

Verification of Embedded Memory Systems using Efficient Memory Modeling

Malay K Ganai, Aarti Gupta, Pranav Ashar
{malay | agupta | ashar }@nec-labs.com

NEC Laboratories America, Princeton, NJ USA 08540

Abstract

We describe verification techniques for embedded memory
systems using efficient memory modeling (EMM), without
explicitly modeling each memory bit. We extend our previously
proposed approach of EMM in Bounded Model Checking
(BMC) for a single read/write port single memory system, to
more commonly occurring systems with multiple memories,
having multiple read and write ports. More importantly, we
augment such EMM to providing correctness proofs, in addition
to finding real bugs as before. The novelties of our verification
approach are in a) combining EMM with proof-based
abstraction that preserves the correctness of a property up to a
certain analysis depth of SAT-based BMC, and b) modeling
arbitrary initial memory state precisely and thereby, providing
inductive proofs using SAT-based BMC for embedded memory
systems. Similar to the previous approach, we construct a
verification model by eliminating memory arrays, but retaining
the memory interface signals with their control logic and
adding constraints on those signals at every analysis depth to
preserve the data forwarding semantics. The size of these EMM
constraints depends quadratically on the number of memory
accesses and the number of read and write ports; and linearly
on the address and data widths and the number of memories.
We show the effectiveness of our approach on several industry
designs and software programs.

1. Introduction

According to the Semiconductor Industry Association roadmap
prediction, embedded memories will comprise more than 70%
of the SoC by 2005. These embedded memories on SoC support
diverse code and data requirements arising from ever increasing
demand for data throughput in applications ranging from
cellular phones, smart cards and digital cameras. In the past,
there were efforts [1] to verify on-chip memory arrays using
Symbolic Trajectory Evaluation [2]. However, these embedded
memories dramatically increase both design and verification
complexity due to an exponential increase in the state space with
each additional memory bit. In particular, this state explosion
adversely affects the practical application of formal verification
techniques like model checking [3, 4] for functional verification
of such large embedded memory systems.

To tame the verification complexity, several memory
abstraction techniques, i.e., removing the memories partially or
completely from the designs are often used in the industry.
However, such techniques often produce spurious outcomes,
adversely affecting overall verification efforts. In many
refinement-based techniques [5-8], starting from a small abstract
model of the concrete design, spurious counter-examples on the
abstract model are used to refine the model iteratively. In
practice, several iterations are needed before a property can be

proved correct or a real counter-example can be found. Note that
after every iterative refinement step, the model size increases,
making it increasingly difficult to verify. In contrast,
abstraction-based approaches [9, 10] use proof-based
abstraction (PBA) techniques on a concrete design. As shown in
[10], iterative abstraction can be used to apply such techniques
on progressively more abstract models, thereby leading to
significant reduction in model size. However, since these
approaches use the concrete model to start with, it may not be
feasible to apply them on designs with large memories. In
general, both these refinement and abstraction based approaches
are not geared towards exploiting the memory semantics.

Memory abstractions that preserve the memory semantics –
data read from a memory location is the same as the most recent
data written at the same location – have been employed in
various verification efforts in the past. Burch et al. introduced
the interpreted read and write operations in their logic of
equality with un-interpreted functions [11]. Such partial
interpretation of memory has also been exploited in later
derivative verification efforts [12-14]. Specifically, Velev et al.
used this partial interpretation in a symbolic simulation engine
to replace memory by a behavioral model that interacts with the
rest of the circuit through a software interface that monitors the
memory control signals [12]. Bryant et al. proposed [15]
modeling of memory as a functional expression in the UCLID
system for verifying safety properties.

SAT-based Bounded Model Checking (BMC) [16] enjoys
several nice properties over BDD-based symbolic model
checking [3, 4]; its performance is less sensitive to the problem
sizes and it does not suffer from space explosion. To address the
memory explosion problem, SAT-based distributed BMC has
been proposed [17] in which the BMC problem is partitioned
over a network of workstations. However, this technique is not
geared towards verifying embedded memory systems. In our
previous work, we have proposed an efficient memory modeling
(EMM) technique [18] that augments SAT-based BMC to
handle large embedded memories without explicitly modeling
each memory bit. We showed that EMM approach allows deeper
BMC search in finding real bugs in comparison to explicit
memory models. Moreover, our approach captures the
exclusivity of a matching read and writes pair explicitly,
reducing the overall SAT solve time. However, there are two
main drawbacks to this previous work. First, the memory system
considered was fairly simplistic, with a single memory having a
single read/write port. In modern designs, it is quite common to
have a large number of diverse memories, each with multiple
read and write ports. Second, the approach was geared towards
falsification i.e., finding real bugs, and not towards proving
correctness of the specified property.

