
CAFFEINE: Template-Free Symbolic Model Generation of Analog
Circuits via Canonical Form Functions and Genetic Programming

Trent McConaghy, Tom Eeckelaert, Georges Gielen

K.U. Leuven, ESAT-MICAS

Kasteelpark Arenberg 10
B-3001 Leuven, Belgium

Abstract

This paper presents a method to automatically
generate compact symbolic performance models of
analog circuits with no prior specification of an equation
template. The approach takes SPICE simulation data as
input, which enables modeling of any nonlinear circuits
and circuit characteristics. Genetic programming is
applied as a means of traversing the space of possible
symbolic expressions. A grammar is specially designed to
constrain the search to a canonical form for functions.
Novel evolutionary search operators are designed to
exploit the structure of the grammar. The approach
generates a set of symbolic models which collectively
provide a tradeoff between error and model complexity.
Experimental results show that the symbolic models
generated are compact and easy to understand, making
this an effective method for aiding understanding in
analog design. The models also demonstrate better
prediction quality than posynomials.

1 Introduction
Symbolic models of analog circuits have many

applications. Fundamentally, they increase a designer’s
understanding of a circuit, which leads to better decision-
making in circuit sizing, layout, verification, and topology
design. Automated approaches to symbolic model
generation are therefore of great interest.

In symbolic analysis, models are derived via topology
analysis. [1] is a survey. Its main weakness is that it is
limited to linear and weakly nonlinear circuits.

Leveraging SPICE simulations in modeling is
promising because simulators readily handle nonlinear
circuits, as well as environmental effects, manufacturing
effects, and different technologies. Simulation data has
been used to train neural networks as in [2,3,4]. However,
such models provide no insight.

The aim of symbolic modeling is to use simulation
data to generate interpretable mathematical expressions
that relate the circuit performances to the design variables.

In [5,6], symbolic models are built from a posynomial
template. The main problem is that the models are

constrained to a template, which restricts the functional
form and in doing so also imposes bias. Also, the models
have dozens of terms, limiting their interpretability.
Finally, the approach assumes posynomials can fit the
data; in analog circuits there is no guarantee of this, and
one might never know in advance.

The problem we address in this paper is how to
generate symbolic models with more open-ended
functional forms (i.e. without a pre-defined template), for
arbitrary nonlinear circuits, and at the same time ensure
that the models are interpretable. A target flow that
reflects these goals is shown in Figure 1.

We approach the question by using genetic
programming (GP) [7] as a starting point. GP generates
symbolic expressions without the using a template, but
those functions are overly complex. So, we extend GP
via a grammar specifically designed to have interpretable
symbolic models. We name the approach CAFFEINE:
Canonical Functional Form Expressions in Evolution.

Figure 1: Template-free symbolic modeling flow

The contributions of this paper are as follows:
• To the best of our knowledge, a first-ever tool to do
template-free symbolic modeling, with the flexibility of
SPICE simulations therefore allowing modeling of any
nonlinear circuits.
• A means to make the models compact and
understandable, yet with arbitrary accuracy; in fact
providing a tradeoff between accuracy and complexity.
Final models are highly predictive.
• For GP, a specially designed grammar and related
operators to ensure that all functions explored follow a
canonical form, making them directly interpretable.

1530-1591/05 $20.00 © 2005 IEEE

This paper is organized as follows. Section 2 defines
the problem. Section 3 gives background on GP, on
which sections 4 and 5 build to describe CAFFEINE and
the grammar. Section 6 has results; section 7 concludes.

2 Problem Formulation
The problem that we address is formulated as follows:

Given:
• A set of {x(t),y(t)},t=1..N data samples where x(t) is
a d-dimensional design point t and y(t) is a corresponding
circuit performance value measured from simulation of
that design.
• No model template

Determine:
• A set of symbolic models *f F∈ that together
provide the optimal tradeoff between prediction error and
some measure of complexity.

Speed of model building is not considered a goal at
this point; that is left to future research.

3 Background: Genetic Programming
Genetic Programming (GP) [7] is an evolutionary

algorithm, with the distinguishing characteristic that GP
individuals (points in the design space) are trees.

