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Abstract 

This paper presents a method to automatically 
generate compact symbolic performance models of 
analog circuits with no prior specification of an equation 
template.  The approach takes SPICE simulation data as 
input, which enables modeling of any nonlinear circuits 
and circuit characteristics.  Genetic programming is 
applied as a means of traversing the space of possible 
symbolic expressions.  A grammar is specially designed to 
constrain the search to a canonical form for functions.  
Novel evolutionary search operators are designed to 
exploit the structure of the grammar.  The approach 
generates a set of symbolic models which collectively 
provide a tradeoff between error and model complexity.  
Experimental results show that the symbolic models 
generated are compact and easy to understand, making 
this an effective method for aiding understanding in 
analog design.  The models also demonstrate better 
prediction quality than posynomials. 

 

1 Introduction 
Symbolic models of analog circuits have many 

applications.   Fundamentally, they increase a designer’s 
understanding of a circuit, which leads to better decision-
making in circuit sizing, layout, verification, and topology 
design.  Automated approaches to symbolic model 
generation are therefore of great interest. 

In symbolic analysis, models are derived via topology 
analysis. [1] is a survey.  Its main weakness is that it is 
limited to linear and weakly nonlinear circuits.   

Leveraging SPICE simulations in modeling is 
promising because simulators readily handle nonlinear 
circuits, as well as environmental effects, manufacturing 
effects, and different technologies. Simulation data has 
been used to train neural networks as in [2,3,4]. However, 
such models provide no insight. 

The aim of symbolic modeling is to use simulation 
data to generate interpretable mathematical expressions 
that relate the circuit performances to the design variables.   

In [5,6], symbolic models are built from a posynomial 
template. The main problem is that the models are 

constrained to a template, which restricts the functional 
form and in doing so also imposes bias.  Also, the models 
have dozens of terms, limiting their interpretability.  
Finally, the approach assumes posynomials can fit the 
data; in analog circuits there is no guarantee of this, and 
one might never know in advance. 

The problem we address in this paper is how to 
generate symbolic models with more open-ended 
functional forms (i.e. without a pre-defined template), for 
arbitrary nonlinear circuits, and at the same time ensure 
that the models are interpretable. A target flow that 
reflects these goals is shown in Figure 1.   

We approach the question by using genetic 
programming (GP) [7] as a starting point.  GP generates 
symbolic expressions without the using a template, but 
those functions are overly complex.  So, we extend GP 
via a grammar specifically designed to have interpretable 
symbolic models.  We name the approach CAFFEINE: 
Canonical Functional Form Expressions in Evolution. 

 
Figure 1: Template-free symbolic modeling flow 

The contributions of this paper are as follows: 
• To the best of our knowledge, a first-ever tool to do 
template-free symbolic modeling, with the flexibility of 
SPICE simulations therefore allowing modeling of any 
nonlinear circuits. 
• A means to make the models compact and 
understandable, yet with arbitrary accuracy; in fact 
providing a tradeoff between accuracy and complexity.  
Final models are highly predictive. 
• For GP, a specially designed grammar and related 
operators to ensure that all functions explored follow a 
canonical form, making them directly interpretable. 
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This paper is organized as follows.  Section 2 defines 
the problem.  Section 3 gives background on GP, on 
which sections 4 and 5 build to describe CAFFEINE and 
the grammar.  Section 6 has results; section 7 concludes.    

2 Problem Formulation 
The problem that we address is formulated as follows: 

Given: 
• A set of {x(t),y(t)},t=1..N data samples where x(t) is 
a d-dimensional design point t and y(t) is a corresponding 
circuit performance value measured from simulation of 
that design. 
• No model template 
 
Determine: 
• A set of symbolic models *f F∈  that together 
provide the optimal tradeoff between prediction error and 
some measure of complexity.   

Speed of model building is not considered a goal at 
this point; that is left to future research. 

