
Reconfigurable Linear Decompressors Using Symbolic Gaussian Elimination

Kedarnath J. Balakrishnan∗ and Nur A. Touba
Computer Engineering Research Center

University of Texas at Austin
{kjbala,touba}@ece.utexas.edu

Abstract

A methodology for designing a reconfigurable linear de-
compressor is presented. A symbolic Gaussian elimination
method to solve a constrained Boolean matrix is proposed
and utilized for designing the reconfigurable network. The
proposed scheme can be implemented in conjunction with
any decompressor that has a combinational linear network.
Using the given linear decompressor as a starting point, the
proposed method improves the compression further. A nice
feature of the proposed method is that it can be implemented
with very little hardware overhead. Experimental results in-
dicate that significant improvements can be achieved.

1. Introduction

As circuits become increasingly complex with each gen-
eration, the amount of test data required to test each chip
is also becoming humongous. Hence test data storage re-
quirements on the tester and test data bandwidth require-
ments between the tester and chip are growing rapidly [9].
Test data compression techniques provide a way to reduce
these requirements thereby allowing less expensive testers
to be used. Test time can also be simultaneously reduced
with most test data compression techniques. The output re-
sponse is relatively easy to compress since lossy compres-
sion techniques can be employed, e.g., using a multiple in-
put signature register (MISR). However, compressing test
stimuli is much more difficult because lossless compression
techniques must be used. A lot of research has been done
on lossless compression techniques for test vectors since
reducing test data volume has become such an important
problem.

Test vector compression schemes that use only linear
operations to decompress the test vectors are called linear
decompression schemes. Linear decompression techniques
exploit the unspecified (don’t care) bit positions in scan test
cubes (i.e., deterministic scan test vectors where the unas-
signed bit positions are left as don’t cares) to achieve large
amounts of compression. A number of different techniques
for designing linear decompressors have been proposed in

∗Kedarnath J. Balakrishnan is now with NEC Labs. in Princeton, NJ

the literature. These include both techniques based on linear
feedback shift register (LFSR) reseeding and combinational
linear expansion circuits consisting of XOR gates. The orig-
inal idea of using an LFSR as a linear decompressor and
solving for test cubes using linear algebra was described in
[10].

A decompressor based on XOR tree network was de-
scribed in [1]. This is an example of a continuous-flow
decompressor. Continuous-flow linear decompressors are
those that receive data from the tester in a continuous-flow
manner i.e. every cycle. These operate very efficiently since
they can be directly connected to the tester and they simply
receive the data as fast as the tester can transfer it. This sim-
ulates scan chain concealment since for the tester it mimics
the normal behavior of scan chains though the number of
scan chains visible to the tester is much less than that in
the design. Combinational continuous-flow linear decom-
pressors are described in [6], [7], [1, 2], [16], and [13].
Continuous-flow techniques that have sequential elements
like LFSRs i.e. sequential continuous-flow linear decom-
pressors are described in [8], [11], [17], [18], and [14].
Most of the commercial tools for compressing test vectors
are also based on linear decompressors. TestKompress from
Mentor Graphics [17], SmartBIST from IBM/Cadence [11],
and DBIST [4] from Synopsys are some examples.

Scan Chain 1 (m bits)

Scan Chain 2 (m bits)

Scan Chain n (m bits)

b-to-n
Comb.
Linear
Expand

b Channels
from Tester

Figure 1. Combinational Linear Decompressor

In order to be able to compress a test set, the output space
of the linear decompressor must contain all the test cubes in
the test set. The output space of a linear decompressor is a
linear subspace spanned by a Boolean matrix, Ac×n. Each
row in A corresponds to a scan cell and each column cor-
responds to a free-variable in the input sequence. To deter-
mine whether a particular test cube is contained in the out-

1530-1591/05 $20.00 © 2005 IEEE

O1

O2

O3

O4

O5

O6

O7

O8

O9

x0

x1

x2

x3

x4

1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 0 1 1

Figure 2. XOR Network and Matrix for Figure 1

put space and the corresponding input sequence to generate
it can be quickly done through Gaussian elimination.