GP has issues to be addressed before it can be useful
in symbolic model generation. GP-evolved functions can
be notoriously complex and un-interpretable; e.g. [7]
showed functions so bloated that they take up a full page
of dense text. Also, overfitting is a risk because
prediction quality does not influence model choice.

The functional form of results from canonical GP is
completely unrestricted. While this sounds great
compared to the restrictions of fixed-template regression,
it actually goes a little too far. Most importantly, an
unrestricted form is almost always difficult to analyze.
Also, an unrestricted form can cause undesirable biases in
the search, such as tuning too many parameters which
may even be redundant, or making it difficult for to add /
remove basis functions. The challenge is to find a way to
restrict the form enough to overcome these problems,
without constraining away any possible forms.

4 CAFFEINE
CAFFEINE uses GP as a starting point, but extends it

in order to properly address template-free symbolic
modeling. It attacks the issues of complexity and
interpretability in two main ways: a multi-objective
approach that provides a tradeoff between error and
complexity, and a specially designed grammar to
constrain the search to specific functional forms without
cutting out good solutions. It also performs special post-
processing to further improve models. In CAFFEINE, the

overall expression is a linear sum of weighted basis
functions; therefore, each individual is a set of GP trees.

4.1 Multi-Objective Approach
CAFFEINE uses a state of the art multi-objective

evolutionary algorithm, namely NSGA-II [8]. NSGA-II
returns a set of individuals that, collectively, trade off
error and complexity (i.e. a nondominated set).

“Error” is normalized mean-squared error.
“Complexity” is dependent on the number of basis
functions, the number of nodes in each tree, and the
exponents of “variable combos” (VCs, described later):

nvc()

,

1 1

complexity() (nnodes() vccost())
M jf

b k j

j k

f w j vc
= =

= + +� � (1)

where wb is a constant to give a minimum cost to each
basis function, nnodes(j) is the number of tree nodes of
basis function j, nvc(j) is number of VCs of basis

function j, and
dim 1

vccost(vc) abs(vc(dim))
d

vcw
=

= � .

 The approach accomplishes simplification during
generation by maintaining evolutionary pressure towards
lower complexity. The user avoids an a priori decision
on error or complexity because the algorithm generates a
set of models that provide tradeoffs of alternatives.

5 Grammar and Operators
In GP, a means of constraining search is via a

grammar, as in [9]. Evolutionary operators must respect
the derivation rules of the grammar, i.e. only subtrees
with the same root can be crossed over, and random
generation of trees must follow the derivation rules. A
basis function is the leaf nodes (terminal symbols) of the
tree; internal nodes (nonterminal symbols) reflect the
underlying structure; the tree root is the start symbol.

Even though grammars can usefully constrain search,
none have yet been carefully designed for functional
forms. In designing such a grammar, it is important to
allow all functional combinations (even if just in one
canonical form). This includes an arbitrary number of
products of expressions, and of sums of expressions. Any
desired single-input, dual-input, etc should be allowed.

The CAFFEINE grammar maintains functions in a
“canonical form” and meets those goals:

REPVC => ‘VC’ | REPVC ‘*’ REPOP | REPOP
REPOP => REPOP ‘*’ REPOP | 1OP ‘(‘ ‘W’ ‘+’
REPADD ‘)’ | 2OP ‘(‘ 2ARGS ‘)’ | ... 3OP, 4OP
etc
2ARGS => ‘W’ ‘+’ REPADD ‘,’ MAYBEW | MAYBEW ‘,’
‘W’ ‘+’ REPADD
MAYBEW => ‘W’ | ‘W’ ‘+’ REPADD
REPADD => ‘W’ ‘*’ REPVC | REPADD ‘+’ REPADD
2OP => ‘DIVIDE’ | ‘POW’ | ‘MAX’ | ...
1OP => ‘INV’ | ‘LOG10’ | ...

Terminal symbols are in quotes. Each nonterminal
symbol has a set of derivation rules separated by ‘|’. The
start symbol is REVPC; one tree is used for each basis
function; basis functions are linearly weighted using least-
squares learning. Basis function operators include:
creating a new individual by randomly choosing >0 basis
function from each of 2 parents; deleting a random basis
function; adding a randomly generated tree as a basis
function; copying a subtree from one individual to make
a new basis function for another.

