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Abstract 

We describe verification techniques for embedded memory 
systems using efficient memory modeling (EMM), without 
explicitly modeling each memory bit. We extend our previously 
proposed approach of EMM in Bounded Model Checking 
(BMC) for a single read/write port single memory system, to 
more commonly occurring systems with multiple memories, 
having multiple read and write ports. More importantly, we 
augment such EMM to providing correctness proofs, in addition 
to finding real bugs as before. The novelties of our verification 
approach are in a) combining EMM with proof-based 
abstraction that preserves the correctness of a property up to a 
certain analysis depth of SAT-based BMC, and b) modeling 
arbitrary initial memory state precisely and thereby, providing 
inductive proofs using SAT-based BMC for embedded memory 
systems.  Similar to the previous approach, we construct a 
verification model by eliminating memory arrays, but retaining 
the memory interface signals with their control logic and 
adding constraints on those signals at every analysis depth to 
preserve the data forwarding semantics. The size of these EMM 
constraints depends quadratically on the number of memory 
accesses and the number of read and write ports; and linearly 
on the address and data widths and the number of memories. 
We show the effectiveness of our approach on several industry 
designs and software programs. 

 
1. Introduction 
 
According to the Semiconductor Industry Association roadmap 
prediction, embedded memories will comprise more than 70% 
of the SoC by 2005. These embedded memories on SoC support 
diverse code and data requirements arising from ever increasing 
demand for data throughput in applications ranging from 
cellular phones, smart cards and digital cameras. In the past, 
there were efforts [1] to verify on-chip memory arrays using 
Symbolic Trajectory Evaluation [2]. However, these embedded 
memories dramatically increase both design and verification 
complexity due to an exponential increase in the state space with 
each additional memory bit.  In particular, this state explosion 
adversely affects the practical application of formal verification 
techniques like model checking [3, 4] for functional verification 
of such large embedded memory systems. 

To tame the verification complexity, several memory 
abstraction techniques, i.e., removing the memories partially or 
completely from the designs are often used in the industry. 
However, such techniques often produce spurious outcomes, 
adversely affecting overall verification efforts. In many 
refinement-based techniques [5-8], starting from a small abstract 
model of the concrete design, spurious counter-examples on the 
abstract model are used to refine the model iteratively. In 
practice, several iterations are needed before a property can be 

proved correct or a real counter-example can be found. Note that 
after every iterative refinement step, the model size increases, 
making it increasingly difficult to verify. In contrast, 
abstraction-based  approaches [9, 10] use proof-based 
abstraction (PBA) techniques on a concrete design. As shown in 
[10], iterative abstraction can be used to apply such techniques 
on progressively more abstract models, thereby leading to 
significant reduction in model size. However, since these 
approaches use the concrete model to start with, it may not be 
feasible to apply them on designs with large memories. In 
general, both these refinement and abstraction based approaches 
are not geared towards exploiting the memory semantics. 

Memory abstractions that preserve the memory semantics – 
data read from a memory location is the same as the most recent 
data written at the same location – have been employed in 
various verification efforts in the past. Burch et  al. introduced 
the interpreted read and write operations in their logic of 
equality with un-interpreted functions [11]. Such partial 
interpretation of memory has also been exploited in later 
derivative verification efforts [12-14].  Specifically, Velev et al. 
used this partial interpretation in a symbolic simulation engine 
to replace memory by a behavioral model that interacts with the 
rest of the circuit through a software interface that monitors the 
memory control signals [12]. Bryant et al. proposed [15] 
modeling of memory as a functional expression in the UCLID 
system for verifying safety properties. 

SAT-based Bounded Model Checking (BMC) [16] enjoys 
several nice properties over BDD-based symbolic model 
checking [3, 4];  its performance is less sensitive to the problem 
sizes and it does not suffer from space explosion. To address the 
memory explosion problem, SAT-based distributed BMC has 
been proposed [17] in which the BMC problem is partitioned 
over a network of workstations. However, this technique is not 
geared towards verifying embedded memory systems. In our 
previous work, we have proposed an efficient memory modeling 
(EMM) technique [18] that augments SAT-based BMC to 
handle large embedded memories without explicitly modeling 
each memory bit. We showed that EMM approach allows deeper 
BMC search in finding real bugs in comparison to explicit 
memory models. Moreover, our approach captures the 
exclusivity of a matching read and writes pair  explicitly, 
reducing the overall SAT solve time. However, there are two 
main drawbacks to this previous work. First, the memory system 
considered was fairly simplistic, with a single memory having a 
single read/write port. In modern designs, it is quite common to 
have a large number of diverse memories, each with multiple 
read and write ports. Second, the approach was geared towards 
falsification i.e., finding real bugs, and not towards proving 
correctness of the specified property.  