3 Background: Genetic Programming 
Genetic Programming (GP) [7] is an evolutionary 

algorithm, with the distinguishing characteristic that GP 
individuals (points in the design space) are trees.   

GP has issues to be addressed before it can be useful 
in symbolic model generation.  GP-evolved functions can 
be notoriously complex and un-interpretable; e.g. [7] 
showed functions so bloated that they take up a full page 
of dense text.  Also, overfitting is a risk because 
prediction quality does not influence model choice. 

The functional form of results from canonical GP is 
completely unrestricted.  While this sounds great 
compared to the restrictions of fixed-template regression, 
it actually goes a little too far.  Most importantly, an 
unrestricted form is almost always difficult to analyze.  
Also, an unrestricted form can cause undesirable biases in 
the search, such as tuning too many parameters which 
may even be redundant, or making it difficult for to add / 
remove basis functions.  The challenge is to find a way to 
restrict the form enough to overcome these problems, 
without constraining away any possible forms.   

4 CAFFEINE 
CAFFEINE uses GP as a starting point, but extends it 

in order to properly address template-free symbolic 
modeling.  It attacks the issues of complexity and 
interpretability in two main ways: a multi-objective 
approach that provides a tradeoff between error and 
complexity, and a specially designed grammar to 
constrain the search to specific functional forms without 
cutting out good solutions.  It also performs special post-
processing to further improve models. In CAFFEINE, the 

overall expression is a linear sum of weighted basis 
functions; therefore, each individual is a set of GP trees. 

4.1 Multi-Objective Approach 
CAFFEINE uses a state of the art multi-objective 

evolutionary algorithm, namely NSGA-II [8].  NSGA-II 
returns a set of individuals that, collectively, trade off 
error and complexity (i.e. a nondominated set).   

“Error” is normalized mean-squared error.  
“Complexity” is dependent on the number of basis 
functions, the number of nodes in each tree, and the 
exponents of “variable combos” (VCs, described later): 
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 The approach accomplishes simplification during 
generation by maintaining evolutionary pressure towards 
lower complexity.  The user avoids an a priori decision 
on error or complexity because the algorithm generates a 
set of models that provide tradeoffs of alternatives. 

5 Grammar and Operators 
In GP, a means of constraining search is via a 

grammar, as in [9]. Evolutionary operators must respect 
the derivation rules of the grammar, i.e. only subtrees 
with the same root can be crossed over, and random 
generation of trees must follow the derivation rules.  A 
basis function is the leaf nodes (terminal symbols) of the 
tree; internal nodes (nonterminal symbols) reflect the 
underlying structure; the tree root is the start symbol.  

Even though grammars can usefully constrain search, 
none have yet been carefully designed for functional 
forms.  In designing such a grammar, it is important to 
allow all functional combinations (even if just in one 
canonical form).  This includes an arbitrary number of 
products of expressions, and of sums of expressions.  Any 
desired single-input, dual-input, etc should be allowed.   

The CAFFEINE grammar maintains functions in a 
“canonical form” and meets those goals:   

  
REPVC => ‘VC’ | REPVC ‘*’ REPOP | REPOP
REPOP => REPOP ‘*’ REPOP | 1OP ‘(‘ ‘W’ ‘+’
REPADD ‘)’ | 2OP ‘(‘ 2ARGS ‘)’ | ... 3OP, 4OP
etc
2ARGS => ‘W’ ‘+’ REPADD ‘,’ MAYBEW | MAYBEW ‘,’
‘W’ ‘+’ REPADD
MAYBEW => ‘W’ | ‘W’ ‘+’ REPADD
REPADD => ‘W’ ‘*’ REPVC | REPADD ‘+’ REPADD
2OP => ‘DIVIDE’  | ‘POW’ | ‘MAX’ | ... 
1OP => ‘INV’ | ‘LOG10’ | ...