Figure 1 shows a combinational linear decompressor that
receives b bits from the tester and expands it to n scan
chains. The Boolean matrix for this decompressor can be
constructed simply from the XOR network. Each row cor-
responding to a scan chain will have the inputs that are xor-
ed together to get the scan chain value as 1 and all the others
as 0. An example of a XOR network with b = 5 and n = 9
and the corresponding matrix is shown in Figure 2. The
columns of the matrix correspond to inputs with the first
column representing x0 and the last column representing x4.
Output O1 is the XOR of inputs x0 and x2 and hence in the
first row, the values corresponding to these two inputs are
1 while the rest are 0. Obtaining the Boolean matrix A by
symbolic simulation of the linear decompressor is described
in detail in [12].

When a LFSR is used as the decompressor, it has been
proved that if the number of free variables used to gener-
ate a test cube is 20 more than the number of specified bits
in test cube, then the probability of the test cube not being
solvable is less than one in a million [10]. However, for a
given test set, the number of free variables can be further
reduced provided the corresponding equations for each test
cube are solvable. Hence, traditionally linear decompres-
sors are designed on the basis of the worst-case scenario. In
LFSR reseeding the size of LFSR is usually proportional to
smax - the maximum specified bits in any test cube of the test
set.

Currently test compression methods are deployed in ei-
ther of two formats. The first one is to decide on a com-
pression scheme and the decompressor beforehand, during
the circuit design stage itself and then generate the test pat-
terns for the design based on that scheme. In this method,
the decompressor circuit is also integrated into the design
flow. Hence, fault coverage during test pattern generation
may be affected due to the limitations of the decompres-
sor. Also, last minute design changes may need test pattern
regeneration and there may be some patterns that are not

compressible using the given scheme. Techniques that can
“reconfigure” the decompressor to take into account these
changes will be very helpful. The other method is to design
the decompressor after the circuit has been finalized and the
test patterns available. Legacy circuits or intellectual prop-
erty (IP) cores in a system-on-a-chip (SoC) environment are
good examples of this. Each core in a SoC may require test
compression scheme. Using a single decompressor that can
be “reconfigured” for several cores instead of having several
decompressors can result in a lot of area savings.

The idea of adding a reconfigurable part for test data re-
duction has been proposed earlier. [15] employs a recon-
figurable interconnect network (RIN) within BIST to em-
bed deterministic test patterns. The RIN has been proposed
as an alternative to traditional phase shifters consisting of
XOR gates. In [19], the original Illinois scan architecture
[6] is altered by using a reconfigurable switch to control the
connection between external pins and the scan chains. In
[13], control bits are used to determine the number of scan
chains that are fed by the combinational network.

This paper describes a methodology for “reconfiguring”
any linear decompressor. It can be implemented in con-
junction with any decompressor that has a combinational
linear network and significantly improve the compression
obtained. The rest of the paper is organized as follows.
Section 2 describes the idea of a reconfigurable linear de-
compressor. In Section 3, we present a symbolic Gaussian
elimination technique that is used to design the reconfig-
urable linear decompressor and Section 4 shows how it can
be used to improve the compression. Experimental results
are presented in Section 5 and Section 6 has conclusions.

2. Reconfigurable Linear Decompressor

The idea of reconfiguring a linear decompressor is to
modify the output space of the linear decompressor to en-
sure that a given test cube can be generated using the linear
decompressor. The linear decompression network can be
modified using the configuration bits. For each configura-
tion, the output space of the linear decompressor will be
different. Hence this increases the chances of a test cube
being generated using the decompressor. The configuration
bits can either be stored on the tester and transferred to the
decompressor with the test cubes or stored on-chip using a
ROM. The number of different configurations required de-
pends on the test set. In the case when each test cube in a
test set requires a different configuration, these need to be
explicitly stored. In the case when all the test cubes can
be generated using the same configuration, then the decom-
pression network can be finalized for that configuration and
no extra storage is required. This implies that the decom-
pressor is simply redesigned.