In this work, we extend our previous approach [18]  of 
EMM in SAT-based BMC to the more commonly occurring 
embedded memory systems, with multiple memories having 
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multiple read and write ports. More importantly, we augment the 
EMM techniques to providing correctness proofs in addition to 
finding real bugs. The novelties of our verification approach are 
in a) combining EMM with PBA that preserves the correctness 
of a property up to a certain analysis depth of SAT-based BMC, 
and b) modeling arbitrary initial memory state precisely and 
thereby, providing inductive proofs using SAT-based BMC for 
embedded memory systems.  Similar to the previous approach 
[18], we construct a verification model by eliminating memory 
arrays, but retaining the memory interface signals with their 
control logic and adding constraints on those signals at every 
analysis depth to preserve the memory data forwarding 
semantics. The size of these memory-modeling constraints 
depends quadratically on the number of memory accesses and 
the number of read and write ports; and linearly on the address 
and data widths and the number of memories. We have 
implemented our techniques in a prototype verification platform, 
and demonstrate their effectiveness on several industry designs 
and software programs. 
Outline In Section 2 we give relevant background on memory 
semantics, SAT-based BMC, and PBA; in Section 3 we discuss 
the previous EMM approach; in Section 4 we describe our 
contributions; in Section 5 we discuss our experiments on 
several case studies, and conclude in Section 6. 
 
2. Background 
 
2.1. Bounded Model Checking (BMC) 
 
In BMC, the specification is expressed in LTL (Linear Temporal 
Logic). Given a Kripke structure M, an LTL formula f, and a 
bound n, the translation task in BMC is to construct a 
propositional formula [M, f]n such that the formula is satisfiable 
if and only if there exists a witness of length n  [16]. The 
satisfiability check is performed by a backend SAT solver. 
Verification typically proceeds by looking for witnesses or 
counter-examples (CE) of increasing length until the 
completeness bound is reached [16, 19].  The overall algorithm 
(BMC-1) of a SAT-based BMC method for checking a simple 
safety property is shown in Figure 1 (ignore lines 10-11 for 
now). Note that Pi denotes the property node at the ith unrolling 
of the transition relation, I denotes the initial state of the system, 
and LFPi denotes that the path of length i is loop-free. In lines 5-
7, a SAT solver is used to check the forward and backward 
termination criteria for correctness [19]. In line 8, a SAT solver 
is used to check the existence of a counter-example.  
     
1. BMC-1(n, P){ //Check safety property P within bound n 
2.   CP0=1; LR-1=�; 
3.   for (int i=0; i<=n ; i++) { 
4.     Pi = Unroll(P,i); //Property node at ith unrolling   
5.     if (SAT_Solve(I∧LFPi)=UNSAT or 
6.           SAT_Solve(LFPi∧¬Pi∧CPi)=UNSAT){ 
7.        return PROOF;} // fwd and bwd  termination check 
8.     if (SAT_Solve(I∧¬Pi)=SAT) return CE; //Falsify 
9.     CPi+1 = CPi∧Pi;  // update CP 
10.     U_Core = SAT_Get_Refutation(); // get proof of UNSAT 
11.     LRi = LRi-1 ∪ Get_Latch_Reasons(U_Core);} 
12.   return NO_CE; } // No counter-example found  