Terminal symbols are in quotes.  Each nonterminal 
symbol has a set of derivation rules separated by ‘|’.  The 
start symbol is REVPC; one tree is used for each basis 
function; basis functions are linearly weighted using least-
squares learning. Basis function operators include: 
creating a new individual by randomly choosing >0 basis 
function from each of 2 parents; deleting a random basis 
function; adding a randomly generated tree as a basis 
function;  copying a subtree from one individual to make 
a new basis function for another. 

The root is a product of variables and/or nonlinear 
functions (REPVC and REPOP).  Within each nonlinear 
function is a weighted sum of basis functions (REPADD).  
Each basis function can be, once again, a product of 
variables and/or nonlinear functions. And so on.   

 The grammar is context-free, with two exceptions for 
the sake of enhanced search:  
• Weights (W). A real value is stored in the range  
[ ]2 * , 2 *B B− + at each W node.  During interpretation of 
the tree the value is transformed into 
[ ] [ ] [ ]1 , 1 1 , 10.0e B e B e B e B− + − − − +∪ ∪ .  B is user-set, e.g. 
10. In this way parameters can take on very small or very 
large negative or positive values.  Zero-mean Cauchy 
mutation [10] is  an operator on the real value. 
• Single-basis rational combinations of variables 
(VC).  With each VC a vector is stored, with integer 
value per design variable as the variable’s exponent.  An 
example vector is [1,0,-2,1], which means 2

1 4 3
( * ) ( )x x x .  

For interpretability, real-valued and fractional-valued 
exponents are not allowed.  VC operators include: one 
point crossover, and randomly adding or subtracting to an 
exponent value. 

POW(a,b) is ab.  Via 2ARGS with MAYBEW, either 
the base or the exponent (but not both) can be constants.   

The designer can turn off any of the rules if they are 
considered unwanted or unneeded.  For example, one 
could easily restrict the search to polynomials or rationals, 
or remove potentially difficult-to-interpret functions such 
as sin and cos.  The designer could change or extend the 
operators or inputs, e.g. include wi , li, and wi / li .  

5.1 CAFFEINE Post-Processing 
After the evolutionary run is complete, simplification 

after generation (SAG) is performed on each of the final 
set of models in the tradeoff.  SAG is accomplished via 
the Predicted Residual Sums of Squares (PRESS) statistic 

( )

( )
t

tξ −  [11] coupled with forward regression [12].  PRESS 
approximates leave-one-out cross-validation on the linear 
parameters; forward regression prunes basis functions that 
harm predictive ability.  This gives predictive robustness 
to the linear parameters.  

After that, the tradeoff models are evaluated on test 
data, and filtered down to only models that are on the 
tradeoff of testing error and complexity.  Such a final step 
might not be possible with more deterministic approaches 
having more homogenous results, but the stochastic 
nature of CAFFEINE, causing more heterogeneous 
results, makes such filtering possible.  

 
Figure 2: Schematic of high-speed CMOS OTA 

6 Experiments 

6.1 Experimental Setup 
A prototype CAFFEINE system was written in about 

2000 lines of Matlab code.  The grammar was defined in a 
separate text file and parsed by the CAFFEINE system.  

Single-input operators allowed were: x , loge(x), 
log10(x), 1/x, abs(x), x2, sin(x), cos(x), tan(x), max(0, x), 
and min(0,x), 2x, 10x, where x is an expression.  Double-
input operators allowed are x1+x2, x1*x2, max(x1,x2), 
min(x1,x2), power(x1,x2), and x1/x2. Also, lte(testExpr, 
condExpr, exprIfTestLessThanCond, elseExpr) and 
lte(testExpr, 0, exprIfTestLessThan0, elseExpr) were 
used. Any input variable could have an exponent in the 
range {…,-2, -1, 1, 2, …}.  While real-valued exponents 
could have been used, that would have harmed 
interpretability. 

