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ABSTRACT
Boolean Satisfiability (SAT) has seen significant use in various tasks
in circuit verification in recent years. A key contributor to the effi-
ciency of contemporary SAT solvers is fast deduction using Boolean
Constraint Propagation (BCP). This can be efficiently implemented
with a Conjunctive Normal Form (CNF) representation of a circuit.
However, most circuit verification tasks start from a logic circuit
description of the problem instance. Fortunately, there is a simple
conversion from a logic circuit to a CNF [12] that enables the use
of the CNF representation even for circuit verification tasks. How-
ever, this process loses some information regarding the structure of
the circuit. One example of such structural information is the Cir-
cuit Observability Don’t Cares. Several recent papers [6] [7] [8] [9]
[11] [13] have addressed the issue of handling circuit unobservabil-
ity in CNF-based SAT. However, as we will demonstrate, none of
these accurately captures the conditions for use of this information
in all stages of a CNF-based SAT solver. In this paper, we pro-
pose a broader approach to take such Don’t Care information into
consideration in a CNF-based SAT solver. It does so by adding cer-
tain don’t care literalsto clauses in the CNF representation. These
don’t care literals are treated differently at different times during
the solution process, much like don’t cares in logic synthesis. The
major merit of this scheme, unlike other recently proposed tech-
niques, is that the solver can continue to use this don’t care infor-
mation during the learning process, which is an important part of
contemporary SAT solvers. We have implemented this approach in
the zChaff SAT solver and experiments show that significant per-
formance gain can be obtained through their use.

1. INTRODUCTION
Boolean Satisfiability (SAT) is probably one of the most well

studied combinatorial optimization problems. Researchers have
devoted significant effort to developing efficient SAT solvers. For
decades, Electronic Design Automation (EDA), and in particular
synthesis and verification, has been one of the major drivers for
SAT research.

Most SAT solvers work on a CNF representation of a formula.
The primary motivation is that the iterative application of the unit
clause rule (referred to as Boolean Constraint Propagation or BCP)
can be done very efficiently using this data structure, and in fact is
the workhorse of almost all SAT solvers. This is not a limitation for
using SAT on formulas that arise from circuits as there is a simple
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conversion for capturing a circuit as a CNF. This involves taking
the conjunction of the consistency conditions for each gate in the
circuit expressed in CNF form. This is linear in the size of the
circuit. However, the disadvantage of using a CNF SAT solver over
a circuit based verification technique is the lack of circuit structural
information. Such structural information that includes the direction
of gates and Circuit Observability Don’t Cares (Cir-ODCs), is lost
after the circuit is translated into a CNF formula. This information
is potentially useful in the solution process. This paper attempts to
bridge this gap by providing an approach that takes Cir-ODCs into
account during the SAT solving process.

The proposed approach identifies the Cir-ODCs in a given cir-
cuit statically, i.e. prior to the start of the SAT solving process.
This information is passed to the SAT solver, which in turn adjusts
its decision heuristic, BCP and conflict driven procedures based on
this additional information.Most importantly, our approach distin-
guishes itself from other methods of handling observability don’t
cares by propagating this don’t care information during the learn-
ing process that is an integral part of modern SAT solvers.This
ability is extremely useful because the number of clauses that the
SAT solverlearnsduring the search for a solution is usually much
larger than the number of original clauses.

While in general, the unobservability condition for a signal is
represented as a set of cubes, we (and all other competing ap-
proaches) limit ourselves to literals for efficient use in SAT solvers.
We also consider an extension of the static scheme presented in the
paper that can potentially exploit a larger set of don’t cares by al-
locating them dynamically during the SAT solving process rather
than statically. However, in practice, the overhead of managing
them generally overweighs their performance advantage.

This paper is organized as follows. Section 2 describes how Cir-
ODCs arise in circuits. Our static approach is discussed in detail
in Section 3. Section 4 describes the modification of a CNF SAT
solver for handling Cir-ODCs. Next, we very briefly explain the
dynamic approach for handling Cir-ODCs in Section 5. Experi-
mental results are presented and discussed in Section 6. We give a
review of related work in Section 7 and then provide conclusions
and future directions in Section 8.