Fig. 1.  SAT-based BMC with PBA 

2.2. Proof-based Abstraction (PBA) 
 
A PBA technique for SAT-based BMC is shown in lines 10-11 
in Figure 1. When the SAT problem at line 8 is unsatisfiable, 
i.e., there is no counter-example for the safety property at a 
given depth i, the unsatisfiable core (U_Core) is obtained using 
the procedure SAT_Get_Refutation in line 10. This procedure 
simply retraces the resolution-based proof tree used by the SAT 
solver and identifies a subset formula that is sufficient for 
unsatisfiability [9, 20]. One can then use either a gate-based 
abstraction [9] or a latch-based abstraction [10] technique to 
obtain an abstract model from the U_Core. Here we show a 
latch-based abstraction technique in line 11, to obtain a set of 
latch reasons LRi at depth i. An abstract model is then generated 
for depth i by converting those latches in the given design that 
are not in the set LRi to pseudo-primary inputs. Due to the 
sufficiency property of U_Core, the resulting abstract model is 
guaranteed to preserve correctness of the property up to depth i 
[9, 10]. Depending on locality of the property, the set LRi  can 
be significantly smaller than the total latches in the given design. 
Specifically in [10], a depth d (< n) is chosen such that the size 
of set LRd does not increase over a certain number of depths, 
called stability depth. In many cases, the property can be proved 
correct on the abstract model generated at depth d and hence, for 
the given design. One can apply PBA techniques iteratively, 
called iterative abstraction [10], to further reduce the set LRd 
and hence, obtain a smaller abstract model.  
 
2.3. Memory Semantics 
 
Embedded memories are used in several forms such as RAM, 
stack, and FIFO with at least one port for data access. We model 
a design with an embedded memory, as a Main module 
interacting with the memory module using the following 
memory interface signals: Address Bus (Addr), Write Data Bus 
(WD), Read Data Bus (RD), Write Enable (WE), and Read 
Enable (RE). For the single-port memory at any given clock 
cycle: a) at most one address is valid, b) at most one write 
occurs, and c) at most one read occurs. In the write phase of the 
memory accesses, new data is assigned to WD in the same cycle 
when the Addr is valid and WE is active. Note that the new 
written data is available for read only after the current cycle. In 
the read phase, data is assigned to RD in the same cycle when 
the Addr is valid and RE is active. 
 Assume that we unroll the design up to depth k (starting 
from 0). Let Xj denote a memory interface signal variable X, at 
time frame j. Let the Boolean variable Ei,j denote the address 
comparison between time frames i and j, defined as 
Ei,j=(Addri=Addrj). Then the data forwarding semantics of the 
memory can be expressed as follows, where j < k: 

(Ej,k∧WEj∧REk∧∀j<i<k(¬Ei,k∨¬WEi)) 
�  (RDk=WDj)                      (1) 

In the other words, the data read at depth k equals the data 
written at depth j if the addresses are equal at k and j, the write 
enable is active at j, the read enable is active at k, and for all 
depths strictly between j and k, no data was written at the 
address location Addrk. 
 
 



   

3. EMM for Single Memory, Read/Write Port 
 
EMM as proposed in [18], based on the data forwarding 
semantics, is described as follows: 
1. The MEM module is removed but the memory interface 

signals and their control logic are retained with their input-
output directionality with respect to the Main Module. 

2. Constraints are added at every analysis depth k in BMC, on 
the memory interface signals to preserve the forwarding 
semantics of the memory.  

3. In addition, exclusivity constraints are added to improve 
the performance of the backend SAT solver in BMC. The 
idea is that when the SAT-solver decides on a valid 
matching read and write pair, other pairs are implied 
invalid  immediately.  

Note that although 1) and 2) are sufficient to generate an 
efficient model that preserves the validity of a correctness 
property, it has been shown [18] that 3) makes the performance 
of the SAT-based BMC superior.  

The modified BMC algorithm using the EMM approach 
(BMC-2) for a single memory, single read/write port system (as 
in [18]) is shown in Figure 2. Note that the algorithm does not 
provide proofs with the EMM model.  In this procedure, the 
memory modeling constraints are generated by the procedure 
EMM_Constraints, which is invoked after every unrolling. The 
updated constraints Ci 

 in line 5 capture the forwarding 
semantics of the memory up to depth i very efficiently using 
hybrid representations, i.e., 2-input gates and CNF clauses, in 
order to improve the SAT solve time. The procedure 
EMM_Constraints (lines 8-11 in Figure 2) generates the EMM 
constraints at a depth k by using the following 3 sub-procedures: 
Generate_Addr_Equal_Sig, Generate_Valid_Read_Sig, and 
Generate_Read_Data_Constraints.  
 