In this work, we extend our previous approach [18] of
EMM in SAT-based BMC to the more commonly occurring
embedded memory systems, with multiple memories having

1530-1591/05 $20.00 © 2005 IEEE

multiple read and write ports. More importantly, we augment the
EMM techniques to providing correctness proofs in addition to
finding real bugs. The novelties of our verification approach are
in a) combining EMM with PBA that preserves the correctness
of a property up to a certain analysis depth of SAT-based BMC,
and b) modeling arbitrary initial memory state precisely and
thereby, providing inductive proofs using SAT-based BMC for
embedded memory systems. Similar to the previous approach
[18], we construct a verification model by eliminating memory
arrays, but retaining the memory interface signals with their
control logic and adding constraints on those signals at every
analysis depth to preserve the memory data forwarding
semantics. The size of these memory-modeling constraints
depends quadratically on the number of memory accesses and
the number of read and write ports; and linearly on the address
and data widths and the number of memories. We have
implemented our techniques in a prototype verification platform,
and demonstrate their effectiveness on several industry designs
and software programs.
Outline In Section 2 we give relevant background on memory
semantics, SAT-based BMC, and PBA; in Section 3 we discuss
the previous EMM approach; in Section 4 we describe our
contributions; in Section 5 we discuss our experiments on
several case studies, and conclude in Section 6.

2. Background

2.1. Bounded Model Checking (BMC)

In BMC, the specification is expressed in LTL (Linear Temporal
Logic). Given a Kripke structure M, an LTL formula f, and a
bound n, the translation task in BMC is to construct a
propositional formula [M, f]n such that the formula is satisfiable
if and only if there exists a witness of length n [16]. The
satisfiability check is performed by a backend SAT solver.
Verification typically proceeds by looking for witnesses or
counter-examples (CE) of increasing length until the
completeness bound is reached [16, 19]. The overall algorithm
(BMC-1) of a SAT-based BMC method for checking a simple
safety property is shown in Figure 1 (ignore lines 10-11 for
now). Note that Pi denotes the property node at the ith unrolling
of the transition relation, I denotes the initial state of the system,
and LFPi denotes that the path of length i is loop-free. In lines 5-
7, a SAT solver is used to check the forward and backward
termination criteria for correctness [19]. In line 8, a SAT solver
is used to check the existence of a counter-example.

1. BMC-1(n, P){ //Check safety property P within bound n
2. CP0=1; LR-1=�;
3. for (int i=0; i<=n ; i++) {
4. Pi = Unroll(P,i); //Property node at ith unrolling
5. if (SAT_Solve(I∧LFPi)=UNSAT or
6. SAT_Solve(LFPi∧¬Pi∧CPi)=UNSAT){
7. return PROOF;} // fwd and bwd termination check
8. if (SAT_Solve(I∧¬Pi)=SAT) return CE; //Falsify
9. CPi+1 = CPi∧Pi; // update CP
10. U_Core = SAT_Get_Refutation(); // get proof of UNSAT
11. LRi = LRi-1 ∪ Get_Latch_Reasons(U_Core);}
12. return NO_CE; } // No counter-example found

Fig. 1. SAT-based BMC with PBA

2.2. Proof-based Abstraction (PBA)

A PBA technique for SAT-based BMC is shown in lines 10-11
in Figure 1. When the SAT problem at line 8 is unsatisfiable,
i.e., there is no counter-example for the safety property at a
given depth i, the unsatisfiable core (U_Core) is obtained using
the procedure SAT_Get_Refutation in line 10. This procedure
simply retraces the resolution-based proof tree used by the SAT
solver and identifies a subset formula that is sufficient for
unsatisfiability [9, 20]. One can then use either a gate-based
abstraction [9] or a latch-based abstraction [10] technique to
obtain an abstract model from the U_Core. Here we show a
latch-based abstraction technique in line 11, to obtain a set of
latch reasons LRi at depth i. An abstract model is then generated
for depth i by converting those latches in the given design that
are not in the set LRi to pseudo-primary inputs. Due to the
sufficiency property of U_Core, the resulting abstract model is
guaranteed to preserve correctness of the property up to depth i
[9, 10]. Depending on locality of the property, the set LRi can
be significantly smaller than the total latches in the given design.
Specifically in [10], a depth d (< n) is chosen such that the size
of set LRd does not increase over a certain number of depths,
called stability depth. In many cases, the property can be proved
correct on the abstract model generated at depth d and hence, for
the given design. One can apply PBA techniques iteratively,
called iterative abstraction [10], to further reduce the set LRd
and hence, obtain a smaller abstract model.