2. CIRCUIT OBSERVABILITY
DON’T CARES

The notion of circuit observability don’t cares is as follows. Some
signals, under certain conditionsC, no longer affects the outputs
of the circuit. These conditions,C, are referred to as observability
don’t care conditions fors.

We consider circuits with simple gates (AND, OR, NOT, NOR,
NAND) as these are typically used as the starting point in either
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CNF or circuit based SAT solvers due to the ease of deduction.
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Figure 1: An ANDgateG takes as input the only fan-out from a
logic coneC.

Consider Figure 1 with a simple two inputANDgateG, which
takes the output value of a logic block, or a logic “cone”,C of gates
as one of its inputs. The output value of theANDgateG is fixed
to be0 if its input from B is zero, regardless of the output value of
C, and hence the entire logic cone ofC need not be considered any
more if it has only one fan-out that goes intoG. Correspondingly in
SAT, all the clauses corresponding toC can be ignored in the SAT
solver in subsequent search. These clauses are labeled as inactive
in [7]. We treat these clauses as Cir-ODC clauses and those gate
outputs as Cir-ODC variables, since they are unobservable at the
outputs of the circuit. Note that the Cir-ODC status of a clause or
a variable is a dynamic property in SAT search since it depends on
the current assignment during the search.

Ignoring the Cir-ODC clauses in CNF will not change the sat-
isfiability of the original problem. However, it potentially leaves
the variables in these clauses under-constrained. This is not an is-
sue if the instance is unsatisfiable, since even with being under-
constrained the instance has already been shown to be unsatisfi-
able. Consider Figure 1 again. WhenBout = 0, the output ofG
is 0 regardless of the output value ofC. If the original problem
is unsatisfiable, the unsatisfiability must not involve any clauses in
C. This is because the output ofC is no longer being constrained
whenBout = 0. However, if the instance is satisfiable, then to get
a complete assignment, we need to ensure that the final assignment
of variables in the Cir-ODC clauses is consistent with the circuit.
This is easily accomplished by no longer ignoring the Cir-ODCs
once the instance is determined to be SAT. Consider the following
Algorithm 1, wherev is a variable andV is the set of variables in
the CNF.

Algorithm 1 Re-validate the truth assignment.

1: for all variablesv∈V(CNF) do
2: if v only appears in ignored Cir-ODC clausesthen
3: Unassign the truth value ofv
4: end if
5: end for
6: Re-solve the CNF instance with the current partial assignment

The main idea behind Algorithm 1 is that the only inconsistency
in the satisfying assignment of the CNF formula comes from the
clauses that are completely ignored due to Cir-ODC.

3. A STATIC MECHANISM FOR
HANDLING CIR-ODCS IN CNF-SAT

We start with a basic review of the use of Cir-ODCs in SAT
solvers. Consider a portion of a typical logic circuit in Figure 2.
The lower case letters are the outputs associated with each gate
and they also correspond to the variables in the CNF formula of
the circuit. The value ofa is unobservable if eitherb or c is 0
since the outputf is determined independent ofa. We denote that
{b̄, c̄} (i.e. b̄+ c̄) is theCir-ODC conditionto makea unobservable.
Thus, if we propagate this Cir-ODC condition to the gatesG2 and
G3, all clauses associated with these gates become Cir-ODC when
this condition is true, i.e. eitherb or c is set to 0. The backward
propagation of Cir-ODC condition only stops at some gate that has
fan-out outside the transitive fan-in cone off .
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Figure 2: Cir-ODC condition associated with a three inputAND
gate.