The root is a product of variables and/or nonlinear
functions (REPVC and REPOP). Within each nonlinear
function is a weighted sum of basis functions (REPADD).
Each basis function can be, once again, a product of
variables and/or nonlinear functions. And so on.

 The grammar is context-free, with two exceptions for
the sake of enhanced search:
• Weights (W). A real value is stored in the range
[]2 * , 2 *B B− + at each W node. During interpretation of
the tree the value is transformed into
[] [] []1 , 1 1 , 10.0e B e B e B e B− + − − − +∪ ∪ . B is user-set, e.g.
10. In this way parameters can take on very small or very
large negative or positive values. Zero-mean Cauchy
mutation [10] is an operator on the real value.
• Single-basis rational combinations of variables
(VC). With each VC a vector is stored, with integer
value per design variable as the variable’s exponent. An
example vector is [1,0,-2,1], which means 2

1 4 3
(*) ()x x x .

For interpretability, real-valued and fractional-valued
exponents are not allowed. VC operators include: one
point crossover, and randomly adding or subtracting to an
exponent value.

POW(a,b) is ab. Via 2ARGS with MAYBEW, either
the base or the exponent (but not both) can be constants.

The designer can turn off any of the rules if they are
considered unwanted or unneeded. For example, one
could easily restrict the search to polynomials or rationals,
or remove potentially difficult-to-interpret functions such
as sin and cos. The designer could change or extend the
operators or inputs, e.g. include wi , li, and wi / li .

5.1 CAFFEINE Post-Processing
After the evolutionary run is complete, simplification

after generation (SAG) is performed on each of the final
set of models in the tradeoff. SAG is accomplished via
the Predicted Residual Sums of Squares (PRESS) statistic

()

()
t

tξ − [11] coupled with forward regression [12]. PRESS
approximates leave-one-out cross-validation on the linear
parameters; forward regression prunes basis functions that
harm predictive ability. This gives predictive robustness
to the linear parameters.

After that, the tradeoff models are evaluated on test
data, and filtered down to only models that are on the
tradeoff of testing error and complexity. Such a final step
might not be possible with more deterministic approaches
having more homogenous results, but the stochastic
nature of CAFFEINE, causing more heterogeneous
results, makes such filtering possible.

Figure 2: Schematic of high-speed CMOS OTA

6 Experiments

6.1 Experimental Setup
A prototype CAFFEINE system was written in about

2000 lines of Matlab code. The grammar was defined in a
separate text file and parsed by the CAFFEINE system.

Single-input operators allowed were: x , loge(x),
log10(x), 1/x, abs(x), x2, sin(x), cos(x), tan(x), max(0, x),
and min(0,x), 2x, 10x, where x is an expression. Double-
input operators allowed are x1+x2, x1*x2, max(x1,x2),
min(x1,x2), power(x1,x2), and x1/x2. Also, lte(testExpr,
condExpr, exprIfTestLessThanCond, elseExpr) and
lte(testExpr, 0, exprIfTestLessThan0, elseExpr) were
used. Any input variable could have an exponent in the
range {…,-2, -1, 1, 2, …}. While real-valued exponents
could have been used, that would have harmed
interpretability.

The circuit being modeled is a high-voltage CMOS
OTA as shown in Figure 2. The goal is to discover
expressions for low-frequency gain (ALF), unity-gain
frequency (fu), phase margin (PM), input-referred offset
voltage (voffset), and the positive and negative slew rate
(SRp, SRn). To allow a direct comparison to the
posynomial approach [6], an almost-identical problem
setup was used, as well as identical simulation data. The
only difference is that because scaling makes the model
less interpretable, neither the inputs nor outputs were
scaled; the one exception is that fu is log-scaled so that
mean-squared error calculations and linear learning are
not wrongly biased towards high-magnitude samples of fu.

The technology is 0.7 �m CMOS. The supply voltage
is 5V. Vth,nom is 0.76V and –0.75V for NMOS and PMOS
devices, respectively. The load capacitance is 10 pF.