The circuit being modeled is a high-voltage CMOS 
OTA as shown in Figure 2.  The goal is to discover 
expressions for low-frequency gain (ALF), unity-gain 
frequency (fu), phase margin (PM), input-referred offset 
voltage (voffset), and the positive and negative slew rate 
(SRp, SRn).  To allow a direct comparison to the 
posynomial approach [6], an almost-identical problem 
setup was used, as well as identical simulation data. The 
only difference is that because scaling makes the model 
less interpretable, neither the inputs nor outputs were 
scaled; the one exception is that fu is log-scaled so that 
mean-squared error calculations and linear learning are 
not wrongly biased towards high-magnitude samples of fu.  

The technology is 0.7 �m CMOS.  The supply voltage 
is 5V.  Vth,nom is 0.76V and –0.75V for NMOS and PMOS 
devices, respectively. The load capacitance is 10 pF. 



Good training data is essential to the methodology.  
The choice of design variables and sampling  
methodology determines the extent to which the designer 
can make inferences about the physical basis, and what 
regions of design space the model is valid in.  We used an 
operating-point driven formulation [13], where currents 
and transistor drive voltages comprise design variables 
(13 variables in our case).  Device sizings could have 
been used instead; it all depends on designer preference.  
Full orthogonal-hypercube Design-Of-Experiments 
(DOE) sampling of design points was used, with scaled 
dx=0.1 (the simpler problem of dx=0.01 is ignored in this 
paper) to have 243 samples with three simulations each, 
some of which did not converge. Simulation time for one 
sample was about 1 s, or 4 min for all samples; this is 
fully dependent on the circuit, analyses, and experimental 
design being used.  These samples, otherwise unfiltered, 
were used as training data inputs.  Testing data inputs 
were also sampled with full orthogonal-hypercube DOE 
and 243 samples, but with dx=0.03.  Thus, in this 
experiment we are creating a somewhat localized model; 
one could just as readily model a broader design space.   

 The run settings were: maximum number of basis 
functions = 15, population size 200, 5000 generations, 
maximum tree depth 8, and parameter range 
[ ] [ ] [ ]1 10, 1 10 0.0 1 10,1 10e e e e− + − − ∪ ∪ − + . All operators 
had equal probability, except parameter mutation was 5x 
more likely.  Complexity measure settings were wb = 10, 
wvc = 0.25. Just one run was done for each performance 
goal, for 6 runs total.  (The aim was proof-of-concept, not 
efficiency.)  Each run took about 12 hours on a 3 GHz 
Pentium IV Linux workstation.  After each run, SAG 
(section 5.1) was done, taking about 10 min. 

We use normalized mean-squared error on the training 
data and separate testing data, which are standard 
measurements in regression literature.  Testing error is 
ultimately the more important measure. These measures 
are identical to two of the three posynomial “quality of 
fit” measures [6]: qwc is training error, and qtc is testing 
error.  (qwc and qtc are identical as long as the constant ‘c’ 
in the denominator is zero, which [6] did.)  We ignore qoc, 
which measured the error at just one training point. 

6.2 Results and Discussion 
Let us first see if CAFFEINE generates tradeoffs 

between training error (qwc) and complexity, as expected. 
Figure 3 illustrates tradeoff results.  In each instance, 
CAFFEINE generates a tradeoff of about 50 different 
models.  As expected, a zero-complexity model (i.e. just a 
constant) has the highest training error of 10-25%; the 
highest complexities have the lowest training error, of 1-
3%.  Since only one run was done for each performance 
characteristic, the reliability of the algorithm is promising.     

As expected, the number of basis functions usually 
rises with the complexity.  This is not always the case, 
however, as larger trees increase complexity too; the 
plateaus and dips in the basis function curves show that 
this does indeed occur. In every case, CAFFEINE used 
the maximum allowed number of basis functions (15) to 
achieve the lowest error.  Undoubtedly, error could have 
been reduced further, but models with 15 basis function 
models are already at the edge of interpretability.    