3.1 Total Ordering of Gate Inputs
Consider the following case in Figure 2. Firsta is set to0, mak-

ing bothb andc unobservable. Thenc is set to0. Settingc to 0
by itself makesa andb unobservable. There is a problem in con-
sidering botha and c as unobservable as at least one ofa and c
needs to take responsibility for settingf to 0. This can be taken
care of by a total ordering on the inputs ofa,b andc, i.e. only a
lower order signal can appear in the Cir-ODC condition of a higher
order one. This issue is discussed in the context of using ODCs in
logic synthesis [1]. In fact, any arbitrary orderingπ of gate inputs is
sufficient to ensure that one gate input is responsible for generating
the controlling value at the gate output. For a two input logicAND
gate with inputsu andv, we force that̄v can appear in the Cir-ODC
condition ofu if and only if π(v) < π(u). We can use the circuit in
Figure 2 as an example and order the inputs alphabetically, which
results inπ(a) < π(b) < π(c). The Cir-ODC conditions forC1 and
C2 are{ā} and{ā, b̄} respectively. GateG2 has an empty set as
its Cir-ODC condition. Clearly, such a static scheme loses some of
the Cir-ODC condition at each gate. This is because in a static total
ordering of a logicANDgate with inputsu andv, eitherū can make
v unobservable, or̄v can makeu unobservable, but not both. Thus
if we choose either one, saȳu is the Cir-ODC condition ofv, and
in the SAT solving process there is a chance thatv = 0 is assigned
earlier, which can makeu unobservable, but the SAT solver cannot
use that since such condition was thrown away in the translation
phase just to ensure the total ordering.

3.2 Propagation of the Cir-ODC Conditions
As we have mentioned in the previous section, each gate input

has a set of don’t care literals that captures the condition for it to be
unobservable. Each gate also inherits a set of Cir-ODC conditions
from its successors.Recall that a Cir-ODC condition is a set of
don’t care literals. These Cir-ODC conditions are then propagated
towards the primary inputs. A Depth First Search (DFS) from the
primary inputs is sufficient for such propagation in the circuit. We
start by initializing the set of don’t care literals, i.e. the Cir-ODC
condition, to be empty for each gate. Then we perform a DFS from



each of the inputs. The exact recursive DFS procedures are given
in Algorithm 2 and 3.

Algorithm 2 Cir-ODC-Gate (Gateg)
1: if g is a primary outputthen
2: Return/0;
3: end if
4: C = Universal Set;
5: for all fan out edge[g,h] of g do
6: C := C

⋂ (
Cir-ODC-Gate(h)

⋃
Cir-ODC-Edge([g,h])

)
;

7: end for
8: ReturnC;

Algorithm 3 Cir-ODC-Edge (Edge[g,h])
1: C = /0;
2: for all fan in gatei of h, i 6= g do
3: if π(i) < π(h) then
4: C := C

⋃ {i = controlling value forh}
5: end if
6: end for
7: ReturnC;

We illustrate the Cir-ODC condition propagation using the cir-
cuit in Figure 3. Assuming an alphabetical ordering of the inputs,
i.e. π(r) < π(s) < π(t) and π(p) < π(q), all logic gates in cone
C1 inherit a Cir-ODC condition{r̄, p̄}. Similarly, all gates in cone
C2 inherit {r̄, s̄, p̄}. GateG2 has two successors, one inC1 and the
other inC2. The Cir-ODC condition thatG2 inherits is the intersec-
tion of the two Cir-ODC conditions from them, which is{r̄, p̄}, i.e.
a normal set intersection.
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Figure 3: Two inputs of gate G1 converge atG2, thus G2 has
two Cir-ODC condition sets coming from the same successor,
G1.

3.3 A Greedy Ordering Heuristic for Gate In-
puts

As we have discussed earlier in Section 3.1, a total order of the
gate inputs is needed to ensure that at least one input will provide
the controlling value of the gate when needed. For each gate, any
given total order of the inputs completely determines the total num-
ber of don’t care literals contributed by this gate. In order to utilize
these don’t care literals in CNF-SAT, we are interested in finding a
good total order such that it gives the most don’t care literals in the
circuit. This is because a more “popular” don’t care literal is likely
to cause a larger portion of the circuit to be unobservable when it is
set to be true.