2.3. Memory Semantics

Embedded memories are used in several forms such as RAM,
stack, and FIFO with at least one port for data access. We model
a design with an embedded memory, as a Main module
interacting with the memory module using the following
memory interface signals: Address Bus (Addr), Write Data Bus
(WD), Read Data Bus (RD), Write Enable (WE), and Read
Enable (RE). For the single-port memory at any given clock
cycle: a) at most one address is valid, b) at most one write
occurs, and c) at most one read occurs. In the write phase of the
memory accesses, new data is assigned to WD in the same cycle
when the Addr is valid and WE is active. Note that the new
written data is available for read only after the current cycle. In
the read phase, data is assigned to RD in the same cycle when
the Addr is valid and RE is active.
 Assume that we unroll the design up to depth k (starting
from 0). Let Xj denote a memory interface signal variable X, at
time frame j. Let the Boolean variable Ei,j denote the address
comparison between time frames i and j, defined as
Ei,j=(Addri=Addrj). Then the data forwarding semantics of the
memory can be expressed as follows, where j < k:

(Ej,k∧WEj∧REk∧∀j<i<k(¬Ei,k∨¬WEi))
� (RDk=WDj) (1)

In the other words, the data read at depth k equals the data
written at depth j if the addresses are equal at k and j, the write
enable is active at j, the read enable is active at k, and for all
depths strictly between j and k, no data was written at the
address location Addrk.

3. EMM for Single Memory, Read/Write Port

EMM as proposed in [18], based on the data forwarding
semantics, is described as follows:
1. The MEM module is removed but the memory interface

signals and their control logic are retained with their input-
output directionality with respect to the Main Module.

2. Constraints are added at every analysis depth k in BMC, on
the memory interface signals to preserve the forwarding
semantics of the memory.

3. In addition, exclusivity constraints are added to improve
the performance of the backend SAT solver in BMC. The
idea is that when the SAT-solver decides on a valid
matching read and write pair, other pairs are implied
invalid immediately.

Note that although 1) and 2) are sufficient to generate an
efficient model that preserves the validity of a correctness
property, it has been shown [18] that 3) makes the performance
of the SAT-based BMC superior.

The modified BMC algorithm using the EMM approach
(BMC-2) for a single memory, single read/write port system (as
in [18]) is shown in Figure 2. Note that the algorithm does not
provide proofs with the EMM model. In this procedure, the
memory modeling constraints are generated by the procedure
EMM_Constraints, which is invoked after every unrolling. The
updated constraints Ci

 in line 5 capture the forwarding
semantics of the memory up to depth i very efficiently using
hybrid representations, i.e., 2-input gates and CNF clauses, in
order to improve the SAT solve time. The procedure
EMM_Constraints (lines 8-11 in Figure 2) generates the EMM
constraints at a depth k by using the following 3 sub-procedures:
Generate_Addr_Equal_Sig, Generate_Valid_Read_Sig, and
Generate_Read_Data_Constraints.

1. BMC-2 (n, P) {// BMC with EMM
2. C-1=φ; // initialize memory modeling constraints
3. for (int i=0; i<=n ; i++) {
4. Pi = Unroll(P,i); // get property node at ith unrolling
5. Ci = Ci-1 ∪ EMM_Constraints(i); // update the constraints
6. if (SAT_Solve(I∧¬Pi∧Ci)=SAT) return CE;}
7. return NO_CE; } // no counter-example found

8. EMM_Constraints(k) {// Modeling of memory at depth k
9. Generate_Addr_Equal_Sig(k);
10. Generate_Valid_Read_Sig(k);
11. return Generate_Read_Data_Constraints(k); }

Fig. 2. SAT-based BMC with EMM

Generation of address comparison signals: To capture every
address pair comparison Ej,k=(Addrj=Addrk), new variables ej,k

i
and following 4 CNF clauses are added for each address bit i
(where 0�i<m, and m is address width, AW)

