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Abstract

A sequential SAT solver Satori [1] was recently proposed as an alter-
native to combinational SAT in verification applications. This paper
describes the design of Seq-SAT – an efficient sequential SAT solver
with improved search strategies over Satori. The major improvements
include (1) a new and better heuristic for minimizing the set of as-
signments to state variables, (2) a new priority-based search strategy
and a flexible sequential search framework which integrates different
search strategies, and (3) a decision variable selection heuristic more
suitable for solving the sequential problems. We present experimen-
tal results to demonstrate that our sequential SAT solver can achieve
orders-of-magnitude speedup over Satori.

We plan to release the source code of Seq-SAT along with this pa-
per.

I. Introduction
Boolean SAT finds applications in many areas of circuit design and

verification such as Bounded Model Checking [2, 16], Unbounded
Model Checking [13, 14], Redundancy Identification, Equivalence
Checking [3], Preimage Calculation [15], etc. State-of-the-art SAT al-
gorithms, as implemented in tools such as ZCHAFF [4], BERKMIN [5],
and C-SAT [6] have demonstrated that very hard SAT problems can
now be solved in reasonable time. Bounded sequential search using
SAT has been shown to be very effective in model checking. How-
ever, its major disadvantage is its lack of completeness in general
sequential search. A sequential SAT solver Satori was proposed in
[1], which utilizes combined ATPG and SAT techniques to realize a
sequential SAT solver by retaining the efficiency of Boolean SAT and
being complete in the search.

Given a sequential circuit, we assume that the circuit follows the
Huffman synchronous sequential circuit model as illustrated in Fig-
ure 1. Sequential SAT (or sequential justification) is the problem of
finding an ordered sequence of input assignments to a sequential cir-
cuit, such that a desired objective is satisfied, or proving that no such
sequence exists. A desired objective can be a collection of signal
value constraints such as that a primary output is 1.

In this paper, we focus on the sequential problems that initial states
are given.
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Figure 1: Backward time-frame expansion

In sequential SAT, a sequential circuit is conceptually unfolded into
multiple copies through backward time-frame expansion (Figure 1).
In each time-frame, the circuit becomes combinational and hence,
a combinational SAT solver can be applied. In each time-frame, a

state element such as a flip-flop is translated into two corresponding
signals: a pseudo primary input (PPI) and a pseudo primary output
(PPO). The initial state is specified at the PPIs in time-frame 0. The
objective is specified at the signals in time-frame n (the last time-
frame, where n is unknown before solving the problem). While solv-
ing in an intermediate time-frames i (0 < i < n−1), intermediate state
solutions are produced at the PPIs and they become intermediate ob-
jectives for further justification in the previous time-frames i−1.

Seq-SAT has three major improvements over Satori:

State reduction As pointed out in the previous work [1], mini-
mizing the set of assignments to the state variables, called state re-
duction, is a critical step for improving the efficiency of sequential
search. Seq-SAT performs state reduction not only when an interme-
diate solution is produced but also when an intermediate state objec-
tive is proved unsatisfiable. In the first case, it employs an efficient
two-step state reduction algorithm to obtain a smaller state clause.
The algorithm follows a similar process as the D-algorithm [8] orig-
inally proposed for ATPG and utilizes 3-value simulation. For the
second case, a different conflict analysis procedure rather than UIP
based conflict analysis[12] is applied to derive a smaller state clause.

Flexible sequential search framework Sequential search can
be carried out in two strategies: depth-first or breadth-first. In the
depth-first strategy, a SAT algorithm expands the search to a new
timeframe whenever a solution state is identified for the current time-
frame. If the backward justification fails in timeframe i− 1 and no
state solution can be found, it then backtracks to timeframe i and se-
lect another state solution of timeframe i to continue the justification.
In the breadth-first strategy, the state solutions in the current time-
frame i are exhausted before expanding into a new timeframe i−1.

In this paper, we provide a flexible sequential search framework
in which these two search strategies can be integrated. We intro-
duce a priority-based search strategy that can combine both depth-
first search and breadth-first search and demonstrate its efficiency over
other search strategies.