We propose a greedy ordering heuristic that works in a similar
manner as the propagation of don’t care literals discussed in pre-
vious section. For each gate that could generate new don’t care
literals, the maximal set of don’t care literals for each input is prop-
agated towards the primary input, disregarding the total order con-

straint, i.e. ignoring theπ(i) < π(h) condition in Algorithm 3. Con-
sider Figure 3 as an example. Don’t care set{s̄, t̄, p̄} is propagated
through input pinr; don’t care set{r̄, t̄, p̄} is propagated through
input pin s; and so on. Obviously, this violates the total ordering
constraint, but such propagation gives an estimate of the number
of gates that each don’t care literal can eventually reach. After the
propagation is finished, the gate input whose don’t care literal that
reaches more gates is assigned a lower order rank. A tie in the or-
der is broken by random. When the circuit is to be translated in to
CNF format, the don’t care literals for each clause are also ordered
in the same way as above, i.e. a don’t care literal with larger use
appears earlier in the clause. This helps the SAT solver pick the
more important literals when it cannot accept all of them because
of efficiency reasons.

4. SOLVING SAT WITH CIR-ODCS
There are several Cir-ODC related modifications that have to be

made in a CNF-based SAT solver. These modifications include de-
vising an augmented CNF format for Cir-ODC encoding, changing
the BCP process to ignore the inactive Cir-ODC clauses, handling
the don’t care literals in conflict analysis and conflict driven clause
learning and using Cir-ODC condition to guide the decision heuris-
tics.

4.1 Format of Cir-ODC-CNF
In a CNF file using DIMACS format [5], a clause is represented

with a line of literals that ends in a0. To minimize the change in
the CNF format, we define our new file format for Cir-ODC-CNF
such that each clause also has one line. This can be represented
using aregular expressionas follows.

Clause= l+ 0 d∗ 0

wherel stands for a normal literal with phase(+/−), this is the
same as in conventional CNF.l+ means that there are 1 or more
normal literals. d is a don’t care literal andd∗ means that there
may be 0 or more don’t care literals.0s are used as delimiters and
a line starting with a leading0 ends the input. A clause can then be
ignored if any of the don’t care literals is set to be true. Consider the
example in Figure 3 andG2 has a Cir-ODC condition (don’t care
set) of{r̄, p̄}. Suppose the variable indices arep = 1, r = 2,s =
3, t = 4,x = 5,y = 6,z= 7 andu = 8. Also supposep occurs more
frequently as a don’t care literal in the circuit. The following four
lines will be generated in the Cir-ODC-CNF file.

5 -8 0 -1 -2 0
6 -8 0 -1 -2 0
7 -8 0 -1 -2 0
-5 -6 -7 8 0 -1 -2 0

Note that in the above example,p and r appear as don’t care
literals in these clauses. They may appear as regular, i.e. not don’t
care, literals in other clauses.

4.2 Enabling zChaff with Cir-ODCs
BCP in zChaff and other state-of-the-art CNF SAT solvers ben-

efits significantly from the two literal watching scheme [10]. We
will assume familiarity with this and will not be reviewing this for
sake of brevity.

With the augmented clause description, the don’t care literals are
not watched but examined during two literal watching. If a don’t
care literal is satisfied, the clause is considered to be satisfied. This
terminates the search for a new literal to watch and thus can po-
tentially terminate BCP quicker. Essentially the don’t care literals



have a conditional don’t care status. They can only satisfy a clause
early without needing to be zero before an implication is derived
from the clause. This is completely different from Velev’s use of
unobservability variables [13], in which the don’t care literals can
no longer be differentiated from the regular ones after the CNF
translation.

The checking of don’t care literals in a clause is performed in a
lazyway. The clauses are not marked inactive or ignored until they
are accessed during BCP. This is an advantage over the other ap-
proaches of explicitly marking clauses active/inactive, which need
an explicit bookkeeping overhead.

-a b c -e -f g 0 r0

Watch

-s t 0

Figure 4: A typical clause in zChaff’s literal pool using the
static approach.