(Ej,k
�(Addrj

i=Addrk
i)) , ((Addrj

i =Addrk
i)� ej,k

i)
Finally, add a clause to capture the relation between Ej,k and ej,k

i,
 (!ej,k

0 + …+!ej,k
i + … + !ej,k

m-1+Ej,k).
Generation of exclusive valid read signals: Let the Boolean
variable sj,k be defined as sj,k=Ej,k∧WEj. The decision si,k=1 does
not necessarily imply RDk=WDi; other read-write pairs need to
be established invalid through the decision procedure as well,
i.e., si+1,k=0, si+2,k=0, …,sk-1,k=0. Explicit constraints to capture
the exclusivity of matching read and write pairs (i.e., once a

matching read-write pair is chosen by the SAT-solver, the other
pairs are implied invalid immediately) has been shown [18] to
improve the SAT solve time significantly. Let the Boolean
variables Si,k and PSi,k denote the exclusive valid read signal
and the intermediate signal respectively. They are built
recursively using gates for all depths i > 0 as follows:

∀0≤i<k PSi,k = !si,k∧PSi+1,k
 (= REk for i=k)

 ∀0≤i<k S
i,k = si,k∧PSi+1,k (= PS0,k for i=-1)

Note that Si,k=1, immediately implies Sj,k=0 where j≠i, i,j < k.
Generation of constraints on read data signals: Using the
above exclusive signals, equation (1) is expressed as

RDk=(Sk-1,k∧WDk-1) ∨ (Sk-2,k∧WDk-2) ∨…∨ (S-1,k∧WD-1) (2)
where, WD-1 denote the initial memory state. Note, for all j<k at
most one Sj,k is equal to 1. The equation (2) is expressed
compactly using the following CNF clauses:

∀0≤i<n, ∀–1≤j<k (S
j,k �(RDk

i =WDj
i)) (DW, data width = n)

To capture validity of read signal, the following clause is added,
 (!REk + S-1,k+…+Sj,k+…+Sk-1,k)
At depth k, the hybrid representation adds (4�m+2�n+1)�k+2�n+1
clauses and 3�k gates, as compared to (4�m+2�n+2)�k+n gates in
a purely circuit-based representation. It has also been shown that
although the size of these accumulated constraints grows
quadratically with depth k, they are still significantly smaller
than the explicit memory-model [18].

4. Our Contributions

In this section, we describe our three main contributions:
1. We propose EMM for embedded systems with multiple

memories, with multiple read and write ports. We show
that the growth of the constraints is quadratic with analysis
depth, similar to that of a single memory with a single
read/write port.

2. We model arbitrary initial state of the memory precisely,
and use it to provide SAT-based induction proofs in BMC.

3. We also propose combining PBA techniques with EMM.
We show that using this combined approach, we can
identify fewer memory modules and ports that need to be
modeled; thereby reducing the model size and verification
complexity.

4.1 EMM for Multiple Memories, Read, and
Write Ports

Before we delve into a discussion of efficient modeling, we first
define memory semantics in the presence of multiple read and
write ports. We assume there are no data races. In other words, a
memory location can be updated at any given cycle through only
one write port. (We can easily extend our approach to check for
data races but details are beyond the scope of the paper.) Since
each memory module is accessed only through its ports, the
memory modules can be considered independent of each other.
In our following discussion, we first consider a single memory
with multiple read and multiple write ports.

Let the design be unrolled up to depth k (starting from 0).
Let Xj,p denote a memory interface signal variable X at time
frame j for a port p. Let R and W be the number of read and
write ports, respectively, for the given memory. Let the Boolean
variable Ej,i,w,r denote the address comparison of the read port r
at depth i, and the write port w at depth j, defined as

Ej,i,w,r=(Addri,r=Addrj,w). Then the forwarding semantics of the
memory can be expressed as:

(Ej,k,w,r∧WEj,w∧REk,r∧∀0�p<W ∀j<i<k(¬Ei,k,p,r∨¬WEi,p))
 � (RDk,r = WDj,w) (3)

In other words, data read at depth k through read port r, equals
the data written at depth j through write port w, if the addresses
are equal at depth k and j, write enable is active at j for the write
port w, read enable is active at k for the read port r, and for all
depths strictly between j and k, no data was written at the
address location Addrk,r through any write port.