1. BMC-2 (n, P) {// BMC with EMM 
2.   C-1=φ; // initialize memory modeling constraints 
3.   for (int i=0; i<=n ; i++) { 
4.   Pi = Unroll(P,i); // get property node at ith unrolling     
5.   Ci = Ci-1 ∪ EMM_Constraints(i); // update the constraints 
6.   if (SAT_Solve(I∧¬Pi∧Ci)=SAT) return CE;} 
7.   return NO_CE; } // no counter-example found  
 
8. EMM_Constraints(k) {// Modeling of memory at depth k 
9.   Generate_Addr_Equal_Sig(k); 
10.   Generate_Valid_Read_Sig(k); 
11.   return  Generate_Read_Data_Constraints(k); } 

Fig. 2. SAT-based BMC with EMM 

Generation of address comparison signals: To capture every 
address pair comparison Ej,k=(Addrj=Addrk), new variables ej,k

i 
and following 4 CNF clauses are added for each address bit i 
(where 0�i<m, and m is address width, AW) 

(Ej,k
�(Addrj

i=Addrk
i)) , ((Addrj

i =Addrk
i)� ej,k

i) 
Finally, add a clause to capture the relation between Ej,k and ej,k

i, 
 (!ej,k

0 + …+!ej,k
i + … + !ej,k

m-1+Ej,k). 
Generation of exclusive valid read signals: Let the Boolean 
variable sj,k be defined as  sj,k=Ej,k∧WEj. The decision si,k=1 does 
not necessarily imply RDk=WDi; other read-write pairs need to 
be established invalid through the decision procedure as well, 
i.e., si+1,k=0, si+2,k=0, …,sk-1,k=0. Explicit constraints to capture 
the exclusivity of matching read and write pairs (i.e., once a 

matching read-write pair is chosen by the SAT-solver, the other 
pairs are implied invalid immediately) has been shown [18] to 
improve the SAT solve time significantly. Let the Boolean 
variables Si,k and PSi,k  denote the exclusive valid read signal 
and the intermediate signal respectively. They are built 
recursively using gates for all depths i > 0 as follows: 

∀0≤i<k  PSi,k  = !si,k∧PSi+1,k
  (= REk  for i=k) 

    ∀0≤i<k  S
i,k     = si,k∧PSi+1,k  (= PS0,k for i=-1)  

Note that Si,k=1, immediately implies Sj,k=0 where j≠i, i,j < k. 
Generation of constraints on read data signals: Using the 
above exclusive signals, equation (1) is expressed as  

RDk=(Sk-1,k∧WDk-1) ∨ (Sk-2,k∧WDk-2) ∨…∨ (S-1,k∧WD-1)    (2) 
where, WD-1 denote the initial memory state. Note, for all j<k at 
most one Sj,k is equal to 1. The equation (2) is expressed 
compactly using the following CNF clauses:  

∀0≤i<n, ∀–1≤j<k  (S
j,k �(RDk

i =WDj
i))  (DW, data width = n) 

To capture validity of read signal, the following clause is added, 
 (!REk + S-1,k+…+Sj,k+…+Sk-1,k) 
At depth k, the hybrid representation adds (4�m+2�n+1)�k+2�n+1 
clauses and 3�k gates, as compared to (4�m+2�n+2)�k+n gates in 
a purely circuit-based representation. It has also been shown that 
although the size of these accumulated constraints grows 
quadratically with depth k, they are still significantly smaller 
than the explicit memory-model [18]. 
 
4. Our Contributions 
 
In this section, we describe our three main contributions: 
1. We propose EMM for embedded systems with multiple 

memories, with multiple read and write ports.  We show 
that the growth of the constraints is quadratic with analysis 
depth, similar to that of a single memory with a single 
read/write port.  

2. We model arbitrary initial state of the memory precisely, 
and use it to provide SAT-based induction proofs in BMC. 

3. We also propose combining PBA techniques with EMM. 
We show that using this combined approach, we can 
identify fewer memory modules and ports that need to be 
modeled; thereby reducing the model size and verification 
complexity. 

 
4.1 EMM for Multiple Memories, Read, and 
Write Ports 
 
Before we delve into a discussion of efficient modeling, we first 
define memory semantics in the presence of multiple read and 
write ports. We assume there are no data races. In other words, a 
memory location can be updated at any given cycle through only 
one write port. (We can easily extend our approach to check for 
data races but details are beyond the scope of the paper.) Since 
each memory module is accessed only through its ports, the 
memory modules can be considered independent of each other. 
In our following discussion, we first consider a single memory 
with multiple read and multiple write ports. 