Consider the example given in Figure 4. The clause shown has
literals ā,b,c, . . . , ē, f̄ ,g with don’t care literalsr, s̄, t delimited by
a 0. Suppose one of the two watch pointers is initially pointing to
literal f̄ . When f = 1, this clause is examined in BCP sincēf = 0
and we need to find a new unassigned literal to watch. The watch
pointer then moves to the next literal after̄f , which is g. If g is
assigned to be 0, the watch pointer continues moving right and it
reaches the don’t care delimiter0. The watch pointer continues
to move right and examines the don’t care literals. If any of the
don’t care literals is found to be true, e.g.̄s = 1, the clause can
be ignored and the BCP for this clause is immediately terminated
without scanning the rest of the clause, i.e.ā,b,c, . . . , ē. Thus, if
a clause is ignored (inactive), there will be no implications based
on this clause. Note that even though the don’t care literals are
directly integrated into zChaff’s literal pool, they must be differen-
tiated from other normal literals since a don’t care literal is never
allowed to be watched. In other words, there should be no implica-
tion on a don’t care literal. When a clause is ignored, we leave the
watch pointer unchanged from its position before the clause was
ignored. Note that this is slightly different from the original zChaff
implementation of the two literal watching scheme. We use Fig-
ure 4 as an example. In the ordinary two literal watching scheme,
the watch pointer needs to be updated such that it points to the re-
cently discovered true literal, in this example,s̄. However in our
case,s̄ cannot be watched since it is a don’t care literal. We leave
the watch pointer on̄f unchanged. This modification does ensure
that the original invariant (i.e. each “not yet satisfied” clause has
two watch pointers pointing to two different unassigned literals)
holds after a backtrack. This is becausedlevel(s) ≤ dlevel( f )1,
i.e. s̄= 1 is assigned at a decision level no later thanf̄ = 0. This
clause can only resume its “not yet satisfied” status on a backtrack
to a decision leveld < dlevel(s), by which time f̄ has already been
unassigned sinced < dlevel(s)≤ dlevel( f ).

zChaff uses the Variable State Independent Decaying Sum (VSIDS)
[10] decision heuristic. VSIDS is based on the number of occur-
rences of a literal in the CNF, known as literal count, and this is
updated periodically. For each don’t care literal in the clause, we
also increase its literal count. This has a direct impact on the deci-
sion heuristic, where a frequently occurring don’t care literal may
be chosen and assigned to its controlling value. This, in turn, sets
clauses to be ignored. The original SAT problem is thus potentially

1dlevel(v) refers to the decision level in the search tree that variable
v is assigned a value.

simplified due to the decrease in the total number of unsatisfied
clauses. We believe that the performance gain for the static ap-
proach comes partially from the increasing scores of the don’t care
literals, as they are more likely to be branched on earlier in the
search.

Handling this Cir-ODC condition in conflict clause generation is
the main contributor in the performance gain, as we will demon-
strate in Section 6. Recall that learned clauses are particularly use-
ful in generating implications (i.e. forced assignments) during the
search process. However, we would like these implications to be
useful, i.e. arise from observable active parts of the circuits. The
following algorithm provides for this. The normal literals in the
learned conflict clause are obtained in the same way as before us-
ing resolution on a set of clauses. The don’t care literals of the
learned clause are obtained as follows. A set union operation of
all the don’t care literals from the clauses involved in the resolu-
tion captures all the don’t care literals for the learned clause. The
rationale for this is as follows. The learned clause is satisfied if
any of its source clauses is satisfied. These source clauses are satis-
fied when any of the don’t care literals is true. Thus the don’t care
literal set of the learned clause is the set union of the don’t care
literals of the source clauses. Consider the following example of
resolving two clauses(a+ b̄+c) and(b+d+ ē) with sets of don’t
cares{r, s̄} and{x̄, r,s} respectively. The resolved (learned) clause
is (a+ c+ d+ ē) with the set of don’t cares{r, s̄, x̄,s}. It is worth
mentioning that in classical SAT if a clause contains a variable in
both phases, this clause is a tautology and can be deleted from the
formula. However, this is not true for a clause with don’t care liter-
als. A variable can appear in both phases in the don’t care literals,
as either of them may trigger the unobservability of this clause.

For implementation efficiency, when a learned clause is added
to the clause database, the don’t care literals are ordered according
to the non-increasing order of their occurrence count and only a
certain amount (proportional to the number of its normal literals)
of the don’t care literals are added to the learned clause.