Let the Boolean variable sj,k,w,r be defined as
sj,k,w,r=Ej,k,w,r∧WEj,w. The decision si,k,w,r=1 does not necessarily
imply RDk,r=WDi,w; other pairs need to be established invalid
through the decision procedure as well, i.e., si,k,w+1,r=0, ...,si,k,W-

1,r=0, si+1,k,0,r=0, …,si+1,k,W-1,r=0, …,sk-1,k,0,r=0, …,sk-1,k,W-1,r=0.
Similar to the single read/write port approach [18], we add
explicit constraints to capture the exclusivity of the matching
read-write pair, in order to improve the SAT solve time. Let the
Boolean variables Si,k,w,r and PSi,k,w,r denote the exclusive valid
read signal and intermediate signal respectively for a given read
port r and write port w. They are defined recursively as follows:

PSk,k,0,r= REk,r
∀0≤i<k ∀0≤p<W PSi,k,p,r = !si,k,p,r∧PSi,k,p+1,r (PSi,k,W,r = PSi+1,k,0,r)

∀0≤i<k ∀0≤p<W Si,k,p,r = si,k,p,r∧PSi,k,p+1,r (4)
Now the forwarding semantics for multiple read and write ports
can be expressed as

RDk,r = (∨0≤p<W,0≤i<k S
i,k,p,r∧WDi,p)∨(PS0,k,0,r∧WD-1) (5)

Note that Si,k,p,r=1, immediately implies Sj,k,q,r=0 where either
q≠p or j≠i, and i,j < k. Similar to [18], we use a hybrid
representation to add the memory modeling constraints as part
of the procedure EMM_Constraints, which is invoked after
every unrolling as shown in Figure 2. Given DW = n and AW =
m, we give the sizes of EMM constraints added in terms of
clauses and gates for each read port at a given depth k.
1. Address comparison: We require (4�m+1)�k�W CNF clauses

to represent address comparison signals.
2. Exclusive constraints: We require 3�k�W 2-input gates to

represent the exclusivity constraints in equation (4).
3. Read data constraints: We require 2�n�k�W+2�n+1 CNF

clauses to represent read data constraints in equation (5).
In total, we need (4�m+2�n+1)�k�W+2�n+1 clauses and 3�k�W
gates for a single read port and W write ports. For R read ports,
we would need ((4�m+2�n+1)�k�W+2�n+1)�R clauses and
3�k�W�R gates. Note, the growth of constraints remain quadratic
with analysis depth k and is W�R times the constraints required
for a single memory having a single read/write port. In the
presence of multiple memories, we add these EMM constraints
for each of them.

4.2. Arbitrary Initial Memory State

To model a memory with an arbitrary initial state, we introduce
new symbolic variables at every time frame. Observe that for a
(k-1)-depth analysis of a design, there can be at most k different
memory read accesses from a single read port; out of which at
most k accesses can be to un-written memory locations.
Therefore, in total we need to introduce k symbolic variables for
the different data words for each read port at analysis depth k-1.
However, these variables are not entirely independent. Simply
introducing new variables introduces additional behaviors in the

verification model. Therefore, we need to identify a sufficient
set of constraints that models the arbitrary initial state of the
memory correctly.

Let Vi,p and Vj,q represent new data words introduced at
depths i and j, for read ports p and q, respectively. Let RAi,p and
RAj,q be the corresponding read addresses for the ports p and q
(p and q need not be distinct). Let Ni,p (and Nj,q) denote the
condition that no write has occurred until depth i (and j) at
address location RAi,p (and RAj,q). We can then express the data
read from the ports p and q at depths i and j, respectively, as:

Ni,p � (RDi,p=Vi,p), Nj,q � (RDj,q=Vj,q)
Note that, if read addresses RAi,p and RAj,q are equal, then Vi,p
and Vj,q should also be equal. We add the following constraint to
capture the same,
 (RAi,p=RAj,q ∧ Ni,p∧Nj,q) � (Vi,p=Vj,q) (6)
For R read ports at (k-1)-depth analysis, we need to add k�R� (R-
1) such constraints. We add these constraints using a hybrid
representation in a separate sub-procedure call within the
procedure EMM_constraints. Note that the proof step in BMC-
1, (line 6, Figure 1) requires correct modeling of the arbitrary
initial state of the memory. Using the new set of memory
constraints as in equation (6), we augment the proof steps of
BMC with EMM constraints. The modified algorithm (BMC-3)
is shown in Figure 3 (ignore lines 11-12 for now). Later, we will
show that the correctness of safety properties can not be shown
without adding these constraints.

4.3. EMM with Proof-based Abstraction

As discussed earlier, EMM can significantly reduce the size of
the verification model for a SoC having multiple memories and
multiple ports. However, for checking the correctness of a given
safety property, we may not require all the memory modules or
the ports. To further reduce the model, we can abstract out
irrelevant memory modules or ports completely. In this case, we
do not need to add the memory modeling constraints for the
irrelevant memory modules or ports, thereby further reducing
the BMC complexity.