Decision variable selection heuristic In SAT, the idea that
make decisions to satisfy recently deduced clauses[4, 5] has been
proven to be very effective for solving hard combinational problems.
However, when applying a combinational solver for sequential SAT,
the run time of combinational SAT solving is not necessarily the most
important factor to be optimized. In this paper, we propose a decision
variable selection heuristic which is more suitable for solving sequen-
tial problems.

The rest of the paper is organized as the following. Section II
illustrates the use of combinational SAT in sequential SAT. In Sec-
tion III, we discuss the importance of state reduction and describe
our approaches to this problem. Section IV presents our sequential
search framework. In Section V, we present our priority-based search
strategy. Section VI discusses the impact of decision ordering in com-
binational SAT on the overall sequential SAT efficiency. Section VII
summarizes experimental results to demonstrate the superiority of our
current sequential SAT solver. Section VIII concludes the paper.
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II. Combinational and sequential SAT
Given a finite set of variables, V , over the set of Boolean values

B ∈ {0,1}, a literal, l/l is an instance of a variable or its complement,
v/¬v ∈ V . A clause ci, is a disjunction of literals (l1 ∨ l2 . . .∨ ln).
A formula f , is a conjunction of clauses c1 ∧ c2 . . .∧ cn. A clause is
considered as a set of literals, and a formula as a set of clauses.

An assignment A satisfies a formula f if f (A) = 1. An assignment
is called maximal when every variable in V receives a value assign-
ment. Given a sequential circuit, a state clause is a clause consisting
only of state variables.

In a Boolean Satisfiability (SAT) problem (or here call it combi-
national SAT to differentiate from sequential SAT), a formula f is
given and the problem is to find an assignment A to satisfy f or prove
that no such an assignment exists. SAT has attracted tremendous re-
search effort in recent years, resulting in the developments of various
efficient SAT solver packages such as [4, 5, 6, 10, 11]. Through back-
ward timeframe expansion (Figure 1), a sequential SAT problem can
be translated into a sequence of combinational SAT problems.

II-A. Sequential SAT and state clauses
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Figure 2: Sequential SAT with state clauses

To illustrate the usage of state clauses in sequential SAT, Figure 2
depicts a simple example circuit with three primary inputs a,b,c, one
primary output f , and three state elements x,y,z. The initial state is
(x = 1,y = 0,z = 1). Suppose the SAT objective is to satisfy f = 1.

Starting from time-frame n where n is unknown, the circuit is trans-
lated into a combinational copy with state variables duplicated as
PPOs and PPIs. This is illustrated as (1) in the Figure. Since this
represents a combinational SAT problem, a Boolean SAT solver can
be applied.

Suppose after the combinational SAT solving, a solution (a =
1,b = 1,c = 0,PPIx = 0,PPIy = 1,PPIz = 0) for satisfying f = 1
(step (2))is identified. Notice that all inputs have values assigned in
this solution, even though it might not be necessary to have all of them
assigned in order to satisfy f = 1. This phenomenon is due to the use
of a combinational SAT solver as mentioned earlier.

The assignments at PPIs implies a solution state (x = 0,y = 1,z =
0) that doesn’t contain the initial state.

Instead of justifying the state (x = 0,y = 1,z = 0) in time-frame
n−1, we can examine it first to check whether we can change as many
of the assignments to don’t-cares while still satisfying the objective
f = 1. Suppose after analysis, we determine that z = 0 is unnecessary,
it can be removed from the solution state (x = 0,y = 1,z = 0) and a
solution state (x = 0,y = 1) is derived. We call this step solution
state reduction since it tries to remove the unnecessary state variable
assignments from a solution. The solution state (x = 0,y = 1) doesn’t
contain the initial state either, so it still needs to be justified in time-
frame n− 1. Backward time-frame expansion can be achieved by
adding a state objective (PPOx = 0,PPOy = 1) to the combinational
copy of the circuit. Also, a state clause (x+y′) is generated to prevent

reaching state solutions contained by the state sub-space (x = 0,y = 1)
in time-frame n− 1. The new combinational SAT instance is then
passed to the Boolean SAT solver.