Let the design be unrolled up to depth k (starting from 0). 
Let Xj,p denote a memory interface signal variable X at time 
frame j for a port p. Let R and W be the number of read and 
write ports, respectively, for the given memory. Let the Boolean 
variable Ej,i,w,r denote the address comparison of the read port r 
at depth i,  and the write port w at depth j, defined as 



   

Ej,i,w,r=(Addri,r=Addrj,w). Then the forwarding semantics of the 
memory can be expressed as: 

(Ej,k,w,r∧WEj,w∧REk,r∧∀0�p<W ∀j<i<k(¬Ei,k,p,r∨¬WEi,p)) 
        � (RDk,r = WDj,w)                     (3) 

In other words, data read at depth k through read port r, equals 
the data written at depth j through write port w, if the addresses 
are equal at depth k and j, write enable is active at j for the write 
port w, read enable is active at k for the read port r, and for all 
depths strictly between j and k, no data was written at the 
address location Addrk,r through any write port. 

Let the Boolean variable sj,k,w,r be defined as  
sj,k,w,r=Ej,k,w,r∧WEj,w. The decision si,k,w,r=1 does not necessarily 
imply RDk,r=WDi,w; other pairs need to be established invalid 
through the decision procedure as well, i.e., si,k,w+1,r=0, ...,si,k,W-

1,r=0, si+1,k,0,r=0, …,si+1,k,W-1,r=0, …,sk-1,k,0,r=0, …,sk-1,k,W-1,r=0. 
Similar to the single read/write port approach [18], we add 
explicit constraints to capture the exclusivity of the matching 
read-write pair, in order to improve the SAT solve time. Let the 
Boolean variables Si,k,w,r and PSi,k,w,r denote the exclusive valid 
read signal and intermediate signal respectively for a given read 
port r and write port w. They are defined recursively as follows: 

PSk,k,0,r= REk,r 
∀0≤i<k ∀0≤p<W  PSi,k,p,r = !si,k,p,r∧PSi,k,p+1,r  (PSi,k,W,r = PSi+1,k,0,r) 

∀0≤i<k ∀0≤p<W Si,k,p,r  = si,k,p,r∧PSi,k,p+1,r      (4) 
Now the forwarding semantics for multiple read and write ports 
can be expressed as 

RDk,r = (∨0≤p<W,0≤i<k S
i,k,p,r∧WDi,p)∨(PS0,k,0,r∧WD-1 )           (5) 

Note that Si,k,p,r=1, immediately implies Sj,k,q,r=0 where either 
q≠p or j≠i, and i,j < k. Similar to [18], we use a hybrid 
representation to add the memory modeling constraints as part 
of the procedure EMM_Constraints, which is invoked after 
every unrolling as shown in Figure 2.  Given DW = n and AW = 
m, we give the sizes of EMM constraints added in terms of 
clauses and gates for each read port at a given depth k. 
1. Address comparison: We require (4�m+1)�k�W CNF clauses 

to represent address comparison signals. 
2. Exclusive constraints: We require 3�k�W 2-input gates to 

represent the exclusivity constraints in equation (4). 
3. Read data constraints: We require 2�n�k�W+2�n+1 CNF 

clauses to represent read data constraints in equation (5). 
In total, we need (4�m+2�n+1)�k�W+2�n+1 clauses and 3�k�W 
gates for a single read port and W write ports. For R read ports, 
we would need ((4�m+2�n+1)�k�W+2�n+1)�R clauses and 
3�k�W�R gates. Note, the growth of constraints remain quadratic 
with analysis depth k and is W�R times the constraints required 
for a single memory having a single read/write port. In the 
presence of multiple memories, we add these EMM constraints 
for each of them. 
 
4.2. Arbitrary Initial Memory State 
 
To model a memory with an arbitrary initial state, we introduce 
new symbolic variables at every time frame. Observe that for a 
(k-1)-depth analysis of a design, there can be at most k different 
memory read accesses from a single read port; out of which at 
most k accesses can be to un-written memory locations. 
Therefore, in total we need to introduce k symbolic variables for 
the different data words for each read port at analysis depth k-1. 
However, these variables are not entirely independent. Simply 
introducing new variables introduces additional behaviors in the 

verification model. Therefore, we need to identify a sufficient 
set of constraints that models the arbitrary initial state of the 
memory correctly. 