For the purpose of automatically identifying irrelevant
memory modules and ports, we propose a technique combining
EMM constraints with PBA [10]. This can not only reduce the
non-memory logic (from the Main module) but also identify the
memory modules and ports that are not required for proving
correctness up to a given bounded depth of BMC analysis. The
overall BMC algorithm with PBA and EMM constraints (BMC-
3) is shown in lines 11-12 of Figure 3.

1. BMC-3 (n, P){// Check safety property P within bound n
2. CP0=1; LR-1=�; C-1=�;
3. for (int i=0; i<=n ; i++) {
4. Pi = Unroll(P,i); // property node at ith unrolling
5. Ci = Ci-1 ∪ EMM_Constraints(i); // update the constraints
6. if (SAT_Solve(I∧LFPi∧Ci)=UNSAT or
7. SAT_Solve(LFPi∧¬Pi∧CPi∧Ci)=UNSAT) {
8. return PROOF;} // bwd and fwd termination check
9. if (SAT_Solve(I∧¬Pi∧Ci)=SAT) return CE;
10. CPi+1 = CPi∧Pi; // update CP
11. U_Core = SAT_Get_Refutation(); // get proof of UNSAT
12. LRi = LRi-1 ∪ Get_Latch_Reasons(U_Core);}
13. return NO_CE; } // no counter-example found

Fig. 3. SAT-based BMC with EMM and PBA

The dependency of the property on any memory module for a
given depth i is determined easily by checking whether a latch
corresponding to the control logic for that memory module (the
logic driving the memory interface signals) is in the set LRi. If
no such latch exists in the set LRi, we do not add the EMM
modeling constraints for that memory module. In other words,
we abstract out that memory module completely. We perform
similar abstraction for each memory port. This reduces the
problem size and improves the performance, as observed in our
experiments reported in the next section.

5. Experiments

We have implemented the proposed EMM techniques in a
prototype verification platform, which includes standard
verification techniques for SAT-based BMC and BDD-based
model checking. We report our experiences on several case
studies consisting of large industry designs and software
programs that have embedded memory modules with multiple
read and write ports. Two case studies correspond to industry
designs with many reachability properties. Another case study
involves a sorting algorithm with properties validating the
algorithm. For each of the properties, we require modeling of
the embedded memory, and the case studies were chosen to
highlight the use of our different contributions. We compare our
approach (labeled EMM), with explicit memory modeling
(labeled Explicit Modeling) to show the effectiveness of our
approach. We experimented on a workstation with 2.8 GHz
Xeon processors with 4GB running Red Hat Linux 7.2.

Case Study on Quick Sort: This case study makes use of EMM
for multiple memories, EMM that models arbitrary initial state,
and EMM with PBA to identify irrelevant memory modules.

We implemented a quick sort algorithm using Verilog HDL
(Hardware Description Language). The algorithm is recursively
called, first on the left partition and next on the right partition of
the array (Note: a pivot partitions the array into left and right).
We implemented the array as a memory module with AW=10
and DW=32, with 1 read and 1 write port. We implemented the
stack (for recursive function calls) also as a memory module
with AW=10 and DW=24, with 1 read and 1 write port. The
design has 200 latches (excluding memory registers), 56 inputs,
and ~9K 2-input gates. We chose two properties: a) P1: the first
element of the sorted array (in ascending order) can not be
greater than the second element, b) P2: after return from a
recursive call, the program counter should go next to a recursive
call on the right partition or return to the parent on the recursion
stack. The array is allowed to have arbitrary values to begin
with. This requires precise handling of the arbitrary initial
memory state (equation (6)) to show the correctness of the
property.

For different array sizes N, we compared the performance
of EMM and Explicit Modeling approaches, using the forward
induction proof checks in BMC-3 and BMC-1 respectively. We
used a time limit of 3 hours for each run. We present the results
in Table 1. Column 1 shows different array sizes N; Column 2
shows the properties; Column 3 shows the forward proof
diameter; Columns 4-5 and 6-7 show performance time and
space used by EMM and Explicit Modeling, respectively. Note

that using EMM we were able to prove all properties in the
given time limit, while Explicit Modeling simply times out.

