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Abstract

Design of electrical systems demands simulations using
models evaluated in different design parameters choices. To
enable the simulation of linear systems, one often requires
their modeling as ordinary differential equations given tab-
ular data obtained from device simulations or measure-
ments. Existing techniques need to do this for every choice
of design parameters since the model representations dont
scale smoothly with the external parameter.

The paper describes a frequency-domain identification
algorithm to extract the poles and zeros of linear MIMO sys-
tems. Furthermore, it expresses the poles and zeros as tra-
jectories that are functions of the design parameter(s). The
paper describes the used framework, solves the starting-
value problem, presents a solution for high-order systems
and provides a model-order selection strategy. The proper-
ties of the algorithm are illustrated on microwave measure-
ments of inductors, a variable gain amplifier and a high-
order SAW-filter. As shown by these examples, the proposed
identification algorithm is very well suited to derive scal-
able, physically relevant models out of tabular frequency-
response data.

1. Introduction

The design and simulation of high-performance elec-
tronic systems requires accurate and efficient models. The
model requirements depend on the system type and on how
the model is used in the design flow. The use of the model
in an actual design requires that the model is parameteris-
able as function of external parameters. This makes it pos-
sible to predict the model of a system which was not simu-
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lated/measured yet. A practical example is the prediction of
an inductor model out of measurements of related – though
differently sized inductors. This will be highlighted in the
examples given later.

The modeling capabilities differ depending on the initial
available model or data. Model reduction techniques deter-
mine a simplified model starting from known model equa-
tions [4, 9]. Identification techniques start from the system
response only, without the knowledge of the systems equa-
tions [2, 10]. An example of the latter is the identification
of linear systems using observed inputs and outputs or using
the transfer matrices obtained through simulations or mea-
surements.

Scalable models need to describe physically relevant
model properties. Poles and zeros of a linear system sat-
isfy this constraint. This is why the pole/zero trajectories
will be parameterized instead of the coefficients of a ratio-
nal form. The use of an invariant guarantees that the depen-
dency on the external parameter(s) is physically relevant.

Passivity will not be imposed in this work for two rea-
sons. First, making a non-passive model passive implies that
pole/zero locations are artificially modified which compro-
mises the physical relevance of the scalable model. Second,
it is possible to impose stability in a post-processing stage:
A passive model can be obtained from a stable system us-
ing convex optimization [3].

We propose a robust and efficient identification al-
gorithm to extract a scalable model for Multiple-Input
Multiple-Output (MIMO) linear systems starting from tab-
ular frequency-dependent data. The parameterized MIMO
linear model determines the pole/zero trajectories start-
ing from a common-denominator transfer-matrix model.
Such models can be used in SPICE-like transient simula-
tors such as Spectre.

MIMO linear systems, described by ordinary differential
equations, can be represented using a common-denominator
transfer-matrix representation. This means that the exact in-
puts U0

j (s) with j = 1 . . . nU and the exact outputs Y 0
i (s)
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with i = 1 . . . nY are related to each other using

Y 0
i (s) =

nU
∑

j=1

Nij(s)

d(s)
U0

j (s) (1)

where s represent the Laplace variable, d(s) the denomina-
tor polynomial and Nij(s) the numerator polynomials. All
polynomials have real-valued coefficients. The poles of the
system are presented by the zeros of the common denomi-
nator d(s). If some poles are not observable in certain trans-
fer functions, then the influences of these poles are compen-
sated by zeros. This does not lead to numerical condition-
ing problems if the appropriate orthogonal polynomials are
used.

An errors-in-variables framework is used to derive the
estimators. This implies that both the inputs and outputs
are perturbed with zero-mean additive noise ∆Ui(s) and
∆Yj(s)

Ui = U0
i + ∆Ui;Yj = Y 0

j + ∆Yj (2)

with the noise covariance equal to

σ2
UiUj

(s) = E
[

∆Ui(s)∆Uj(s)
]

σ2
UiYj

(s) = E
[

∆Ui(s)∆Yj(s)
]

σ2
YiYj

(s) = E
[

∆Yi(s)∆Yj(s)
]

. (3)

Some of these (co-)variances can be equal to zero de-
pending on the data source and the wanted approximation.
Therefore, all identification steps are made robust to such
degenerated cases.

The two contributions of the paper are: setting up a ro-
bust MIMO-identification algorithm and demonstrating the
modeling the pole/zero trajectories as function of external
parameters.

The first contribution of this paper is to set up an efficient
and robust MIMO identification algorithm in the errors-in-
variables framework. This requires the extension of sev-
eral Single-Input Single-Output (SISO) solutions towards
MIMO and demands a careful selection of the successive
identification steps to obtain a robust identification algo-
rithm. Section 2 describes the state-of-the-art, the required
MIMO extension and the motivated selection of the identi-
fication steps to obtain a robust identification algorithm.