The testing error (qtc) is also shown in Figure 3.  We 
see that unlike training error, it is not monotonically 
decreasing as complexity rises.  This means that some less 
complex models are more predictive than more complex 
ones.  However, if we prune the models down to the ones 
that give a tradeoff between testing error and complexity, 
we get the rightmost column of Figure 3. These 5-10 
models for each performance goal are of the most interest.   

It is notable that the testing error is lower than the 
training error in almost all cases.  This sounds promising, 
but such behavior is rare in the regression literature, and 
made us question what was happening.  It turns out there 
is a valid reason: recall that the training data is from 
extreme points of the sampling hypercube (scaled 
dx=0.10), and the testing data is internal to the hypercube 
(dx=0.03).  This testing data tests interpolation ability.  
Thus, models that really are predictive should be able to 
interpolate well, even at the cost of a perfect fit to the 
extreme points.  In any case, to validly have testing error 
lower than training error demonstrates the strength of the 
CAFFEINE approach.  

Let us now examine the actual symbolic models 
generated by CAFFEINE.  We ask: “what are all the 
symbolic models that provide less than 10% error in both 
training and testing data?” Table I shows those functions 
(fu has been converted to its true form by putting the 
generated function to the power of 10).  We see that each 
form has up to 4 basis functions, not including the 
constant.  For voffset, a constant was sufficient to keep the 
error within 10%.  We see that a rational functional form 
was favored heavily; at these target errors only one 
nonlinear function, ln( ), appears (for ALF).  That 
expression effectively says that the order of magnitude of 
some input variables is useful.   

  One can examine the equations in more detail to gain 
an understanding of how design variables in the topology 
affect performance.  For example, ALF is inversely 
proportional to id1, the current at the OTA’s differential 
pair.  Or, SRp is solely dependent on id1 and id2 and the 
ratio id1 / id2.  Or, within the design region sampled, the 
nonlinear coupling among the design variables is quite 
weak, typically only as ratios for variables of the same 
transistor. Or that each expression only contains a 
(sometimes small) subset of design variables.  Or, that 
transistor pairs M1 and M2 are the only devices affecting 
five of the six performances (within 10%).   



 
Figure 3: The two leftmost columns show generated models’ training error (qwc), testing error (qtc), and number 

of bases vs. complexity for each performance goal; all models in the tradeoff of training error vs. complexity are 
shown.  The rightmost column shows only models that are on the tradeoff of testing error vs. complexity too. 

Test error 
(%) 

Train error 
(%) 

PM Expression 

3.98 15.4 90.2 
3.71 10.6 90.5 + 186.6 * id1    + 22.1 * id2 / vds2   
3.68 10.0 90.5 + 190.6 * id1 / vsg1  +  22.2 * id2 / vds2 
3.39 8.8 90.1 + 156.85 * id1 / vsg1 - 2.06e-03 * id2 / id1 + 0.04 * vgs2 / vds2 
3.31 8.0 91.1 - 2.05e-3 * id2 / id1 + 145.8 * id1 + 0.04 * vgs2 / vds2  - 1.14 / vsg1  
3.20 7.7 90.7 - 2.13e-3 * id2 / id1 + 144.2 * id1 + 0.04 * vgs2 / vds2  - 1.00 / (vsg1*vsg3)  
2.65 6.7 90.8 - 2.08e-3 * id2 / id1 + 136.2 * id1 + 0.04 * vgs2 / vds2 -1.14 / vsg1 + 0.04 * vsg3 / vsd5 
2.41 3.9 91.1 - 5.91e-4 * (vsg1*id2) / id1 + 119.79 * id1 + 0.03 * vgs2 / vds2 - 0.78 / vsg1 + 0.03 * vsg1 / vsd5  

-2.72e-7 / (vds2*vsd5*id1) +  7.11 * (vgs2*vsg4*id2) - 0.37 / vsg5 - 0.58 / vsg3 - 3.75e-6 / id2 - 5.52e-6 / id1 