Table 1. Performance summary on Quick Sort

EMM Explicit N Prop D
Sec MB Sec MB

3 P1 27 64 55 >3hr NA
3 P2 27 30 44 >3hr NA
4 P1 42 601 105 >3hr NA
4 P2 42 453 124 >3hr NA
5 P1 59 6376 423 >3hr NA
5 P2 59 4916 411 >3ht NA

Note that property P1 depends on both the array and the stack,
while property P2 depends on only the stack for correctness. In
other words, for P2, the contents of the array should not matter
at all. We used the PBA technique to examine this. For property
P2, we compared performance of EMM with PBA using BMC-
3, with that of PBA on Explicit Modeling using BMC-1. We
used a stability depth of 10 to obtain the stable set LR. We
present the results in Table 2. Column 1 shows different array
sizes N, Columns 2-5 show performance figures for EMM.
Specifically, Column 2 shows the number of latches in the
reduced model size using EMM with PBA. The value in bracket
shows the original number of latches. Column 3 shows the time
taken (in sec) for PBA to generate a stable latch set. Columns 4-
5 show the time and memory required for EMM to provide the
forward induction proof. Columns 6-9 report these performance
numbers for the Explicit Modeling.

It is interesting to note that by use of PBA, the reduced
model in Column 2 did not have any latch from the control logic
of the memory module representing the array. Therefore, we
were able to automatically abstract out the entire array memory
module, while doing BMC analysis on the reduced model using
EMM. Note that this results in significant improvement in
performance, as clear from a comparison of the performance
figures of EMM on property P2 in columns 4-5 of Tables 1 and
2. Moreover, we see several orders of magnitude performance
improvement over the Explicit Modeling, even on the reduced
models. Note, for N=5 we could not generate a stable latch
model in the given time limit for the Explicit Modeling case.

Table 2. Performance summary on Quick Sort on P2

EMM +PBA EMM-Proof
on Red. Model Explicit+PBA Explicit on

Red. Model N
FF (orig) Sec Sec MB FF (orig) Sec Sec MB

3 91 (167) 10 5 13 293 (37K) 293 2K 274
4 93 (167) 38 145 40 2858 (37K) 2858 10K 456
5 91 (167) 351 2316 116 - (37K) >3hr NA NA

Case Study on Industry Design I: This case study makes use of
our approach of EMM for multiple memories and EMM with
induction proofs.

The industry design is a low-pass image filter with 756
latches (excluding the memory registers), 28 inputs and ~15K 2-
input gates. It has two memory modules, both having address
width, AW = 10 and data width, DW = 8. Each module has 1
write and 1 read port, with memory state initialized to 0. There
are 216 reachability properties.

EMM: We were able to find witnesses for 206 of the 216
properties, in about 400s requiring 50Mb. The maximum depth
over all witnesses was 51. For the remaining 10 properties, we
were able to obtain the proofs by induction using BMC-3, in
less than 1s requiring 6Mb. Note that the introduction of new
variables to model arbitrary initial memory state, without the
constraints in equation (6), was sufficient for the proofs
although they capture extra behavior in the verification model.
Explicit Modeling: We required 20540s (~6Hrs) and 912Mb to
find witnesses for all 206 properties. For the remaining 10
properties, we were able to obtain the proofs by induction using
BMC-1 in 25s requiring 50Mb.

Case Study on Industry Design II: This case study makes use
of EMM for memory with multiple ports, and for finding
invariants that can aid proofs by induction.

The design has 2400 latches (excluding the memory
registers), 103 inputs and ~46K 2-input gates. It has one
memory module with AW=12 and DW=32. The memory
module has 1 write port and 3 read ports, with memory state
initialized to 0. There are 8 reachability properties.

We found spurious witnesses at depth 7 for all properties, if
we abstract out the memory completely. Thus, we needed to
include the memory module. Using EMM, we were not able to
find any witnesses for these properties up to depths of 200 in
about 10s. Next, we tried obtaining a proof of unreachability for
all depths. Using EMM with PBA, we were able to reduce the
model to about 100 latches requiring 4-5 minutes. However, the
model was not small enough for our BDD-based model checker
or SAT-based BMC to provide a proof. We also noticed that the
WE (write enable) control signal stayed inactive in the forward
search of 200 depth. Observing that, we hypothesized that the
memory state does not get updated, i.e., it remains in its initial
state. This is expressed using the following LTL property:

 G(WE=0 or WD=0)
i.e., always, either the write enable is inactive or the write data
(WD) is 0. Using BMC-3, we were able to prove the above
property using backward induction at depth 2 in less than 1s.
Explicit Modeling using BMC-1 takes 78s to prove the same.

The above invariant implies that the data read is always 0
(could potentially be a design bug). Next we abstracted out the
memory, but applied this constraint to the input read data
signals. We used PBA to further reduce the design to only 20-
30s latches for each property (taking about a minute). We then
proved each property unreachable on the reduced model using
forward induction proof in BMC-1 in less than 1s. (Our BDD-
based model checker was unable to build even the transition
relation for these abstract models.)