Conflict driven clause learning with observability don’t care in-
formation is a major contribution of our approach. This is not han-
dled by either the circuit based approaches of marking inactive sec-
tions of the circuits or clauses (e.g. Guptaet al. [7]) or Velev’s
unobservability variables. In our approach, the observability don’t
care information can belearnedduring the searching process. This
is significantly different from any other method, which can only
make limited use of Cir-ODCs information provided with the orig-
inal circuit. Learning of the Cir-ODC condition is very important
because the majority of the clauses that the SAT solver deals with
during the search process are learned conflict clauses; this is espe-
cially true for the very hard instances. Learning with Cir-ODC also
contributes to the VSIDS scoring as certain key don’t care literals
will appear in more clauses, which results in an increase in their
VSIDS scores.

5. A DYNAMIC APPROACH FOR
CIR-ODC IN SAT

The static approach enforces the input ordering during the trans-
lation phase. This unavoidably reduces the total amount of Cir-
ODC conditions that a CNF SAT solver can utilize. To overcome
this we also considered a more dynamic technique for a SAT solver
to encode the Cir-ODC conditions. In the dynamic approach, the
assignment of variables during the search process is used to order
the inputs of a gate. The inputs are ordered in increasing order of
their being set to controlling values. Now the Cir-ODC condition
of a logic gate is encoded using a set of tuples instead of just lit-



erals. These tuples capture the dynamic ordering information. For
the example in Figure 2 the Cir-ODC condition for all clauses in
the transitive fan-in of signala is if b = 0 or c = 0 beforea is set
to be 0. This is represented by the tuple({ā},{b̄, c̄}) in each of the
these clauses.

Though the rationale behind Cir-ODC condition propagation and
conflict driven clause learning in the dynamic approach is same as
the one used in the static approach, the implementation is much
more complicated than the static case because of the use of tuple
representations. These details are omitted here for sake of brevity.
As a result of more complicated operations, it is empirically ob-
served that the overhead of the dynamic approach outweighs any
benefit received from them.

6. EXPERIMENTS
In order to perform the experiments with Cir-ODCs, we need to

have the combinational circuit description for the benchmarks. The
only two benchmark families we found with such descriptions are
iscas85 [3] and itc99 [4]. All test case used whose names
start with ac are from theiscas85 family, wherec1908 is gen-
erated from a ECAT circuit;c2670 , c3540 , c5315 andc7552
are all generated from ALU and control circuits; andc6288 is
taken from a 16-bit multiplier circuit. We use five test cases from
the itc99 family, namelyb14 from a subset of Viper processor
circuit; b15 from a subset of 80386 processor circuit;b20 , b21
andb22 are composed of multiple copies of circuits that are similar
to b14 . b14-opt is the optimized circuit forb14 , and similarly
for b15-opt , b20-opt , b21-opt andb22-opt .

Table 1: Total and average number of don’t care literals cap-
tured by random ordering and greedy ordering heuristic

bench # of # of Random Heuristic
mark gates clauses # of dc dc / cls # of dc dc / cls

c1908 1819 4882 8K 1.53 17K 3.46
c2670 2608 6859 14K 2.10 134K 19.49
c3540 3411 9327 9K 1.00 44K 4.77
c5315 4916 14002 91K 6.50 389K 27.78
c6288 4897 14593 4K 0.29 77K 5.25
c7552 7338 19848 121K 6.11 600K 30.22
b14 20057 58594 1490K 25.44 3422K 58.39
b14-opt 11217 35510 732K 20.64 1787K 50.33
b15 17669 53468 2277K 42.58 4670K 85.46
b15-opt 14979 47862 1948K 40.69 3880K 81.06
b20 40399 118351 7903K 66.78 13801K 116.61
b20-opt 24949 79389 4690K 59.08 7929K 99.88
b21 41089 120601 7955K 65.96 14136K 117.21
b21-opt 25303 80157 4678K 58.36 8131K 101.44
b22 59849 175632 19059K 108.52 29452K 167.69
b22-opt 36119 114122 10274K 90.03 15777K 138.25