Table II: CAFFEINE-generated models of PM, in order of decreasing error and increasing complexity 

Target (%)  Perf. 
qwc qtc 

Expression 

ALF 10 10 -10.3 + 7.08e-5 / id1  
  + 1.87 * ln( -1.95e+9 + 1.00e+10 / (vsg1*vsg3)+ 1.42e+9 *(vds2*vsd5) / (vsg1*vgs2*vsg5*id2)) 

fu 10 10 10^( 5.68 - 0.03 * vsg1 / vds2 - 55.43 * id1+ 5.63e-6 / id1 ) 
PM 10 10 90.5 + 190.6 * id1 / vsg1  +  22.2 * id2 / vds2 
voffset 10 10 - 2.00e-3 
SRp 10 10 2.36e+7 + 1.95e+4 * id2 / id1 - 104.69 / id2 + 2.15e+9 * id2 + 4.63e+8 * id1 
SRn 10 10 - 5.72e+7 - 2.50e+11 * (id1*id2) / vgs2 + 5.53e+6 * vds2 / vgs2 + 109.72 / id1 

Table I: CAFFEINE-generated symbolic models which have less than 10% training and testing error 



By only putting the relevant variables into a model, 
the approach demonstrates the potential to provide 
expressions for circuits with significantly more variables. 

One may improve understanding in another fashion: 
by examining expressions of varying complexity for a 
single performance characteristic.  Low-complexity 
models will show the macro-effects; alterations to get 
improved error point show how the model is refined to 
handle second-order effects.  Table II shows models 
generated for PM in decreasing training and testing error.  
A constant of 90.2, while giving 15 % training error, had 
only 4% test error.  For better prediction, CAFFEINE 
injected two more basis functions; one basis being the 
current into the differential pair id1, the other basis, id2 / 
vds2, the ratio of current to drain-source voltage at M2.  
The next model turns the input current term into a ratio id1 
/ vsg1. Interestingly, and reassuringly, almost all ratios use 
the same transistor in the numerator and denominator.  

Such analyses achieve the aim of this tool: to improve 
understanding of the topology. 

 
Figure 4: Comparison of CAFFEINE testing error to 
posynomial testing error; also to training error 

We also compared CAFFEINE to the posynomial 
approach using the numbers in [5]. We first compare the 
test and training errors.  To pick a model from a 
CAFFEINE-generated tradeoff for comparison, we fixed 
the training error to what the posynomial achieved, then 
compared testing errors.  Results are in Figure 4.  In one 
case, voffset, CAFFEINE did not meet the posynomial 
training error (0.4%), so it probably could have for more 
basis functions; we instead picked an expression which 
very nearly matched the posynomial approach's testing 
error of 0.8%.  What we saw in previous data, and we see 
again here, is that CAFFEINE has lower testing error than 
training error, which provides great confidence to the 
models.  In contrast, in all cases but voffset, the 
posynomials had higher testing error than training error, 
even on this interpolative data set.  CAFFEINE models' 
testing errors were 2x to 5x lower than the posynomial 
models.  The exception is voffset, where the posynomial 
achieves 0.8% testing error compared to 0.95% for 
CAFFEINE.  With posynomials having weak prediction 
ability even in interpolation, in comparison to more 
compact models, one might question the trustworthiness 
of constraining models of analog circuits to posynomials.   

7 Conclusion 
This paper presented CAFFEINE, a tool which for the 

first time can generate interpretable, template-free 
symbolic models of nonlinear analog circuit performance 
characteristics.  CAFFEINE is built upon genetic 
programming, but its key is a grammar that restricts 
symbolic models to a canonical functional form.  

CAFFEINE generates a set of models that collectively 
trade off between error and complexity.  Visual inspection 
of the models demonstrates that the models are 
interpretable.  These models were also shown to be 
significantly better than posynomials in predicting unseen 
data. 
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