6. Conclusions

We have proposed several techniques for verifying embedded
memory systems using EMM. We extend the previous EMM
approach for a single memory with a single read/write port, to
the more commonly occurring memory systems of multiple
memories with multiple read and write ports. We also extend the
previous EMM approach for falsification to derivation of proofs.
We have proposed a precise modeling of the arbitrary initial
state of memory, for use in SAT-based induction proofs using
BMC. We have also proposed combining PBA techniques with
EMM. We showed that using this combined approach, we can

identify fewer memory modules that need to be modeled;
thereby reducing the model size and verification problem
complexity. We applied these EMM techniques on several case
studies to show their effectiveness in practice, in comparison to
an explicit memory modeling approach. In one case study,
EMM techniques also helped to efficiently check invariants,
which were then used to prove several properties unreachable.

References

[1] M. Pandey, R. Raimi, D. L. Beatty, and R. Brayton, "Formal

Verification of PowerPC Arrays using Symbolic Trajectory
Evaluation," Proceedings of DAC, 1996.

[2] C. J. H. Seger and R. E. Bryant, "Formal Verification by Symbolic
Evaluation by Partially-ordered Trajectories," Proceedings of
Formal Method in System Design, 1995.

[3] K. L. McMillan, Symbolic Model Checking: An Approach to the
State Explosion Problem: Kluwer Academic Publishers, 1993.

[4] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking: MIT
Press, 1999.

[5] D. E. Long, "Model checking, abstraction and compositional
verification," Carnegie Mellon University, 1993.

[6] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
"Counterexample-guided abstraction refinement," in Proceedings
of CAV, vol. 1855, LNCS, 2000, pp. 154-169.

[7] E. M. Clarke, A. Gupta, J. Kukula, and O. Strichman, "SAT based
abstraction-refinement using ILP and machine learning
techniques," in Proceedings of CAV, 2002.

[8] P. Chauhan, E. M. Clarke, J. Kukula, S. Sapra, H. Veith, and D.
Wang, "Automated Abstraction Refinement for Model Checking
Large State Spaces using SAT based Conflict Analysis," in
Proceedings of FMCAD, 2002.

[9] K. McMillan and N. Amla, "Automatic Abstraction without
Counterexamples," in Proceedings of TACAS, April 2003.

[10] A. Gupta, M. Ganai, P. Ashar, and Z. Yang, "Iterative Abstraction
using SAT-based BMC with Proof Analysis," in Proceedings of
ICCAD, 2003.

[11] J. R. Burch and D. L. Dill, "Automatic verification of pipelined
microprocessor control," in Proceedings of CAV, 1994.

[12] M. N. Velev, R. E. Bryant, and A. Jain, "Efficient Modeling of
Memory Arrays in Symbolic Simulation," in Proceedings of CAV,
1997.

[13] R. E. Bryant, S. German, and M. N. Velev, "Processor Verification
Using Efficient Reductions of the Logic of Uninterpreted
Functions to Propositional Logic," in Proceedings of CAV, 1999.

[14] M. N. Velev, "Automatic Abstraction of Memories in the Formal
Verification of Superscalar Microprocessors," in Proceedings of
TACAS, 2001.

[15] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, "Modeling and
Verifying Systems using a Logic of Counter Arithmetic with
Lambda Expressions and Uninterpreted Functions," in
Proceedings of CAV, 2002.

[16] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, "Symbolic Model
Checking without BDDs," in Proceedings of TACAS, 1999.

[17] M. Ganai, A. Gupta, and P. Ashar, "Distributed SAT and
Distributed Bounded Model Checking," in Proceedings of
CHARME, 2003.

[18] M. Ganai, A. Gupta, and P. Ashar, "Efficient Modeling of
Embedded Memories in Bounded Model Checking," in
Proceedings of CAV, 2004.

[19] M. Sheeran, S. Singh, and G. Stalmarck, "Checking Safety
Properties using Induction and a SAT Solver," in Proceedings of
FMCAD, 2000.

[20] L. Zhang and S. Malik, "Validating SAT Solvers Using an
Independent Resolution-Based Checker: Practical Implementations
and Other Applications," in Proceedings of DATE, 2003.

[21] M. Ganai, L. Zhang, P. Ashar, and A. Gupta, "Combining
Strengths of Circuit-based and CNF-based Algorithms for a High
Performance SAT Solver," in Proceedings of DAC, 2002.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