Suppose in time-frame n− 1, no solution can be found for state
objective (PPOx = 0,PPOy = 1). Then, we backtrack to time-frame
n to find another solution. In a way, we have proved that from state
(x = 0,y = 1), there exists no solution. Therefore, there is no need
to remove the state clause (x + y′). However, at this point it is bene-
ficial to perform further analysis to determine if both PPOx = 0 and
PPOy = 1 are involved in the conflict that indicates state objective
(PPOx = 0,PPOy = 1) is unsatisfiable. Suppose after conflict anal-
ysis, It is discovered that only PPOx = 0 is involved in the conflict.
A state clause ”(x)” is then added. The future combinational SAT
instances will then have the state clauses ”(x + y′)(x)” included, that
record the non-solution state sub-spaces previously identified. This is
illustrated in (4) of the Figure. We call this step objective state reduc-
tion since it tries to derive a smaller state clause when a state objective
becomes unsatisfiable.

The solving continues until either one of the following two condi-
tions is reached:

1. After solution state reduction, a solution is found whose state
part contains the initial state. For example, a solution with the
state part (x = 1,z = 1) contains the initial state (x = 1,y = 0,z =
1). In this case, a solution for the sequential SAT problem is
found. Note that a solution without any assignments to PPIs
contains any initial state.

2. If backtracked to time-frame n, the initial objective f = 1 can-
not be satisfied under the constraints imposed by all the state
clauses added, then the original problem is unsatisfiable. This is
equivalent to say: if any objective (including the initial objective
f = 1 and all intermediate objectives) cannot be satisfied under
the constraints imposed by all the state clauses added, then the
original problem is unsatisfiable.

The above example illustrates several important concepts in the
design of our current sequential SAT solver.

• The state reduction involves finding smaller state clauses in or-
der to more effectively prune the search space. There are two
types of state reduction. One is solution state reduction, the
other is objective state reduction.

• The use of state clauses serves two purposes: (1) to record those
state sub-spaces that have been explored, and (2) to record those
state sub-spaces containing no solution. The first is to prevent
the search from entering a state justification loop.

• Although conceptually the search follows the backward time-
frame expansion, the above example demonstrates that in the
implementation, explicit time-frame expansion is not necessary.
In other words, a sequential SAT solver needs only one copy of
the circuit. Moreover, there is no need to memorize the num-
ber of time-frames being expanded. Later we will discuss our
implementation of the solver and demonstrate how this can be
achieved by using an objective list.

• The above example demonstrates the use of depth-first search
strategy. However, by using state clauses, more flexible search
strategies are feasible if the intermediate state objectives are
recorded in a list. The idea of the sequential search framework
can be described as follows: Given a sequential problem with an
objective obj and an initial state s0, C is the one time-frame com-
binational copy of the sequential circuit where each state vari-
able is expanded to a PPI variable and a PPO variable. Suppose
we use an objective list FO to store the intermediate objectives,
and initially it only contains obj. Each time, an objective o is
selected from FO and given to the combinational circuit solver.



The circuit solver then solves o on C. There will be three possi-
ble outcomes reported by the solver: (1) o is unsatisfiable, (2) at
least one state in the obtained solutions contains the initial state
s0, and (3) no state in the obtained solutions contains the initial
state s0. For case (1), we can remove o from FO. For case (2),
the search stops and the sequential problem is proven satisfiable.
For case (3), the state part of each solution is added to FO as a
new state objective and a state clause is added to C to prevent
the state be explored and found again in any future solutions. If
finally, the objective list FO becomes empty, which means all
objectives have been proven to be unsatisfiable, then the search
stops and the sequential problem is proven unsatisfiable.

In this framework, the keys are to decide how to select the next
objective from the list for solving and to decide how many solu-
tions to be found for an objective each time. The details will be
given in Section IV.

In the following, we will describe the detail of Seq-SAT. To facil-
itate the description, we define the following two terms: (1) a frame
objective is an objective to be satisfied which is passed to the combi-
national SAT solver. A frame objective can be either the initial objec-
tive or a state objective. (2) a frame solution is an assignment at the
PIs and PPIs, which satisfies a given frame objective.

III. State reduction for state space pruning
There are two types of state reduction: solution state reduction

(SSR) and objective state reduction (OSR). SSR is performed when a
frame solution is identified by the combinational SAT solver. OSR is
applied when a state objective becomes unsatisfiable. The details are
discussed in the following.