There are several possible ways to modify a linear de-
compressor such that it can be reconfigured. A simple mod-

ification would be to add multiplexers to each output of the
network with the select input coming from the configura-
tion bits. The other inputs could be some other output of
the original decompressor. For example, consider a combi-
national decompressor using XOR gates shown in Figure 2.
Instead of directly sending the outputs to the scan chains,
there is another stage with a multiplexer before each scan
chain as illustrated in Figure 3. These multiplexers will se-
lect which output is connected to which scan chain based
on the configuration bits.

O1

O2

O3

O4

O5

O6

O7

O8

O9

x0

x1

x2

x3

x4

Configuration Bits

Figure 3. Making a Decompressor Reconfigurable

For a test cube to be solvable using the linear decompres-
sor, a solution to the system of linear equations A x = b must
exist where x is an assignment of values to the free-variables
that are inputs to the decompressor when generating the test
cube, and b is the value of each bit in the test cube. There
is no need to solve the linear equations for the unspecified
bits in the test cube, and hence only the linear equations
(rows) corresponding to the specified bits in b need to be
considered. Gaussian elimination [5] can be used to per-
form rows operations that transform a set of columns into
an identity matrix. The elements that make the identity ma-
trix are called the pivots.

1 1 0 0 0
1 0 1 0 0
0 1 1 0 0

x1
x2
x3
x4
x5

=
0
1
0

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

x1
x2
x3
x4
x5

=

After Gauss-Jordan elimination

0 0 0 1 1 0 0 0 0 1 1

0
1
1
0

Figure 4. System of Equations for Test Cube t1

1 0 0 0 0
0 0 0 1 1
0 0 1 0 0

x1

x2

x3

x4

x5

=

After Gauss-Jordan Elimination

1 1 0 0 0
0 0 0 1 1
0 1 1 0 0

x1

x2

x3

x4

x5

=
0
1
0

0 0 0 0 0

0
1
0
01 0 1 0 0 0

Figure 5. Reconfigured System of Equations for t1

An example of a system of linear equations for a test
cube t1 and the corresponding system after Gaussian elim-
ination is shown in Fig. 4. The rows after Gaussian elim-
ination can be classified as either pivoted rows or linearly
dependent rows. The pivoted rows have pivots while the
linearly dependent rows are all 0. For the example in Fig. 4,

the first two rows and the last row are pivoted while the third
row is linearly dependent. If all rows are pivoted, then a so-
lution to the system of linear equations exists, and hence
the test cube can be decompressed using the linear decom-
pressor. If some of the rows are linearly dependent, then a
solution only exists if all of the corresponding values in z
(the vector b after Gaussian elimination) are equal to 0 for
the linearly dependent rows. If there is a linearly dependent
row whose corresponding value in z is equal to 1, then no
solution exists. In Fig. 4, the third row is linearly dependent
but the corresponding value in z is 1, and thus there is no
solution.

For the example in Fig. 4, let the specified values in b
correspond to scan cells c1 through c4. If the decompres-
sor is reconfigured such that the equations corresponding to
scan cell c2 and scan cell c4 were exchanged, the system of
linear equations would become solvable. This is shown in
Fig. 5. Here, the last row is now linearly dependent and the
corresponding value in z is 0. This is an example of how
reconfiguration can be used to make a test cube solvable.

3. Symbolic Gaussian Elimination

The previous section described how reconfiguration of a
linear decompressor can increase the chances of a test cube
being solvable. In this section we describe a systematic
procedure to do reconfiguration using Symbolic Gaussian
Elimination. The key idea is to form the matrix A in terms
of the configuration bits (i.e. each entry in the matrix is
a function of the configuration bits) and then find an as-
signment of the configuration bits that makes the system of
linear equations A x = b solvable.

In traditional Gaussian elimination, elementary row op-
erations are used to reduce the coefficient matrix (the ma-
trix A) to a set of pivoted and linearly dependent rows. This
is done by going through each column of the matrix and
choosing a non-zero element as the pivot. All other rows
with a 1 in this column are xor-ed with this row as part of
elementary row operation. The resultant matrix will either
have pivoted rows or linearly dependent rows.

