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Abstract

In this paper, we present a two-level modeling approach
to performance macromodeling based on radial basis func-
tion Support Vector Machine (SVM). The two-level model
consists of a feasibility model and a set of performance
models. The feasibility model identifies the feasible designs
that satisfy the design constraints. The performance macro-
model is valid for feasible designs. We formulate the fea-
sibility macromodeling problem as a classification problem
and the performance macromodeling as a regression prob-
lem and apply SVM algorithm to build the classifier and re-
gressors correspondingly. Our experiment shows that per-
formance macromodels for feasible designs are much more
accurate, faster to train and evaluate than those without
functional or performance constraints considered.

1. Introduction

Performance macromodels are mathematical models that
relate the controllable design parameters and performance
parameters of an analog circuit. Frequently as an alternative
to a circuit level simulator for performance parameter ac-
quisition, performance macromodels take much less time to
evaluate than that needed by its counterpart. Often a certain
analog circuit topology is configured with different design
parameters in various applications. This property of an ana-
log circuit topology makes its corresponding performance
macromodels reusable for various applications.

A popular approach to performance macromodeling is
using regression based techniques, which often use sam-
ples of performance parameters obtained from simulation to
fit a regressor. This type of technique is challenged by the
high nonlinearity relationship between design variables and
performance parameters. S. Zazalaand, J. Eckmuller and H.
Grab [4] have shown that by constraining the circuit in the
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feasible design space, one can build performance macro-
models of higher accuracy. Feasible design space is a multi-
dimensional space determined by certain design constraints.
In this paper, we present a similar two-level modeling ap-
proach. The two-level model is composed of a feasibility
model and a set of performance models.

In contrast to [4], we will construct a feasibility model
of much higher accuracy than [4] by formulating the feasi-
bility modeling problem as a two classclassificationprob-
lem and apply state of the art classification technique, radial
basis function Support Vector Machine(SVM) to build the
classifier. Performance models in the feasible design space
are then constructed by fitting SVM regressor.

2. Problem formulation

As mentioned in Section 1, feasible design space is a
multidimensional space determined by certain design con-
straints. Given a circuit topology, we can pose three types of
constraints:Geometry constraintson the design parameters,
primarily device sizes and bias voltages and currents;Func-
tional constraintsthat insure the functional correctness of
the given circuit topology andPerformance constraintson
the performance measurements depending on the applica-
tions. Geometry constraints define the initial design space,
usually a hypercube. Feasible design spaceI is the subspace
of the initial design space, in which every design configura-
tion satisfies all the design constraints. While performance
constraints have never been used in performance macro-
modeling, we are enabled to do so by formulating the fea-
sibility modeling problem as a classification problem and
thus to handle arbitrary constraints.

Since functional and performance constraints are not di-
rectly posed on the design variables,I is not in an analytic
form. We thus define a feasibility functiony(x) whose out-
put only takes two values{+1,−1} depending on whether
x∈ I .

y(x) =

{

+1 if x∈ I
−1 if x /∈ I

(1)

To build performance macromodels, we use Vapnik [3]
proposed radial basis function SVM as our regressor. The
original SVM regressor uses aε-insensitive loss function
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which is equivalent to minimizing the maximum error. Min-
imizing the maximum error is favored here because we want
to make sure the models will perform well even in the worst
case.

3. Experimental results

We apply the two-level modeling methodology to build
feasbility model as well as performance macromodels for
an OTA opamp, schematic shown in [2]. Our experiments
are conducted on a Sun Blade 1000 machine and compu-
tational time is CPU time. The technology is AMI 0.5µm
CMOS process and supply voltage is 5V. The functional
constraints insure all the transistors are on and in satura-
tion region with some margin. We use a software called lib-
svm [1] to train and validate the SVM classifier and regres-
sors.

W1 = W2 [6µm, 200µm]
W3 = W4 [6µm, 200µm]

Design variables W5 = W6 [6µm, 200µm]
W7 = W8 [6µm, 200µm]
W9 = W10 [6µm, 200µm]

Ibias [6µA, 100µA]
Fix design parameters L1, · · · ,L10 1.2µm

Cc 1pF

Table 1. Design variables of OTA op-amp

Functional constraints Vgs−Vth ≥ 0.1V
Vds≥Vgs−Vth +0.1V
Vos ≤ 0.01V

Performance constraints Phase Margin≥ 45◦

Table 2. Design constraints of OTA opamp

The feasible design space is only about 2.4% of the en-
tire design space in this particular example. Using a set of
uniform random samples to train the SVM, we can get a
feasibility model of very high overall accuracy but approx-
imate the feasible design space very poorly. We apply the
active learning scheme proposed by [2] to solve the prob-
lem. The overall accuracy is always above 98.9% due to the
powerful classification ability of the SVM. The active learn-
ing scheme can approximate the feasible design space much
better with the same number of samples.

We construct and validate various performance macro-
models using performance parameters of feasible designs.
The training set has 7,000 samples and the validation set
has 7,101 samples. In Table 3, RMS stands for root mean

squared error and MAX stands for the maximal absolute
value of training or validation errors.

Training set Validation set Teval Ttrain
RMS MAX RMS MAX (s) (s)

Gain(db) 0.048 0.215 0.049 0.227 1.0e-4 27.9
UGF(%) 0.55 1.27 0.57 2.41 1.2e-4 48.2
PM(◦) 0.062 0.357 0.080 0.917 6.6e-4 2929

Table 3. Statistics of performance macromod-
els of OTA opamp in feasible design space

We also generate performance modelswithout the con-
straints in Table 2. As shown in Table 4, these models are
less accurate, take much longer time to train and evaluate.

Training set Validation set Teval Ttrain
RMS MAX RMS MAX (s)

Gain(db) 0.053 0.777 0.058 0.618 2.6e-4 101sec
UGF(%) 0.87 5.09 0.94 6.81 9.8e-4 1.58hr
PM(◦) 0.166 1.79 0.35 4.17 3.0e-3 5.20hr

Table 4. Statistics of performance macromod-
els of OTA opamp without feasibility con-
straints

4. Conclusion

This paper presents a two-level modeling approach
which consists a classifier as a feasibility model and a set
of regressors as performance models. Experimental re-
sults show that it is an efficient approach to performance
macromodeling.

References
[1] C.-C. Chang and C.-J. Lin. LIBSVM: a library for

support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm .

[2] M. Ding and R. Vemuri. An active learning scheme using
support vector machines for analog circuit feasibility classifi-
cation. InProceedings of the 18th international conference on
VLSI design, 2005, to be published.

[3] V. Vapnik. The nature of statistical learning theory. Springer,
New York, 1995.

[4] S. Zizala, J. Eckmueller, and H. Grab. Fast calculation of ana-
log circuits’ feasibility regions by low level functional mea-
sures. InIEEE International Conference on Electronics, Cir-
cuits and Systems, pages 85–88, 1998.


	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index




