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Abstract feasible design spac@ne can build performance macro-
models of higher accuracy. Feasible design space is a multi-
In this paper, we present a two-level modeling approach dimensional space determined by certain design consraint
to performance macromodeling based on radial basis func- In this paper, we present a similar two-level modeling ap-
tion Support Vector Machine (SVM). The two-level model proach. The two-level model is composed of a feasibility
consists of a feasibility model and a set of performance model and a set of performance models.
models. The feasibility model identifies the feasible ahssig In contrast to [4], we will construct a feasibility model
that satisfy the design constraints. The performance macro of much higher accuracy than [4] by formulating the feasi-
model is valid for feasible designs. We formulate the fea- bility modeling problem as a two clas$assificationprob-
sibility macromodeling problem as a classification problem lem and apply state of the art classification techniqueatadi
and the performance macromodeling as a regression prob-basis function Support Vector Machine(SVM) to build the
lem and apply SVM algorithm to build the classifier and re- classifier. Performance models in the feasible design space
gressors correspondingly. Our experiment shows that per-are then constructed by fitting SVM regressor.
formance macromodels for feasible designs are much more )
accurate, faster to train and evaluate than those without 2. Problem formulation

functional or performance constraints considered. As mentioned in Section 1, feasible design space is a

multidimensional space determined by certain design con-
1. Introduction straints. Given a circuit topology, we can pose three typpes o

Performance macromodels are mathematical models thagonstraintsGeometry constraintsn the design parameters,

relate the controllable design parameters and performanc%?”mar”y device sizes and bias voltages and currdnisg-

L .~ tional constraintsthat insure the functional correctness of
parameters of an analog circuit. Frequently as an altemati the qiven circuit tonoloay an@erformance constraintsn
to a circuit level simulator for performance parameter ac- 9 pology

quisition, performance macromodels take much less time tothe performance measurements depending on the applica-

evaluate than that needed by its counterpart. Often a pertai ﬂgﬂ;’uG:?\me;%f;if;g%g?g t:i 'ggﬁ::gﬁ:)gsn ;{gzce
analog circuit topology is configured with different design yanyp ’ gn sp P

parameters in various applications. This property of an ana O.f the '“.'“‘?" design Space, in which every de_S|gn configura-

- . . tion satisfies all the design constraints. While performance
log circuit topology makes its corresponding performance constraints have never been used in performance macro-
macromodels reusable for various applications. P

A popular approach to performance macromodeling is modeling, we are enabled to do so by formulating the fea-

using regression based techniques, which often use Sam§|b|l|ty modeling problem as a classification problem and

ples of performance parameters obtained from simulation tothussi;(lg?gglc?i:rgtraar% CZ?fzt:ﬁgasée constraints are not di-
fit a regressor. This type of technique is challenged by the b

high nonlinearity relationship between design variable$ a rectly posed on the design variabléss not in an analytic

performance parameters. S. Zazalaand, J. Eckmuller and Hform. We thus define a feasibility functign(x) whose out-

Grab [4] have shown that by constraining the circuit in the put only takes two valueg+1, —1} depending on whether

xel.
0 This work was supported in part by the Defense Advanceddrelse +1 if xer
Projects Agency and the Sensors Directorate of the Air FResarch y(x) = 1 if x ¢ 7 (1)
Laboratory, U.S. Air Force, Wright-Patterson AFB, OH, un@em- -

tract F33615-01-C-1977, the Dayton Area Graduate Studiststu- . .
tion (DAGSI) under the DAGSI/AFRL Research Program Profidt To build performance macromodels, we use Vapnik [3]

UC-01-08, and the National Science Foundation under awamber proposed radial basis function SVM as our regressor. The
CCROa2SELE original SVM regressor uses sinsensitive loss function
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which is equivalent to minimizing the maximum error. Min-
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squared error and MAX stands for the maximal absolute

imizing the maximum error is favored here because we wantvalue of training or validation errors.

to make sure the models will perform well even in the worst

case.

3. Experimental results

Training set Validation set  Teyal Tirain

RMS MAX RMS MAX (s) (s)
Gain(db) 0.048 0.215 0.049 0.227 1.0e-4 279
UGF(%) 0.55 1.27 0.57 241 1.2e-4 482
PM(°) 0.062 0.357 0.080 0.917 6.6e-4 2929

Table 3. Statistics of performance macromod-

We apply the two-level modeling methodology to build
feasbility model as well as performance macromodels for

an OTA opamp, schematic shown in [2]. Ol.” experiments We also generate performance modelthout the con-
are conducted on a Sun Blade 1000 machine and COMPUstraints in Table 2. As shown in Table 4, these models are

tational time is CPU time. The techn.ology is AMI % less accurate, take much longer time to train and evaluate.
CMOS process and supply voltage is 5V. The functional Training set Validation set oy Tom
constraints insure all the transistors are on and in satura- RMS MAX RMS MAX  (s)

els of OTA opamp in feasible design space

tion region with some margin. We use a software called lib- ~Gain@b) 0053 0.777 0058 0618 2664 101sec
svm [1] to train and validate the SVM classifier and regres- UGF(%) 087 509 094 681 9.8e4 1.58hr
sors. PM(°) 0166 179 035 417 3.0e-3 5.20hr
Wi=W%  [6pm, 20qum] Table 4. Statistics of performance macromod-
Ws=W;  [6um, 20Qum] els of OTA opamp without feasibility con-
Design variables Ws =W  [6um, 20Qum] straints
W, =Wg  [6um, 20Qum]
Wo =Wio [[GHFTL 20Q1m]]
Ipi 6UA, 100UA :
Fix design parameters L1,~~I-a,SL10 1.2um 4. Conclusion
Co 1pF This paper presents a two-level modeling approach

Table 1. Design variables of OTA op-amp which consists a classifier as a feasibility model and a set

Functional constraints  Vgs— Vin > 0.1V of regressors as performance models. Experimental re-
xdszggé&vtﬁo‘lv sults show that it is an efficient approach to performance
os =~ Y.

Performance constraints  Phase Margid5° macromodeling.

Table 2. Design constraints of OTA opamp
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