We extend this technique to co-efficient matrices that
have functions as elements. The functions are Boolean
functions on a given set of variables. This is illustrated in
Fig. 6 where each element of the matrix F is a function of
the variables {a,b,c}. In this matrix, each fi j is a function
such that

fi j : {0,1}3 →{0,1}
In the trivial case when each function is a constant 1 or a
constant 0, this matrix will degenerate to a boolean matrix
with entries 0 or 1. The variables {a,b,c} correspond to the
configuration bits of the linear decompressor. Solving for
a system of linear equations such as F x = y, with F as the
matrix shown in Fig. 6 and y is a vector implies that we are

looking for a solution for at least one combination of a, b &
c, or in other words, for at least one configuration.

f11(a,b,c) f12(a,b,c) f13(a,b,c) . . . f1m(a,b,c)
f21(a,b,c) f22(a,b,c) f23(a,b,c) . . . f2m(a,b,c)
f31(a,b,c) f32(a,b,c) f33(a,b,c) . . . f3m(a,b,c)

.
fn1(a,b,c) fn2(a,b,c) fn3(a,b,c) . . . fnm(a,b,c)

Figure 6. A Matrix with Functions as Elements

Given such a system of linear equations, the algorithm
for symbolic Gaussian elimination is given below. First,
each element in the y vector is converted to a function in
terms of the variables in F. If the element in y is 1 then the
function is identically equal to 1 and if the element is 0, the
function is identically equal to 0. Then, the algorithm pro-
ceeds column wise choosing pivots in each column. Sup-
pose f11 is the first pivot. Row operations are performed
next for each row and this pivot. In the row operations, ev-
ery element in a row is XOR-ed with the result of the AND
of its element in the pivot column and the corresponding
element in the pivot row. This is illustrated in Fig. 7 that
shows the matrix after row operations for pivot f11. The
idea is to take into account both cases when f11 = 0 and
f11 = 1. This operation is repeated for every pivot.

f11 f12 . . . f1m

f21 f21 f11 f22 f21 f12 . . . f2m f21 f1m

f31 f31 f11 f32 f31 f12 . . . f3m f31 f1m

.

fn1 fn1 f11 fn2 fn1 f12 . . . fnm fn1 f1m

Figure 7. Matrix after Row Operations for Pivot f11

f '11 f '12 f '13 . . . f '1m

f '21 f '22 f '23 . . . f '2m

f '31 f '32 f '33 . . . f '3m

.

f 'n1 f 'n2 f 'n3 . . . f 'nm

Figure 8. Matrix after All Row Operations

The matrix after doing all the row operations for each
pivot will look like Fig. 8 where f

′
i j are again functions of

{a,b,c}. For ease of explanation, assume that the pivot
for each column i is given by element f

′
ii. The next step

would be to ensure that each pivot has atleast one minterm
for which the function equates to one. If the pivot function
does not have a single minterm that equates to one, then that
row is equivalent to a linearly dependent row in the normal
Gaussian eliminated matrix. Hence the corresponding ele-
ment in the y matrix should be zero. This condition for a

pivot fii can be written in mathematical form as

f
′
ii + ȳi = 1

Since this condition must be valid for each pivot, the overall
condition can be written in a product of sum form as

(f
′
11 + ȳ1)(f

′
22 + ȳ2) · · ·(f

′
nn + ȳn) = 1

If the above condition is satisfied, there exists a solution
to the system of equations. The number of minterms of
{a,b,c} for which the above condition is satisfied will indi-
cate the number of different configurations possible.

Note that there may be more than one possible pivot for
each column and hence the pivot is selected using a heuris-
tic. For the first column, the element that has the maximum
number of minterms is chosen as the pivot since it has the
best chances of having a solution. For the next columns, the
element that has the most number of minterms in common
with the current pivots is chosen. This ensures that the al-
gorithms proceeds in such a way that maximum number of
solutions (configurations) are possible.