III-A. Solution state reduction

When a frame solution is identified by the combinational SAT
solver, all PIs and PPIs have assigned values. Our goal is to find
and un-assign the unnecessary assignments at the PPIs. With fewer
assigned PPIs, a smaller state clause can be created, which prunes a
larger state sub-space.

Given an initial frame solution, to derive one containing a minimal
number of state variables with value assignment is an NP-complete
problem. Therefore, we only derive a locally minimized 3-value solu-
tion. A frame solution s of a frame objective o is a locally minimized
3-value solution if and only if un-assign any state variable of s (chang-
ing its value from a 0/1 to X), the resulting assignments cannot satisfy
o by 3-value simulation.

One straight forward heuristic to derive a locally minimized 3-
value solution is to employ 3-value simulation. That is, for all as-
signed state variables of a solution, un-assign one of them at a time
to check if its assignment is necessary to satisfy the frame objective.
If not, the assignment is removed from the solution, this procedure
continues until each assigned state variable has been checked once,
then the remaining assignments form a 3-value minimized solution.

A frame solution reported by a SAT solver usually contains many
unnecessary assignments at state variables. Directly apply 3-value
simulation could be computationally expensive. For example, remov-
ing N unnecessary state assignments needs at least N times of sim-
ulation even if parallel simulation is used. To reduce the number of
simulation runs and improve efficiency, we adopt a two-step state re-
duction approach. In this approach, a modified D-algorithm [8] is first
applied to obtain a minimized solution. Given a frame objective O and
its frame solution S, the modified D-algorithm justify O based on S,
that is, when the D-algorithm makes a decision at a signal, the value
assigned to the signal has to be consistent with its value in the solu-
tion S. Hence, the D-algorithm is used as a trace procedure, not as a
search procedure. Based on the minimized solution from the first step,

3-value simulation is then employed to derive a 3-value minimized so-
lution. This approach is based on the assumption that the D-algorithm
can usually find a solution containing much fewer assignments than
that of a SAT solver. Experiments show our assumption is valid in
general. The details of the approach are omitted due to page limit.

TABLE I: RESULTS OF SOLUTION STATE REDUCTION

Circuit Org # Step 1 resulting Step 2 resulting
# %reduced times(sec) # %reduced times(sec)

s526 91134 70981 22.1% 1 70545 0.6% 1
s1423 237344 73986 69.1% 3 73298 0.4% 1
s5378 181487 89499 50.6% 9 87450 2.3% 2
s35932 3382 3142 7.1% 2 3142 0% 3
s38417 2008744 1054999 47.4% 280 1052562 0.2% 100
s38584 869942 375770 56.8% 128 371707 1.1% 110

Table I shows experimental results to demonstrate the impact of
solution state reduction. All our experiments were run on P4 2GHz
Linux machines with 1 GB memory.

In these experiments, a sequence of sequential SAT problem in-
stances are created for each circuit. For each circuit and each of its
primary outputs f , the first SAT objective is to satisfy f = 1 and then
we would try to satisfy f = 0. This is a typical primary output toggle
experiment. The results shown for each circuit are for solving all tog-
gle SAT instances for the circuit. We assume the initial state is that
all state elements have a 0 value. Note, this kind of problems may
contain very difficult cases even for ISCAS 89 circuits.

The two ”#” columns show the numbers after state reduction with
modified D-algorithm (step 1) and then, with three value simulation
(step 2), respectively. The two ”% reduced” columns show the cor-
responding percentage of reduction. The two run-time columns show
the run times based on using step 1 and then, using step 2. We note
that if no state reduction is performed, then the sequential SAT might
not finish solving all instances within a reasonable time for each of
these examples.

From the results, we can see that the modified D-algorithm could
reduce most of the unnecessary assignments to the state variables, so
the number of 3-value simulation runs can be greatly reduced. Al-
though step 2 does not help much in terms of the total percentage of
assignment reduction, it does help further improve the overall perfor-
mance.

