the ROM, is 870.95 for the cir-
cuit s38417, including 49 flip-flops and only 171 gates.

5 Experimental Results

In this section, we present experimental results for the seven
largest ISCAS-89 benchmark circuits. Table 1 presents the first
set of results. We first apply 10000 pseudo-random patterns to
the CUT. Next we use the ATPG tool Atalanta to generate a
set of deterministic test patterns for the remaining faults. The
number of extracted sequences is four for all the circuits. After
sequence extraction, 10000 semi-random patterns are generated
and applied to the CUT. Finally, we use Atalanta to generate
deterministic patterns for the remaining faults and we encode
the deterministic patterns based on the extracted sequences.

The number of bits needed for storing the extracted se-
quences on-chip is listed in the seventh column. For the circuits

s5378 and s38584, the amount of stored data is less than the
test data volume corresponding to just one test pattern. For the
two worst cases, i.e., for s9234 and s38417, the on-chip storage
requirements are less than the test data volume for three test pat-
terns. For the circuits s5378 and s15850, only three and two de-
terministic patterns need to be encoded, respectively. The CPU
times for the computation range from 7 minutes to 19 minutes
on a 1.4 GHz Pentium 4 PC with 512 MB of memory.

Only a small number of deterministic test patterns need to be
encoded, and only these patterns are required to be fed through
the tester channel. The pseudo-random test and semi-random
test can be run at higher speed since no data is required from
the tester in these stages.

Table 2 compares the storage requirements of the proposed
approach with test vector encoding using partial LFSR reseed-
ing [7], BIST based on reseeding of folding counter [5], and
two-dimensional test data compression [10]. The storage re-
quirement reported for the proposed approach include the data
for storing the extracted sequences and the data for encoding
the deterministic patterns. The results presented in the lit-
erature for these methods also rely on 10000 initial pseudo-
random patterns to eliminate the easy-to-detect faults. The pro-
posed approach requires less storage than partial LFSR reseed-
ing method [7]. Compared to BIST based on reseeding of fold-
ing counter, the proposed method provides better results in three
out of six cases. Note however that width compression is used
in [5] to reduce test data volume. While width compression can
indeed reduce test data volume, it requires a special scan out
procedure is needed to shift out the test responses. Compared to
two-dimensional test data compression, the proposed approach
provides better results in four out of six cases.

Table 3 compares the proposed approach with hybrid BIST
based on weighted pseudo-random patterns [6]. For both meth-
ods, the data volume is divided into two parts, on-chip storage
and encoded test data. The results of [6] relies on 32000 initial
pseudo-random patterns to eliminate easy to detect faults. Thus
we also applied 32000 pseudo-random patterns to the CUT in
the first stage of the test session. The number of semi-random
patterns applied to the CUT is kept at 10000. Compared to
hybrid BIST based on weighted pseudo-random patterns, the
proposed approach requires less on-chip storage for the larger
circuits although it needs slightly more on-chip storage for the
smaller circuits. The encoded data volume of the proposed ap-
proach is less than that of [6] for all but one circuit.

We have implemented the BIST logic using Synopsys tools
and reported the results in Section 5.3. The area overhead ap-
pears to be reasonable and, and based on limited published data,
of the same magnitude as the other four methods.

6 Conclusion

We have presented a new hybrid BIST approach that uses
cluster analysis to extract the most frequently occurring se-
quences deterministic test patterns. Experimental results for the
ISCAS-89 benchmark circuits demonstrate that the proposed

Table 2. Comparison of storage (in bits) required for
various BIST methods.

Partial Reseeding of 2-D
reseeding folding compression Proposed

Circuit [7] counter [5] [10] approach
s5378 502 132 196 221
s9234 5013 2310 3800 2166
s13207 3008 247 1044 1631
s15850 5204 2403 3360 998
s38417 24513 6802 11214 4200
s38584 2942 660 2891 1675

Table 3. Comparison with [6].
Hybrid BIST [6] Proposed approach

On-chip Encoded On-chip Encoded
storage data storage data

requirement volume requirement volume
Circuit (bits) (bits) (bits) (bits)
s5378 N/A N/A 88 13
s9234 452 865 620 1178
s13207 168 263 263 12
s15850 436 1070 456 108
s38417 2336 4680 1797 2053
s38584 712 961 417 826

approach often requires less on-chip storage and test data vol-
ume than recently-proposed methods.

References
[1] A. Chandra and K. Chakrabarty, “Test data compression and test re-

source partitioning for system-on-a-chip using frequency-directed run-
length (FDR) codes”,IEEE Trans. Computers, vol. 52, pp. 1076–1088,
August 2003.

[2] B. S. Everitt, S. Landau, and M. Leese,Cluster Analysis, Oxford Univer-
sity Press Inc., New York, NY, 2001.

[3] P. T. Gonciari, B. Al-Hashimi and N. Nicolici, “Improving compression
ratio, area overhead, and test application time for system-on-a-chip test
data compression/decompression,”Proc. DATE Conf., pp. 604–611, 2002.

[4] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for combi-
national circuits,”Proc. ICCAD, pp. 283-289, 1998.

[5] S. Hellebrand, H.-G. Liang and H.-J. Wunderlich, “A mixed-mode BIST
scheme based on reseeding of folding counters,”Proc. ITC, pp. 778–784,
2000.

[6] A. Jas, C. V. Krishna and N. A. Touba, “Hybrid BIST based on weighted
pseudo-random testing: a new test resource partitioning scheme,”Proc.
VTS, pp. 2–8, 2001.

[7] C. V. Krishna, A. Jas and N. A. Touba, “Test vector encoding using partial
LFSR reseeding,”Proc. ITC, pp. 885–893, 2001.

[8] C. V. Krishna and N. A. Touba, “Reducing test data volume using LFSR
reseeding with seed compression,”Proc. ITC, pp. 321–330, 2002.

[9] L. Li and K. Chakrabarty, “Test data compression using dictionaries with
fixed-length indices,”Proc. VTS, pp. 219–224, 2003.

[10] H.-G. Liang, S. Hellebrand and H.-J. Wunderlich, “Two-dimensional test
data compression for scan-based deterministic BIST,”Proc. ITC, pp. 894–
902, 2001.

[11] J. Rajski, J. Tyszer and N. Zacharia, “Test data decompression for multiple
scan designs with boundary scan,”IEEE Trans. Computers, vol. 47, pp.
1188–1200, November 1998.

[12] J. Rajski et al., “Embedded deterministic test for low-cost manufacturing
test,” Proc. ITC, pp. 301–310, 2002.

[13] C. Schotten and H. Meyr, “Test point insertion for an area efficient BIST,”
Proc. ITC, pp. 515–523, 1995.

[14] A. Wuertenberger, C. S. Tautermann and S. Hellebrand, “Data compres-
sion for multiple scan chains using dictionaries with corrections”,Proc.
ITC, pp. 926–934, 2004.

[15] S. Wang, “Low hardware overhead scan based 3-weight weighted random
BIST,” Proc. ITC, pp. 868–877, 2001.

[16] H.-J. Wunderlich and G. Kiefer, “Bit-flipping BIST,”Proc. ICCAD, pp.
337-343, 1996.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