The algorithm described above can be implemented with
very little overhead with respect to the basic Gaussian elim-
ination method. Each function is stored in terms of its
minterms. For example, if three configuration bits are used,
then there are eight possible minterms. Each element in
the matrix consists of eight values, one corresponding to
each minterm. The row operations are performed on the
corresponding minterms. The only additional step in this
procedure is evaluating the final product of sums condition.
This can be achieved by simply performing bitwise opera-
tions on the entries so that the corresponding minterms are
evaluated together. The number of entries in the product of
sums condition depends on the number of pivots and hence
on the size of the matrix. The complexity of the evaluation
step increases linearly with the size, since the bitwise oper-
ations need to be performed for each additional pivot. The
number of minterms for each function depend on the num-
ber of configuration bits. The number of configuration bits
is a design parameter that can be decided depending on the
compression required and the maximum allowed running
time of the algorithm.

4. Increasing Compression by Reconfiguration

Given a linear decompressor, the systematic procedure
given in the previous section can be used to reconfigure it
and increase the chances of compressing any test set. This
reconfiguration can be done in two ways. The first one is to
search for a single configuration by which all the cubes in
the test set can be compressed. In this case, the configura-
tion can be hardwired into the decompressor i.e. the decom-
pressor is redesigned and no explicit configuration bits are
required. The other method would be to have one configu-
ration for each cube which is loaded into the decompressor

every time a new test cube is loaded. The configuration bits
for each test cube need to be stored explicitly.

Compression obtained using a linear decompression
scheme can be improved using reconfiguration in several
ways. One method would be to reduce the number of free-
variables that the decompressor receives per test cube from
the tester as much as possible while still keeping the test set
compressible through reconfiguration. Any method can be
used to design the initial decompressor. Then the number
of free-variables that are input to the decompressor per test
cube can be incrementally reduced and symbolic Gaussian
elimination can be used to check whether it is possible to
still solve for all the test cubes using reconfiguration. If so,
then this process of incrementally reducing the number of
free-variables and checking for a solution is repeated until
a point is reached when no further reduction in the number
of free-variables per test cube is possible while still being
able to solve for all test cubes. The end result will be a lin-
ear decompressor that generates the exact same test set, but
uses fewer tester channels thereby reducing tester storage
and bandwidth requirements.

Another method is to keep the number of free-variables
that the decompressor receives per test cube constant, but
use reconfiguration to relax the constraints on ATPG (auto-
matic test pattern generation) such that more specified bits
per test cube can be generated. This will allow more static
and dynamic compaction while still being able to solve for
the test cubes. Some test compression methodologies (e.g.,
[1, 2], [17]) involve fixing the decompressor design and then
constraining the ATPG so that the resulting test cubes will
be in the output space of the decompressor. The constraints
on the ATPG reduce the amount of static and dynamic com-
paction that are performed and therefore can result in more
test cubes and hence more test time. Reconfiguration of
the linear decompressor can be used to allow more spec-
ified bits per test cube while still being able to solve for
the test cube. This can be used to relax the constraints on
the ATPG and thereby allow more static and dynamic com-
paction which will in turn reduce the total number of test
cubes and hence result in a reduction of both test time and
tester storage requirements.

5. Experimental Results

The effectiveness of the proposed method was evaluated
by performing two sets of experiments. The first set of ex-
periments consisting those described in the previous sec-
tion were performed on randomly generated test cubes for
large industrial-size scan architectures. Circuits were as-
sumed to have either 512 or 1024 scan chains and the num-
ber of channels available from tester to be 32. The length
of the scan chains varied from 24 to 128. The initial de-
compressor is an XOR network with 32 inputs and 512 or
1024 outputs. For reconfiguration, a four input multiplexer

was added to the output of the decompressor network with
the select bits coming from the configuration bits. All the
experiments were performed with a total of eight configu-
ration bits. The results are presented in Table 1. The first
two columns show the number of scan chains and length of
each scan chain. The columns under “without reconfigura-
tion” show the maximum compression that can be obtained
using the given decompressor. For each randomly gener-
ated test cube, the number of specified bits was incremen-
tally increased until it could no longer be solved using the
given decompressor. The maximum percentage of specified
bits per test cube that could be solved by the given decom-
pressor is shown in column 4. The corresponding encoding
efficiency and compression ratios are given in columns 5
and 6. Encoding efficiency is defined as the ratio of number
of specified bits in the test set to the number of compressed
bits that need to be stored on the tester. Compression ratio is
the ratio of the original bits in the test set to the compressed
bits.