Let Vi,p and Vj,q represent new data words introduced at 
depths i and j, for read ports p and q, respectively. Let RAi,p and 
RAj,q be the corresponding read addresses for the ports p and q 
(p and q need not be distinct). Let Ni,p (and Nj,q) denote the 
condition that no write has occurred until depth i (and j) at 
address location RAi,p (and RAj,q). We can then express the data 
read from the ports p and q at depths i and j, respectively, as: 

Ni,p � (RDi,p=Vi,p ), Nj,q � (RDj,q=Vj,q ) 
Note that, if read addresses RAi,p and RAj,q are equal, then Vi,p 
and Vj,q should also be equal. We add the following constraint to 
capture the same, 
  (RAi,p=RAj,q ∧ Ni,p∧Nj,q) � (Vi,p=Vj,q)                    (6) 
For R read ports at (k-1)-depth analysis, we need to add k�R� (R-
1) such constraints. We add these constraints using a hybrid 
representation in a separate sub-procedure call within the 
procedure EMM_constraints.  Note that the proof step in BMC-
1, (line 6, Figure 1) requires correct modeling of the arbitrary 
initial state of the memory. Using the new set of memory 
constraints as in equation (6), we augment the proof steps of 
BMC with EMM constraints. The modified algorithm (BMC-3) 
is shown in Figure 3 (ignore lines 11-12 for now). Later, we will 
show that the correctness of safety properties can not be shown 
without adding these constraints. 
 
4.3.  EMM with Proof-based Abstraction 
 
As discussed earlier, EMM can significantly reduce the size of 
the verification model for a SoC having multiple memories and 
multiple ports. However, for checking the correctness of a given 
safety property, we may not require all the memory modules or 
the ports. To further reduce the model, we can abstract out 
irrelevant memory modules or ports completely. In this case, we 
do not need to add the memory modeling constraints for the 
irrelevant memory modules or ports, thereby further reducing 
the BMC complexity.  

For the purpose of automatically identifying irrelevant 
memory modules and ports, we propose a technique combining 
EMM constraints with PBA [10]. This can not only reduce the 
non-memory logic (from the Main module) but also identify the 
memory modules and ports that are not required for proving 
correctness up to a given bounded depth of BMC analysis. The 
overall BMC algorithm with PBA and EMM constraints (BMC-
3) is shown in lines 11-12 of Figure 3.  
 
1. BMC-3 (n, P){// Check safety property P within bound n 
2.   CP0=1; LR-1=�; C-1=�;  
3.   for (int i=0; i<=n ; i++) { 
4.     Pi = Unroll(P,i); // property node at ith unrolling   
5.     Ci = Ci-1 ∪ EMM_Constraints(i); // update the constraints 
6.     if (SAT_Solve(I∧LFPi∧Ci)=UNSAT or 
7.           SAT_Solve(LFPi∧¬Pi∧CPi∧Ci)=UNSAT) { 
8.        return PROOF;} // bwd and fwd termination check 
9.     if (SAT_Solve(I∧¬Pi∧Ci)=SAT) return CE; 
10.     CPi+1 = CPi∧Pi; // update CP 
11.     U_Core = SAT_Get_Refutation(); // get proof of UNSAT 
12.     LRi = LRi-1 ∪ Get_Latch_Reasons(U_Core);} 
13.   return NO_CE; } // no counter-example found  

Fig. 3.  SAT-based BMC with EMM and PBA 



   

The dependency of the property on any memory module for a 
given depth i is determined easily by checking whether a latch 
corresponding to the control logic for that memory module (the 
logic driving the memory interface signals) is in the set LRi. If 
no such latch exists in the set LRi, we do not add the EMM 
modeling constraints for that memory module. In other words, 
we abstract out that memory module completely. We perform 
similar abstraction for each memory port. This reduces the 
problem size and improves the performance, as observed in our 
experiments reported in the next section. 