III-B. Objective state reduction

As a state so is added to the objective list, a state clause sc is
added to prevent the state from being reached again. When the state
objective so becomes unsatisfiable, instead of using the same state
clause sc, a smaller state clause might be added to prune a larger
search space. This can be achieved by additional conflict analysis
when a state objective is proved unsatisfiable. We explain the idea
by an example, suppose the state objective so is (PPOr = 1,PPOs =
1,PPOt = 0,PPOx = 0,PPOy = 1), the implication graph when sc
is proved unsatisfiable (which means there is a conflict that can not
be resolved by backtrack) is shown as in Figure 3. From Figure 3,
if tracing from the conflict points to the PPO state variables, we can
deduce that (PPOr = 1,PPOs = 1,PPOt = 0) is unsatisfiable, so the
state clause (r′+ s′+ t), which is smaller than (r′+ s′+ t + x + y′),
can be added to the circuit. However, we need to be careful that the
state clauses added in this way shouldn’t exclude the search space that
contains the initial state. Otherwise a satisfiable problem erroneously
becomes unsatisfiable since the initial state couldn’t be reached any-
more after adding such a state clause. Using the above example, if
the values of r, s and t in the initial state are 1, 1 and 0 respectively,
state clause (r′+ s′+ t) would exclude the initial state. To avoid this,
we can just select a state variable from the state objective whose ob-
jective value is not its initial value and add its corresponding literal to
the state clause. For example, if the value of x in the initial state is



1 in the above example, we can add x′ to the state clause (r′+ s′+ t)
to form state clause (r′+ s′+ t + x′) which can be added to the cir-
cuit. This can always be done since state objectives don’t contain the
initial state. That is, each state objective must have at least one vari-
able whose objective value is not same as its value in the initial state,
otherwise, the problem should has been proved satisfiable.

This reduction is valid even if state clauses that were used for pre-
venting justification loop are involved in the conflict graph.

We also note that this reduction is not related to identify the subset
of a CNF formula that is sufficient for unsatisfiability, instead, it just
tries to find a conflict clause that contains only literals of the variables
in a state objective.

Table II gives the experimental results comparing the performance
of our sequential solver with and without OSR. These are the same
toggle experiments as those in Table I.

TABLE II: EFFECTS OF OBJECTIVE STATE REDUCTION

Without OSR With OSR
Circuit runtimes(sec) stats runtimes(sec) stats
s526 2 12/0/0 1 12/0/0
s1423 1 10/0/0 1 10/0/0
s5378 402 89/5/4 3 90/8/0
s13207 1924 165/58/19 1345 166/63/13
s15850 2002 100/54/20 522 100/69/5
s35932 3 640/0/0 3 640/0/0
s38417 286 210/0/2 100 212/0/0
s38584 106 498/58/0 111 498/58/0
**abort time for each problem is 100 sec.
stats: x/y/z are #SAT/#UNSAT/#Abort

From the experiment results, it can be seen that the performance is
greatly improved for half of the testcases by OSR, and only for one
testcase, it causes a small overhead.
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Figure 3: An implication graph when a state objective is proved unsatisfiable

IV. Flexible sequential search framework

In our sequential SAT design, state clauses are accumulated
through the solving process. The sequential solving process consists
of a sequence of combinational solving tasks based on a given frame
objective. At the beginning, the frame objective is the initial objec-
tive. As the solving proceeds, many frame solutions become frame
objectives. These frame objectives are stored in the objective list.

The use of state clauses and the objective list offer much flexibility
in the choice of the search strategy. Different search strategies can
be implemented by using different criteria in selecting the next frame
objective for solving, and in deciding how many solutions to be ob-
tained at a time for a frame objective. For example, for the depth-first
search, the objective list is used as a stack where the next selected ob-
jective is the one most recently produced. For the breadth-first search,
the objective list is used as a queue. In addition, in the breadth-first

search, it demands the solver to find all solutions for the selected ob-
jective. After that, the objective is removed from the objective list.
This framework further enables us to explore various search strate-
gies between these two extreme ones which will be described later in
this section.