The columns under “Reducing channels” show the re-
sults for reduction in the number of tester channels using re-
configuration. The reduced number of tester channels along
with the corresponding compression ratio are shown under
“Red. Chan.” and “Compr. Ratio”. The reduced channels
include one channel from the tester for the configuration bits
to be loaded before each test cube. The column “% Impr.”
shows the improvement in compression ratio due to the re-
configuration. The average percentage improvement for all
the different scan sizes is around 39.4 % which is a signif-
icant improvement for very little extra hardware overhead.
The columns under “Increasing Spec. Bits” show the re-
sults for increasing the percentage of specified bits that can
be handled by a given decompressor using reconfiguration.
The tester channels are kept constant at 32 and the num-
ber of specified bits are increased as much as possible until
it is no longer possible to solve for all the test cubes. The
new percentage of specified bits and encoding efficiency are
shown as well as the percentage improvement in the encod-
ing efficiency. The experiments assume a single configura-
tion for each test cube and the configuration bits are taken
into account while calculating the compression results. In
this experiment, the average percentage improvement for all
the different scan sizes is around 36.5 %.

The other set of experiments were performed on 100 %
stuck-at fault coverage test sets for the largest ISCAS ’89
[3] benchmark circuits. Table 2 compares the compression
results obtained using the proposed scheme with some of
the combinational decompressor techniques proposed ear-
lier. The number of tester channels required and the amount
of test data that need to be stored on the tester for the XOR
network [1] and the adjustable width technique [13] are
compared with those of the proposed scheme. Note that
in [1] the decompressor design is integrated into the test

Table 1. Results for Randomly Generated Test Cubes

Num.
Scan
Chains

Scan
Chain
Length

Without Reconfiguration Reducing Channels Increasing Spec. Bits
Tester Percent. Encod. Compr. Red. Compr. % Incr. % Encod. %
Chan. Spec. Effic. Ratio Chan. Ratio Impr. Spec. Effic. Impr.

512

24 32 3.61 % 0.578 16.0 23 22.3 39.4 % 4.69 % 0.727 25.8%
32 32 3.42 % 0.547 16.0 23 22.3 39.4 % 4.30 % 0.667 21.9%
64 32 2.83 % 0.453 16.0 22 23.3 45.5 % 4.00 % 0.621 37.1%
128 32 2.67 % 0.427 16.0 24 21.3 33.3 % 2.91 % 0.661 54.8 %

1024

24 32 1.66 % 0.531 32.0 24 42.7 33.3 % 2.34 % 0.727 36.9%
32 32 1.66 % 0.531 32.0 24 42.7 33.3 % 2.25 % 0.697 31.3%
64 32 1.49 % 0.476 32.0 22 46.5 45.5% 2.18 % 0.677 42.2%
128 32 1.50 % 0.480 32.0 22 46.5 45.5% 2.20 % 0.680 41.7%

Table 2. Results for ISCAS’89 Benchmarks

Circuit

[1] [13] Prop. Scheme
Tester Test Tester Test Tester Test
Chan. Data Chan. Data Chan. Data

s13207 24 25344 19 14307 15 14098
s15850 32 22784 19 15067 18 18080
s38417 32 89856 19 49001 19 54020
s38584 24 38976 19 28994 19 31436

pattern generation, while in [13] compression is performed
on already generated test patterns. The proposed scheme
uses the same test patterns as [13]. As expected, the pro-
posed scheme performs better than [1] for all circuits, both
in terms of the number of tester channels required and the
amount of compressed data. In comparison with [13], the
number of channels required are smaller or the same but
the amount of compressed data is slightly higher. Note that
the proposed scheme doesn’t need to generate separate scan
clocks for each group of scan chains as required in [13].