Good training data is essential to the methodology.
The choice of design variables and sampling
methodology determines the extent to which the designer
can make inferences about the physical basis, and what
regions of design space the model is valid in. We used an
operating-point driven formulation [13], where currents
and transistor drive voltages comprise design variables
(13 variables in our case). Device sizings could have
been used instead; it all depends on designer preference.
Full orthogonal-hypercube Design-Of-Experiments
(DOE) sampling of design points was used, with scaled
dx=0.1 (the simpler problem of dx=0.01 is ignored in this
paper) to have 243 samples with three simulations each,
some of which did not converge. Simulation time for one
sample was about 1 s, or 4 min for all samples; this is
fully dependent on the circuit, analyses, and experimental
design being used. These samples, otherwise unfiltered,
were used as training data inputs. Testing data inputs
were also sampled with full orthogonal-hypercube DOE
and 243 samples, but with dx=0.03. Thus, in this
experiment we are creating a somewhat localized model;
one could just as readily model a broader design space.

 The run settings were: maximum number of basis
functions = 15, population size 200, 5000 generations,
maximum tree depth 8, and parameter range
[] [] []1 10, 1 10 0.0 1 10,1 10e e e e− + − − ∪ ∪ − + . All operators
had equal probability, except parameter mutation was 5x
more likely. Complexity measure settings were wb = 10,
wvc = 0.25. Just one run was done for each performance
goal, for 6 runs total. (The aim was proof-of-concept, not
efficiency.) Each run took about 12 hours on a 3 GHz
Pentium IV Linux workstation. After each run, SAG
(section 5.1) was done, taking about 10 min.

We use normalized mean-squared error on the training
data and separate testing data, which are standard
measurements in regression literature. Testing error is
ultimately the more important measure. These measures
are identical to two of the three posynomial “quality of
fit” measures [6]: qwc is training error, and qtc is testing
error. (qwc and qtc are identical as long as the constant ‘c’
in the denominator is zero, which [6] did.) We ignore qoc,
which measured the error at just one training point.

6.2 Results and Discussion
Let us first see if CAFFEINE generates tradeoffs

between training error (qwc) and complexity, as expected.
Figure 3 illustrates tradeoff results. In each instance,
CAFFEINE generates a tradeoff of about 50 different
models. As expected, a zero-complexity model (i.e. just a
constant) has the highest training error of 10-25%; the
highest complexities have the lowest training error, of 1-
3%. Since only one run was done for each performance
characteristic, the reliability of the algorithm is promising.

As expected, the number of basis functions usually
rises with the complexity. This is not always the case,
however, as larger trees increase complexity too; the
plateaus and dips in the basis function curves show that
this does indeed occur. In every case, CAFFEINE used
the maximum allowed number of basis functions (15) to
achieve the lowest error. Undoubtedly, error could have
been reduced further, but models with 15 basis function
models are already at the edge of interpretability.

The testing error (qtc) is also shown in Figure 3. We
see that unlike training error, it is not monotonically
decreasing as complexity rises. This means that some less
complex models are more predictive than more complex
ones. However, if we prune the models down to the ones
that give a tradeoff between testing error and complexity,
we get the rightmost column of Figure 3. These 5-10
models for each performance goal are of the most interest.

It is notable that the testing error is lower than the
training error in almost all cases. This sounds promising,
but such behavior is rare in the regression literature, and
made us question what was happening. It turns out there
is a valid reason: recall that the training data is from
extreme points of the sampling hypercube (scaled
dx=0.10), and the testing data is internal to the hypercube
(dx=0.03). This testing data tests interpolation ability.
Thus, models that really are predictive should be able to
interpolate well, even at the cost of a perfect fit to the
extreme points. In any case, to validly have testing error
lower than training error demonstrates the strength of the
CAFFEINE approach.

Let us now examine the actual symbolic models
generated by CAFFEINE. We ask: “what are all the
symbolic models that provide less than 10% error in both
training and testing data?” Table I shows those functions
(fu has been converted to its true form by putting the
generated function to the power of 10). We see that each
form has up to 4 basis functions, not including the
constant. For voffset, a constant was sufficient to keep the
error within 10%. We see that a rational functional form
was favored heavily; at these target errors only one
nonlinear function, ln(), appears (for ALF). That
expression effectively says that the order of magnitude of
some input variables is useful.