The overall framework of our sequential SAT solver is described in
Algorithm IV.1. In the description, we assume that each frame objec-
tive produces at most one frame solution at a time. This assumption
is only for purpose of easier explanation. The algorithm can be eas-
ily modified to serve the case that multiple solutions are produced at
a time. The procedure PPO state conflict analysis() does objective
state reduction, and state reduction() does solution state reduction.
The procedure select a frame objective() selects a frame objective to
be solved next, upon different implementation, various search strate-
gies can be realized, and the details will be given in the next section.

A frame objective can be removed from the objective list only if it
is proven unsatisfiable by the combinational SAT. If it is satisfiable,
the frame objective stays in the objective list. If the objective list
becomes empty during the sequential search, it means that the solver
has exhausted all the state objectives and, therefore, proved that the
initial objective is unsatisfiable.

Note that during each step of combinational SAT, conflict clauses
are also accumulated through the combinational SAT solving process.
When the sequential solving switches from one frame objective to an-
other, these conflict clauses stay. Hence, in the sequential solving
process, the conflict clauses generated by the combinational SAT are
also accumulated. Our experience indicates that although these con-
flict clauses does help speed up the combinational SAT solving, for
sequential SAT, the state clauses are the dominating source for the
efficiency improvement of the overall sequential search.

Algorithm IV.1: SEQUENTIALSOLVER(C,ob j,s0 )

comment: C is the circuit with PPIs and PPOs expanded
comment: ob j is the initial objective
comment: s0 is the initial state

comment: FO is the objective list

FO← {ob j};
while (FO 6= /0)

do


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fob j ← select a frame objective(FO);
fsol ← combinational solve a frame objective(C, fob j);
if ( fsol = NULL)






clause← PPO state conflict analysis(C, f ob j);
add state clause(C,clause);
FO← FO−{ fob j};

else
























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state cube← state reduction(C, fob j , fsol );
if (s0 ∈ state cube)
{

return (SAT);

else







clause← convert to clause(state cube);
add state clause(C,clause);
FO← FO+{state cube};

return (UNSAT)

V. On the scheduling of frame objectives
In this section, we introduce a new search strategy, called the

priority-based search strategy, which can be easily implemented in
the search framework described above. We further compare it with
the depth-first and breadth-first search strategies and demonstrate its
superiority.

Given a state objective, we define its size as the total number of
state variables minus the number of state variables with an binary ob-
jective value (i.e. not an unknown X) in the state objective. We use
size(ob j) to denote the size of ob j. Note that a state objective with
a larger size corresponds a larger state sub-space. Hence, if there
are multiple state objectives in the objective list, it seems intuitive



to choose the largest state objective as the next objective for solv-
ing as it corresponds to exploring the solution with the largest state
sub-space, and its solutions, if any, tend to contain fewer state assign-
ments, which means smaller state clauses are likely to be generated to
prune a larger search space. We further define the count of an objec-
tive ob j as the number of times that ob j has been selected for solving
by the combinational solver. If we use count to guide the selection
of objectives and choose the one with the largest count as the next
objective, it will be more like the breadth-first search strategy. On the
other hands, if we choose the one with the smallest count, It will be
more like the depth-first search.

Now we define priority of a frame objective ob j, pri(ob j), as fol-
lows:

pri(ob j) = size(ob j)− count(ob j)/10 (1)

In our implementation of the priority-based search strategy, we se-
lect the objective with the largest value of pri. If there is a tie under
this selection criterion, then the most recently generated one will be
selected. For each selected objective, at most one solution is obtained
at a time. Through extensive experiments, we observe that combining
size and count in this way maximizing the performance, in general,
for both satisfiable and unsatisfiable cases.

With the objective list, depth-first and breadth-first search strate-
gies can be implemented easily. In depth-first search, the list behaves
like a stack. Hence, the selected objective is the one most recently
produced. In breadth-first search, the list behaves like a queue. How-
ever, in breadth-first search, solving an objective means to finish pro-
ducing all possible solutions. Then, the objective is removed from the
objective list.

Table III gives the experimental results comparing different search
strategies. These are the same toggle experiments as those in Table I.
The ”priority” column is the same as the last ”times” column in Ta-
ble I. As it can be seen, the new search strategy significantly out-
performs the depth-first and the breadth-first strategies.