 
5. Experiments 
 
We have implemented the proposed EMM techniques in a 
prototype verification platform, which includes standard 
verification techniques for SAT-based BMC and BDD-based 
model checking. We report our experiences on several case 
studies consisting of large industry designs and software 
programs that have embedded memory modules with multiple 
read and write ports. Two case studies correspond to industry 
designs with many reachability properties. Another case study 
involves a sorting algorithm with properties validating the 
algorithm. For each of the properties, we require modeling of 
the embedded memory, and the case studies were chosen to 
highlight the use of our different contributions. We compare our 
approach (labeled EMM), with explicit memory modeling 
(labeled Explicit Modeling) to show the effectiveness of our 
approach. We experimented on a workstation with 2.8 GHz 
Xeon processors with 4GB running Red Hat Linux 7.2. 
 
Case Study on Quick Sort: This case study makes use of EMM 
for multiple memories, EMM that models arbitrary initial state, 
and EMM with PBA to identify irrelevant memory modules. 

We implemented a quick sort algorithm using Verilog HDL 
(Hardware Description Language). The algorithm is recursively 
called, first on the left partition and next on the right partition of 
the array (Note: a pivot partitions the array into left and right). 
We implemented the array as a memory module with AW=10 
and DW=32, with 1 read and 1 write port. We implemented the 
stack (for recursive function calls) also as a memory module 
with AW=10 and DW=24, with 1 read and 1 write port. The 
design has 200 latches (excluding memory registers), 56 inputs, 
and ~9K 2-input gates.  We chose two properties: a) P1: the first 
element of the sorted array (in ascending order) can not be 
greater than the second element, b) P2: after return from a 
recursive call, the program counter should go next to a recursive 
call on the right partition or return to the parent on the recursion 
stack. The array is allowed to have arbitrary values to begin 
with. This requires precise handling of the arbitrary initial 
memory state (equation (6)) to show the correctness of the 
property.  

For different array sizes N, we compared the performance 
of EMM and Explicit Modeling approaches, using the forward 
induction proof checks in BMC-3 and BMC-1 respectively. We 
used a time limit of 3 hours for each run. We present the results 
in Table 1.  Column 1 shows different array sizes N; Column 2 
shows the properties; Column 3 shows the forward proof 
diameter; Columns 4-5 and 6-7 show performance time and 
space used by EMM and Explicit Modeling, respectively. Note 

that using EMM we were able to prove all properties in the 
given time limit, while Explicit Modeling simply times out. 
 

Table 1.  Performance summary on Quick Sort 
 

EMM Explicit N Prop D 
Sec MB Sec MB 

3  P1 27 64 55 >3hr NA 
3 P2 27 30 44 >3hr NA 
4 P1 42 601 105 >3hr NA 
4 P2 42 453 124 >3hr NA 
5 P1 59 6376 423 >3hr NA 
5  P2 59 4916 411 >3ht NA 

 
Note that property P1 depends on both the array and the stack, 
while property P2 depends on only the stack for correctness. In 
other words, for P2, the contents of the array should not matter 
at all. We used the PBA technique to examine this. For property 
P2, we compared performance of EMM with PBA using BMC-
3, with that of PBA on Explicit Modeling using BMC-1. We 
used a stability depth of 10 to obtain the stable set LR. We 
present the results in Table 2. Column 1 shows different array 
sizes N, Columns 2-5 show performance figures for EMM. 
Specifically, Column 2 shows the number of latches in the 
reduced model size using EMM with PBA. The value in bracket 
shows the original number of latches. Column 3 shows the time 
taken (in sec) for PBA to generate a stable latch set. Columns 4-
5 show the time and memory required for EMM to provide the 
forward induction proof. Columns 6-9 report these performance 
numbers for the Explicit Modeling.  

It is interesting to note that by use of PBA, the reduced 
model in Column 2 did not have any latch from the control logic 
of the memory module representing the array. Therefore, we 
were able to automatically abstract out the entire array memory 
module, while doing BMC analysis on the reduced model using 
EMM. Note that this results in significant improvement in 
performance, as clear from a comparison of the performance 
figures of EMM on property P2 in columns 4-5 of Tables 1 and 
2. Moreover, we see several orders of magnitude performance 
improvement over the Explicit Modeling, even on the reduced 
models. Note, for N=5 we could not generate a stable latch 
model in the given time limit for the Explicit Modeling case. 
 