 One can examine the equations in more detail to gain
an understanding of how design variables in the topology
affect performance. For example, ALF is inversely
proportional to id1, the current at the OTA’s differential
pair. Or, SRp is solely dependent on id1 and id2 and the
ratio id1 / id2. Or, within the design region sampled, the
nonlinear coupling among the design variables is quite
weak, typically only as ratios for variables of the same
transistor. Or that each expression only contains a
(sometimes small) subset of design variables. Or, that
transistor pairs M1 and M2 are the only devices affecting
five of the six performances (within 10%).

Figure 3: The two leftmost columns show generated models’ training error (qwc), testing error (qtc), and number

of bases vs. complexity for each performance goal; all models in the tradeoff of training error vs. complexity are
shown. The rightmost column shows only models that are on the tradeoff of testing error vs. complexity too.

Test error
(%)

Train error
(%)

PM Expression

3.98 15.4 90.2
3.71 10.6 90.5 + 186.6 * id1 + 22.1 * id2 / vds2
3.68 10.0 90.5 + 190.6 * id1 / vsg1 + 22.2 * id2 / vds2
3.39 8.8 90.1 + 156.85 * id1 / vsg1 - 2.06e-03 * id2 / id1 + 0.04 * vgs2 / vds2
3.31 8.0 91.1 - 2.05e-3 * id2 / id1 + 145.8 * id1 + 0.04 * vgs2 / vds2 - 1.14 / vsg1
3.20 7.7 90.7 - 2.13e-3 * id2 / id1 + 144.2 * id1 + 0.04 * vgs2 / vds2 - 1.00 / (vsg1*vsg3)
2.65 6.7 90.8 - 2.08e-3 * id2 / id1 + 136.2 * id1 + 0.04 * vgs2 / vds2 -1.14 / vsg1 + 0.04 * vsg3 / vsd5
2.41 3.9 91.1 - 5.91e-4 * (vsg1*id2) / id1 + 119.79 * id1 + 0.03 * vgs2 / vds2 - 0.78 / vsg1 + 0.03 * vsg1 / vsd5

-2.72e-7 / (vds2*vsd5*id1) + 7.11 * (vgs2*vsg4*id2) - 0.37 / vsg5 - 0.58 / vsg3 - 3.75e-6 / id2 - 5.52e-6 / id1

Table II: CAFFEINE-generated models of PM, in order of decreasing error and increasing complexity

Target (%) Perf.
qwc qtc

Expression

ALF 10 10 -10.3 + 7.08e-5 / id1
 + 1.87 * ln(-1.95e+9 + 1.00e+10 / (vsg1*vsg3)+ 1.42e+9 *(vds2*vsd5) / (vsg1*vgs2*vsg5*id2))

fu 10 10 10^(5.68 - 0.03 * vsg1 / vds2 - 55.43 * id1+ 5.63e-6 / id1)
PM 10 10 90.5 + 190.6 * id1 / vsg1 + 22.2 * id2 / vds2
voffset 10 10 - 2.00e-3
SRp 10 10 2.36e+7 + 1.95e+4 * id2 / id1 - 104.69 / id2 + 2.15e+9 * id2 + 4.63e+8 * id1
SRn 10 10 - 5.72e+7 - 2.50e+11 * (id1*id2) / vgs2 + 5.53e+6 * vds2 / vgs2 + 109.72 / id1

Table I: CAFFEINE-generated symbolic models which have less than 10% training and testing error

By only putting the relevant variables into a model,
the approach demonstrates the potential to provide
expressions for circuits with significantly more variables.

One may improve understanding in another fashion:
by examining expressions of varying complexity for a
single performance characteristic. Low-complexity
models will show the macro-effects; alterations to get
improved error point show how the model is refined to
handle second-order effects. Table II shows models
generated for PM in decreasing training and testing error.
A constant of 90.2, while giving 15 % training error, had
only 4% test error. For better prediction, CAFFEINE
injected two more basis functions; one basis being the
current into the differential pair id1, the other basis, id2 /
vds2, the ratio of current to drain-source voltage at M2.
The next model turns the input current term into a ratio id1
/ vsg1. Interestingly, and reassuringly, almost all ratios use
the same transistor in the numerator and denominator.

Such analyses achieve the aim of this tool: to improve
understanding of the topology.