6. Conclusions

A symbolic Gaussian elimination method to solve a con-
strained boolean matrix equation is presented. An appli-
cation of the above method to reconfigure any linear de-
compressor is proposed. The reconfiguration can be imple-
mented with very little hardware overhead. Experimental
results show that compression obtained using a linear de-
compressor can be significantly improved using reconfigu-
ration.

References
[1] I. Bayraktaroglu and A. Orailoglu. Test volume and appli-

cation time reduction through scan chain concealment. In
Proc. of Design Automation Conference, pages 151–155,
2001.

[2] I. Bayraktaroglu and A. Orailoglu. Decompression hardware
determination for test volume and time reduction through
unified test pattern compaction and compression. In Proc.
of VLSI Test Symposium, pages 113–118, 2003.

[3] F. Brglez, D. Bryan, and K. Kozminski. Combinational pro-
files of sequential benchmark circuits. In Proc. of Interna-

tional Symposium on Circuits and Systems, page 19291934,
1989.

[4] M. Chandramouli. How to implement deterministic logic
built-in self-test (BIST). Complier: A Monthly Magazine
for Technologists Worldwide, Jan. 2003.

[5] C. Cullen. Linear Algebra with Applications. Addison-
Wesley, 1997.

[6] I. Hamzaoglu and J. Patel. Reducing test application time
for full scan embedded cores. In Proc. of Int. Symposium on
Fault Tolerant Computing, pages 260–267, 1999.

[7] F. Hsu, K. M. Butler, and J. H. Patel. A case study on the
implementation of the illinois scan architecture. In Proc. of
International Test Conference, pages 538–547, 2001.

[8] A. Jas, B. Pouya, and N. Touba. Virtual scan chains: A
means for reducing scan length in cores. In Proc. of VLSI
Test Symposium, pages 73–78, 2000.

[9] A. Khoche and J. Rivoir. I/O bandwidth bottleneck for test:
Is it real? In Proc. of International Workshop on Test Re-
source Partitioning, 2000.

[10] B. Konemann. LFSR-coded test patterns for scan designs. In
Proc. of European Test Conference, pages 237–242, 1991.

[11] B. Konemann. A smartBIST variant with guaranteed en-
coding. In Proc. of Asian Test Symposium, pages 325–330,
2001.

[12] C. Krishna and N. Touba. Reducing test data volume using
LFSR reseeding with seed compression. In Proc. of Inter-
national Test Conference, pages 321–330, 2001.

[13] C. Krishna and N. Touba. Adjustable width linear com-
binational scan vector decompression. In Proc. of Inter-
national Conference on Computer-Aided Design (ICCAD),
pages 863–866, 2003.

[14] C. Krishna and N. Touba. 3-stage variable length
continuous-flow scan vector decompression scheme. In
Proc. of VLSI Test Symposium, pages 79–86, 2004.

[15] L. Li and K. Chakrabarty. Deterministic BIST based on a
reconfigurable interconnection network. In Proc. of Inter-
national Test Conference, pages 460–469, 2003.

[16] S. Mitra and K. Kim. Xmax: X-tolerant architectures for
maximal test compression. In Proc. of International Confer-
ence on Computer Design, pages 326–330, 2003.

[17] J. Rajski and et al. Embedded deterministic test for low cost
manufacturing test. In Proc. of Int. Test Conference, pages
301–310, 2002.

[18] W. Rao, I. Bayraktaroglu, and A. Orailoglu. Test application
time and volume compression through seed overlapping. In
Proc. of Design Automation Conference, pages 732–737,
2003.

[19] H. Tang, S. Reddy, and I. Pomeranz. On reducing test data
volume and test application time for multiple scan chain
designs. In Proc. of International Test Conference, pages
1079–1088, 2003.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