Table 2.  Performance summary on Quick Sort on P2 
 

EMM +PBA EMM-Proof 
on Red. Model Explicit+PBA Explicit on 

Red. Model N 
FF (orig) Sec Sec MB FF (orig) Sec Sec MB 

3 91 (167) 10 5 13 293 (37K) 293 2K 274 
4 93 (167) 38 145 40 2858 (37K) 2858 10K 456 
5 91 (167) 351 2316 116 - (37K) >3hr NA NA 
 
Case Study on Industry Design I: This case study makes use of 
our approach of EMM for multiple memories and EMM with 
induction proofs.  

The industry design is a low-pass image filter with 756 
latches (excluding the memory registers), 28 inputs and ~15K 2-
input gates. It has two memory modules, both having address 
width, AW = 10 and data width, DW = 8. Each module has 1 
write and 1 read port, with memory state initialized to 0. There 
are 216 reachability properties.  



   

EMM: We were able to find witnesses for 206 of the 216 
properties, in about 400s requiring 50Mb. The maximum depth 
over all witnesses was 51. For the remaining 10 properties, we 
were able to obtain the proofs by induction using BMC-3, in 
less than 1s requiring 6Mb. Note that the introduction of new 
variables to model arbitrary initial memory state, without the 
constraints in equation (6), was sufficient for the proofs 
although they capture extra behavior in the verification model. 
Explicit Modeling: We required 20540s (~6Hrs) and 912Mb to 
find witnesses for all 206 properties. For the remaining 10 
properties, we were able to obtain the proofs by induction using 
BMC-1 in 25s requiring 50Mb. 
 
Case Study on Industry Design II: This case study makes use 
of EMM for memory with multiple ports, and for finding 
invariants that can aid proofs by induction.  

The design has 2400 latches (excluding the memory 
registers), 103 inputs and ~46K 2-input gates. It has one 
memory module with AW=12 and DW=32. The memory 
module has 1 write port and 3 read ports, with memory state 
initialized to 0. There are 8 reachability properties.  

We found spurious witnesses at depth 7 for all properties, if 
we abstract out the memory completely. Thus, we needed to 
include   the memory module. Using EMM, we were not able to 
find any witnesses for these properties up to depths of 200 in 
about 10s. Next, we tried obtaining a proof of unreachability for 
all depths. Using EMM with PBA, we were able to reduce the 
model to about 100 latches requiring 4-5 minutes. However, the 
model was not small enough for our BDD-based model checker 
or SAT-based BMC to provide a proof. We also noticed that the 
WE (write enable) control signal stayed inactive in the forward 
search of 200 depth. Observing that, we hypothesized that the 
memory state does not get updated, i.e., it remains in its initial 
state. This is expressed using the following LTL property:    

                         G(WE=0 or WD=0) 
i.e., always, either the write enable is inactive or the write data 
(WD) is 0. Using BMC-3, we were able to prove the above 
property using backward induction at depth 2 in less than 1s. 
Explicit Modeling using BMC-1 takes 78s to prove the same.  

The above invariant implies that the data read is always 0 
(could potentially be a design bug). Next we abstracted out the 
memory, but applied this constraint to the input read data 
signals. We used PBA to further reduce the design to only 20-
30s latches for each property (taking about a minute). We then 
proved each property unreachable on the reduced model using 
forward induction proof in BMC-1 in less than 1s. (Our BDD-
based model checker was unable to build even the transition 
relation for these abstract models.)  
 

6. Conclusions 
 
We have proposed several techniques for verifying embedded 
memory systems using EMM. We extend the previous EMM 
approach for a single memory with a single read/write port, to 
the more commonly occurring memory systems of multiple 
memories with multiple read and write ports. We also extend the 
previous EMM approach for falsification to derivation of proofs. 
We have proposed a precise modeling of the arbitrary initial 
state of memory, for use in SAT-based induction proofs using 
BMC. We have also proposed combining PBA techniques with 
EMM. We showed that using this combined approach, we can 

identify fewer memory modules that need to be modeled; 
thereby reducing the model size and verification problem 
complexity. We applied these EMM techniques on several case 
studies to show their effectiveness in practice, in comparison to 
an explicit memory modeling approach. In one case study, 
EMM techniques also helped to efficiently check invariants, 
which were then used to prove several properties unreachable.  
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