Figure 4: Comparison of CAFFEINE testing error to
posynomial testing error; also to training error

We also compared CAFFEINE to the posynomial
approach using the numbers in [5]. We first compare the
test and training errors. To pick a model from a
CAFFEINE-generated tradeoff for comparison, we fixed
the training error to what the posynomial achieved, then
compared testing errors. Results are in Figure 4. In one
case, voffset, CAFFEINE did not meet the posynomial
training error (0.4%), so it probably could have for more
basis functions; we instead picked an expression which
very nearly matched the posynomial approach's testing
error of 0.8%. What we saw in previous data, and we see
again here, is that CAFFEINE has lower testing error than
training error, which provides great confidence to the
models. In contrast, in all cases but voffset, the
posynomials had higher testing error than training error,
even on this interpolative data set. CAFFEINE models'
testing errors were 2x to 5x lower than the posynomial
models. The exception is voffset, where the posynomial
achieves 0.8% testing error compared to 0.95% for
CAFFEINE. With posynomials having weak prediction
ability even in interpolation, in comparison to more
compact models, one might question the trustworthiness
of constraining models of analog circuits to posynomials.

7 Conclusion
This paper presented CAFFEINE, a tool which for the

first time can generate interpretable, template-free
symbolic models of nonlinear analog circuit performance
characteristics. CAFFEINE is built upon genetic
programming, but its key is a grammar that restricts
symbolic models to a canonical functional form.

CAFFEINE generates a set of models that collectively
trade off between error and complexity. Visual inspection
of the models demonstrates that the models are
interpretable. These models were also shown to be
significantly better than posynomials in predicting unseen
data.

8 References

[1] G. E. Gielen, “Techniques and Applications of Symbolic
Analysis for Analog Integrated Circuits: A Tutorial Overview”,
in Computer Aided Design of Analog Integrated Circuits And
Systems, R.A. Rutenbar et al., eds., IEEE, 2002, pp. 245-261

[2] P. Vancorenland, G. Van der Plas, M. Steyaert, G.
Gielen, W. Sansen, “A Layout-aware Synthesis Methodology
for RF Circuits,” Proc. ICCAD 01, Nov. 2001, p.358

[3] H. Liu, A. Singhee, R.A. Rutenbar, L.R. Carley,
“Remembrance of Circuits Past: Macromodeling by Data
Mining in Large Analog Design Spaces,” Proc. DAC 02, June
2002, pp. 437-442

[4] G. Wolfe, R.Vemuri, “Extraction and Use of Neural
Network Models in Automated Synthesis of Operational
Amplifiers.” IEEE Trans. CAD, Feb. 2003

[5] W. Daems, G. Gielen, and W. Sansen, “An Efficient
Optimization-based Technique to Generate Posynomial
Performance Models for Analog Integrated Circuits”, Proc.
DAC 02, June 2002

[6] W. Daems, G. Gielen, W. Sansen, "Simulation-based
generation of posynomial performance models for the sizing of
analog integrated circuits," IEEE Trans. CAD 22(5), May 2003,
pp. 517-534

[7] John R. Koza. Genetic Programming. MIT Press, 1992.
[8] K. Deb, S. Agrawal, A. Pratap, T.A. Meyarivan, “A Fast

Elitist Non-dominated Sorting Genetic Algorithm for Multi-
objective Optimization: NSGA-II,” Proc. PPSN VI, Sept. 2000,
pp. 849-858

[9] P. A. Whigham, “Grammatically-based Genetic
Programming,” Proc. Workshop on GP: From Theory to Real-
World Applications, J.R. Rosca, ed., 1995.

[10] X. Yao, Y. Liu and G. Lin, ``Evolutionary
Programming Made Faster,'' IEEE Trans. Evolutionary
Computation 3(2), July 1999, pp. 82-102

[11] L. Breiman, “Stacked Regression,” Machine Learning,
vol. 5, 1996, pp. 49-64

[12] X. Hong, P.M. Sharkey, K. Warwick, "A Robust
Nonlinear Identification Algorithm Using PRESS Statistic and
Forward Regression", IEEE Trans. Neural Networks 14(2),
March 2003, pp. 454-458

[13] F. Leyn, G. Gielen, W. Sansen, “An Efficient Dc Root
Solving Algorithm with Guaranteed Convergence for Analog
Integrated CMOS Circuits”, Proc. ICCAD 98, Nov. 1998

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