For each test case in the benchmark, we generate a miter cir-
cuit [2] that consists of two identical copies of the test circuit. A
miter circuit outputs 0 if the two test circuits always output the
same values and it outputs 1 otherwise. Table 1 shows the number
of don’t care literals using both the random ordering and the greedy
ordering heuristic. Row 1 of this table corresponds to the miter ver-
sion ofc1908 with 1819 logic gates. There are 4,882 CNF clauses
generated using this circuit. If we use a random total ordering of
the gate inputs, a total of about eight thousand don’t care literals are
captured, which gives an average of 1.53 don’t care literals per CNF
clause generated. However, if we use the greedy ordering heuris-
tic to order the gate inputs, we could identify a total of seventeen
thousand don’t care literals and this gives an average of 3.46 don’t
care literals per CNF clause generated. Clearly, the greedy order-

ing heuristic is able to capture many more don’t care literals than
the random ordering. Besides, the greedy ordering heuristic could
also order the don’t care literals in a single CNF clause according
to their importance, i.e. the most frequently appearing literals are
placed in front of the others.

Given the numbers in Table 1, we can see that the total number of
don’t care literals in some circuits is extremely large. Scanning all
these literals could be slow. Instead of using all the Cir-ODC con-
dition, we restrict the number of don’t care literals for each clause
to not exceed a certain threshold, which is usually set to be half of
the total number of normal literals in this clause.

All the experiments are conducted on a Dell PowerEdge 700 run-
ning Linux Fedora Core 1.0 (g++ GCC 3.3.2) with single Pentium
4 2.8GHz, 1MB L2 cache CPU on 800MHz main bus. Table 2 tab-
ulates the running time of both random and heuristic ordering in the
static approach (columns labeled Static Random and Static Heuris-
tic). In addition, to study the benefit of don’t care literals through
the learning process, we consider the case when their use is turned
off during learning (column labeled Static NL). The running time
of the dynamic (column labeled Dynamic) approach and the latest
zChaff is also presented for comparison.

Table 2: Running time (seconds) of the static with random and
heuristic ordering, static without using Cir-ODCs in learning
(Static NL) and dynamic approaches compared to zChaff.

bench zChaff Static Ordering Dynamic
mark Heuristic Random NL Ordering

c1908 0.72 0.78 0.78 0.49 1.95
c2670 0.56 0.49 0.51 1.07 0.63
c3540 18.75 11.21 10.45 17.42 15.63
c5315 6.36 4.96 5.51 6.78 7.79
c7552 23.52 12.63 13.41 18.95 25.76
b14 6620.57 4079.24 3989.55 6037.52 10622.50
b14-opt 4602.08 3745.72 4005.39 4683.84 4735.81
b15 152.39 81.20 129.08 150.24 171.61
b15-opt 161.14 114.02 159.81 160.28 171.69
b20 20225.20 11014.80 17810.40 25187.20 > 24hours
b20-opt 33067.40 26662.70 28580.20 32039.30 > 24hours
b21 19625.40 10220.60 17168.30 19034.60 > 24hours
b21-opt 34711.90 12109.10 28137.70 33093.90 > 24hours
b22 22625.00 15074.50 15085.00 22032.40 > 24hours
b22-opt 34224.90 17811.10 28579.70 34948.20 > 24hours

Clearly, the static approach outperforms both the dynamic ap-
proach and zChaff. The static approach without don’t care lit-
eral learning performs only slightly better (sometimes worse, as
for c2670 ) than original zChaff. The main performance gain for
the static method comes from the conflict clause learning with Cir-
ODC. This is particularly true for large and hard benchmarks as
they tend to have a large clause pool, most of which are learned
conflict clauses. Don’t care literals in these large number of clauses
increase the VSIDS score dramatically as well as provide bene-
fit during BCP. The dynamic approach seems to suffer from the
huge overhead introduced by the tuple representation and conse-
quent bookkeeping operations.

7. RELATED WORK
The concept of circuit observability don’t cares was first intro-

duced by Bartlettet al. in their work on multilevel logic minimiza-
tion, where a Boolean network is optimized into a prime, irredun-
dant R-minimal form [1].