TABLE III: CPU RUNTIMES (IN SECONDS) ON SEARCH STRATEGIES

depth-first breadth-first priority
Circuit runtimes stats runtimes stats runtimes stats

(sec) (sec) (sec)
s526 9 12/0/0 2 12/0/0 1 12/0/0
s1423 301 7/0/3 103 9/0/1 1 10/0/0
s5378 1504 75/8/15 511 89/5/4 3 90/8/0
s13207 2159 167/54/21 1367 166/63/13 1345 166/63/13
s15850 1401 100/60/14 1569 100/59/15 522 100/69/5
s35932 32020 320/0/320 3 640/0/0 3 640/0/0
s38417 2324 189/0/23 2031 192/0/20 100 212/0/0
s38584 8515 414/57/85 2006 482/57/17 111 498/58/0
**abort time for each problem is 100 sec.
stats: x/y/z are #SAT/#UNSAT/#Abort

VI. On the decision variable selection heuristics
in the combinational SAT solver

For pure combinational SAT, both VISDS[4] decision variable se-
lection and clause based decision variable selection [5] have been
proven effective. However, when applying a combinational SAT
solver for sequential SAT, the runtime of combinational SAT solv-
ing is not the only critical factor. In each run of combinational SAT
solving during the sequential SAT, the smaller the necessary assign-
ments are made at the PPIs, the more efficiently the state space can be
pruned. Therefore, the decision variable selection heuristics in com-
binational SAT also need modifications. To demonstrate this point,
we conducted experiments to compare different decision variable se-
lection heuristics in combinational SAT.

Decision heuristic 1: This is the same as the VISDS decision vari-
able selection [4].

Decision heuristic 2: First, the decision variable is selected from the
most recently generated conflict clause that is not yet satisfied
[5]. If all the generated conflict clauses are satisfied, the decision
variable is selected based on the J-nodes [17, 6] with the highest
topological order (closest to the POs and the PPOs). This deci-
sion heuristic is used in the original combinational SAT solver
C-SAT [6].

Decision heuristic 3: First, the decision variable is selected from the
most recently generated conflict clause that is not yet satisfied as
in Heuristic 2 above. If all the generated conflict clauses are sat-
isfied, the decision variable is selected from PIs and PPIs where
PIs are selected before PPIs This is the default heuristic used in
our final implementation.

The reasons we adopt Heuristic 3 in Seq-SAT are summarized as fol-
lows:

(1). Using input variables as decision points results in better perfor-
mance for easy combinational problems in general. For a se-
quential problem that can be transformed into a series of rel-
atively easy combinational problems, this heuristic works very
well.

(2). For hard problems, as the conflict clauses tend to accumulate fast
during search, the decisions will gradually be dominated by the
conflict clauses. Therefore, the performance will not degrade
much.

(3). Selecting PIs prior to PPIs as decision variables tends to result
in solutions with fewer state variables with value assignments
[14].

TABLE IV: CPU RUNTIMES ON DIFFERENT DECISION HEURISTICS

heuristic 1 heuristic 2 heuristic 3
Circuit runtimes stats runtimes stats runtimes stats

(sec) (sec) (sec)
s526 1 12/0/0 3 12/0/0 1 12/0/0
s1423 205 8/0/2 1 10/0/0 1 10/0/0
s5378 313 90/7/1 109 90/7/1 3 90/8/0
s13207 1436 166/62/14 1374 166/63/13 1345 166/63/13
s15850 511 100/69/5 514 100/69/5 522 100/69/5
s35932 3 640/0/0 3 640/0/0 3 640/0/0
s38417 194 211/0/1 253 210/0/2 100 212/0/0
s38584 41 498/58/0 300 496/58/2 111 498/58/0
c3540 40 0/1/0 13 0/1/0 20 0/1/0
c5315 21 0/1/0 16 0/1/0 8 0/1/0
**abort time for each problem is 100 sec.
stats: x/y/z are #SAT/#UNSAT/#Abort

Table IV shows the results of different heuristics. The experiments
for ”s-” circuits were the same PO toggle experiments circuit as ex-
plained before. The experiments for ”c-” circuits were the combina-
tional equivalence checking problem using the miter circuit of two
identical ISCAS 85 circuits.