Various circuit-based SAT solvers have been implemented. Sa-
farpouret al. have dealt with both Observability Don’t Cares and
Controllability Don’t Cares using both a CNF and circuit based



SAT solver. A variable, which is also an input to a logic gate, is
markedlazy [11] if it is being dominated by others. They then
guide the decision heuristic of the SAT solver not to branch on the
lazy variables. Thelazinessthen propagates through the circuit.
They sometimes also mark an assigned variable lazy to erase some
old bad decisions. In addition to the CNF formula, their SAT solver
also needs circuit layout information in order to propagate the lazi-
ness of variables. The non-branching on lazy variables is a decision
heuristic that uses some Cir-ODC information, but in a limited way,
since those Cir-ODC related clauses are still active in the sense
that they are generating implications, most of which are on lazy
variables. Guptaet al. [7] implemented a CNF-based SAT solver
that identifies and masks unobservable gates during SAT search. A
circuit-based modification [6] of the zChaff SAT solver to avoid
this directly works on the logic level representation of the circuit,
it only uses CNF for the learned clauses. Thus, this technique is
a hybrid CNF and circuit based SAT solver. Other more circuit-
biased SAT solvers also monitor the circuit signals and utilize the
correlation of different signals to prune the search space [8] [9].

Velev uses a different approach, which focuses on the translation
from circuits to CNF [12] and is thus the closest to our approach.
This is illustrated by the circuit given in Figure 1. Velev’s approach
will add an unobservability literalu to every CNF clause generated
by the logic blockC. Since the value ofC is unobservable at the
primary outputs if the outputx of gateB is 0, Velev’s approach adds
a new clause(x+ u) during the CNF translation. This clause im-
pliesu to be1 whenx = 0, which makes all clauses generated by
C satisfied. Another clause(x̄+ ū) is also added to ensure the ob-
servability of the logic blockC, wherex = 1 impliesu = 0 and the
output ofC is observable at gateG. However, it is not clear how
the mutual exclusion in exploiting the don’t cares is avoided for the
multiple inputs of a gate. Also, once the circuit has been translated
into CNF, it is impossible to differentiate the unobservability liter-
als from normal literals. Thus all literals are treated equally and
the unobservability literals will also be required to generate impli-
cations. Velev’s approach is also limited since it only considers the
Cir-ODC condition from the logic blocks with only one fan-out. In
the experiments, the unobservability variable is only introduced for
ITE-trees [13] with fan-out count of 1. Velev’s approach increases
the size of the translated CNF file, but does not change its format.
So any stand-alone SAT solver could still be used. However, such
an implementation may significantly increase both the number of
variables and the number of clauses, which add to the burden of the
SAT solver.

8. CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper we describe a technique for handling logic circuit
unobservability conditions in a CNF SAT solver. The key contri-
bution is that the don’t care conditions are captured as don’t care
literals in the clauses describing the logic circuit. We show how the
don’t care information is captured from the local unobservability
conditions at a gate and then propagated through the circuit. The
don’t care literals differ from previous attempts to handle ODCs in
SAT solvers in the following ways:

- They enable these literals to be treated differently in different
contexts. They can enable a clause to be ignored (effectively
satisfied) early without needing to be set while deriving an
implication during BCP. This is a significant difference from
Velev’s unobservability literals [13], which are indistinguish-
able from the normal literals in CNF clauses.

- We show how the don’t care information is propagated and

inherited during conflict driven clause learning without fur-
ther referencing any circuit description. This is absent in pre-
vious approaches.

Experiments show that most circuits generate a large number
of don’t care literals. Efficient utilization of this information may
tremendously speed up the SAT solver by both speeding up impli-
cations and guiding the decision heuristic. There is room for further
improving the ideas introduced in this paper and some of the pos-
sible areas include engineering a more efficient implementation of
the dynamic approach, exploiting other total orderings for the static
approach, and fine-tuning the Cir-ODC parameters, some of which
may be correlated to other parameters used in zChaff.
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