It can be seen that the decision heuristic 3 works well for sequential
circuits, even for large combinational circuits, its performance is not
bad.

VII. Additional experimental results

Table V compares our solver with NuSMV [16] bounded model
checking function for satisfiable cases. We have shown in the previ-
ous experiments how each idea works, Table VI compares the overall
performance of Seq-SAT with Satori.

In Table V, the ”Property” column gives the LTL formula for each
testcase, and ”length” columns give the length of the witness vectors
obtained by Seq-SAT and NuSMV respectively. For NuSMV, the ver-
sion we used is NuSMV 2.1.2-zchaff in which the SAT solver zchaff
is used for bounded model checking. The initial states used in these
examples are all 0.



TABLE V: COMPARISON TO NUSMV BOUNDED MODEL CHECKING

Seq-SAT NuSMV
Circuit Property runtimes(sec) length runtimes(sec) length
s526 G(g214 = 0) 1 133 15 33
s13207 G(g594 = 0) 1 5 2 5
s13207 G(g785 = 0) 7 11 34 10
s38417 G(g5549 = 0) 9 815 > 3600 -
s38417 G(g16399 = 0) 14 7 55 7
s38584 G(g11678 = 0) 6 30 831 12
s38584 G(g29212 = 0) 48 144 > 3600 -
**abort time for each problem is 3600s.

From Table V, it can be seen that, even though the witness vectors
derived by Seq-SAT are in general longer than those by NuSMV, Seq-
SAT clearly outperforms NuSMV in terms of CPU runtime.

In Satori, the depth-first search and the breadth-first search are im-
plemented separately. So in Table VI, we compare Seq-SAT with
Satori under these two search strategies for the same toggle experi-
ments as those in Table I. Table VII summarizes the number of the
abort cases shown in Table VI. Column ”#Satori abort” shows the
number of cases aborted in both Satori depth-first search and Satori
breadth-first search. Column ”#SSANA” gives the number of cases
aborted in Seq-SAT but not aborted in either Satori depth-first search
or Satori breadth-first search.

TABLE VI: COMPARISON TO SATORI

Satori depth-first Satori breadth-first Seq-SAT
Circuit runtimes stats runtimes stats runtimes stats

(sec) (sec) (sec)
s526 405 8/0/4 5 12/0/0 1 12/0/0
s1423 400 6/0/4 106 9/0/1 1 10/0/0
s5378 4100 53/4/41 1455 80/4/14 3 90/8/0
s13207 4010 154/48/40 1836 166/59/17 1345 166/63/13
s15850 2302 99/52/23 2214 100/52/22 522 100/69/5
s35932 3200 608/0/32 1 640/0/0 3 640/0/0
s38417 805 204/0/8 2257 191/0/21 100 212/0/0
s38584 4810 451/57/48 2228 477/58/21 111 498/58/0
**abort time for each problem is 100 sec.
stats: x/y/z are #SAT/#UNSAT/#Abort

TABLE VII: ABORTED CASES ANALYSIS

Circuit #Satori abort #Seq-SAT abort #SSANA
s526 0 0 0
s1423 1 0 0
s5378 14 0 0
s13207 17 13 0
s15850 22 5 0
s35932 0 0 0
s38417 5 0 0
s38584 11 0 0

It can be seen that Seq-SAT achieves significant performance im-
provement for almost all cases. It is also interesting to note that the re-
sults of the depth-first search in Satori are quite different from those of
depth-first search implemented in Seq-SAT (see Section V Table III).
This indicates that the depth-first search is quite unstable (especially
for satisfiable cases) and easy falls into bad search area.

VIII. Conclusion

In this paper, we present an efficient sequential SAT solver Seq-
SAT. The implementation of Seq-SAT employs four new ideas: (1)
better state reduction algorithms, (2) a more flexible search frame-
work for accommodating and integrating different search strategies,
(3) the priority-based search strategy, and (4) a modified decision vari-
able selection heuristic for the underlying combinational circuit SAT
solver. With these new ideas and efficient data structures and im-
plementation, Seq-SAT achieves very significant speedup over Satori.

We will release the source code of Seq-SAT along with the publica-
tion of this paper.
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