The second contribution of the paper is to demonstrate
the modeling of the pole/zero trajectories as function of ex-
ternal parameters. Section 3 therefore gives an answer to the
question: What is the most appropriate parameterization for
modeling the pole/zero trajectories ?

The identification algorithm is illustrated in Section 4 us-
ing the following three examples: extracting a scalable in-
ductor model starting from measurements, modeling a Vari-
able Gain Amplifier (VGA) with respect to its gain setting

and modeling a SAW-filter. All these results demonstrate
the ability of estimating physically relevant pole/zero tra-
jectories for (potentially high-order) linear systems, which
is concluded in Section 5.

2. Frequency domain identification tech-
niques

A high-performance identification technique for identi-
fying high-order MIMO linear models must satisfy that

1. the class of models and the identification framework
are according to the problem;

2. good starting values are provided for the final nonlin-
ear minimization;

3. high-order systems can be handled without numerical
conditioning problems;

4. a model selection strategy is available.

A robust, high-performance identification algorithm is pre-
sented after describing the state-of-the-art and the necessary
extensions.

2.1. Identification framework

The framework chosen to identify the MIMO linear sys-
tems is a maximum-likelihood (ML) estimator under the as-
sumption that

• the linear system is represented using a common-
denominator transfer matrix (1);

• both the inputs and the outputs are perturbed with ad-
ditive noise (2);

• the uncertainties on inputs and outputs can be corre-
lated and frequency dependent (3).

The maximum-likelihood estimate can be derived un-
der the assumption that the noise is independent over the
K frequencies and normally distributed with given covari-
ance matrix [10]. The leads to the minimization of the ML
cost,

LML(p) =

K
∑

k=1

eH
k C−1

ek
ek =

K
∑

k=1

rH
k rk, (4)

with respect to the real-valued parameter vector

pT =
[

pT
N11

· · · pT
NnY nU

pT
d

]

. (5)

Vector ek = e(p, ωk) represent the error vector which
equals to

nU
∑

j=1

Nij(pNij
, ωk)Uj(ωk) − d(pd, ωk)Yi(ωk) (6)

with Nij(pNij
, ωk) = PNij

(jω)pNij
and d(pd, ωk) =

Pd(jω)pd where P. represents the polynomial basis used.



Matrix Cek
= Ce(p,ωk) is the covariance matrix associated

with e(p, ωk).
The ML cost can be minimized using standard Gauss-

Newton-like minimization algorithms [5, 8] with the resid-
ual vector rk given by

rk = C−1/2
ek

ek. (7)

Gauss-Newton-like optimization methods demand the
computation of the first derivative of the complex-valued
rk with respect to the real-valued p. This Jacobian matrix J
is formed by stacking the matrices

Jk =
[

∂rk

∂p1

· · ·
∂rk

∂pnp

]

(8)

on top of each other. Generally, the analytic computation
of the Jacobian is extremely difficult since it demands the
derivative of C

−1/2
ek . Analytical expressions are only con-

venient if Cek
is reduced to a scalar or to a diagonal form.

However, it is possible to use a pseudo-Jacobian which ap-
proximates the Jacobian such that their Gauss-Newton min-
imizers are identical [8]. This pseudo-Jacobian is compute
as

J+k =
[

j+k,1 · · · j+k,p

]

, (9)

with

j+k,i = C−1/2
ek

∂ek

∂pi
−

1

2
C−1/2

ek

∂Cek

∂pi
C−1

ek
ek. (10)

2.2. Solving the starting value problem

This section describes two algorithms – a weighted lin-
ear least-squares (WLLS) and a weighted generalized total-
least-squares (WGTLS) – that can be used to generate start-
ing values for p. The starting values depend on the polyno-
mial bases, P.(jωk), and on the weighting, W , used. The
polynomial bases used are described in Section 2.3.

A first starting value solution is to linearize (7) by taking
C

−1/2
ek constant which results in a WLLS estimator. Since

C
−1/2
ek depends on the (unknown) parameters p, it is neces-

sary to determine the initial weighting empirically. This em-
pirical weighting can only use the measured transfer matri-
ces and the asymptotic behavior of the polynomials, given
the orders of the polynomials. Such weighting has been pro-
posed for the SISO case [12]. In our MIMO case, we use the
empirical weighting of [12] for each transfer function sepa-
rately and sum the contributions together for each output.

An alternative to the WLLS is to use a WGTLS estima-
tor [10, 14]. Observing that the error vector (6) is linear in
the parameters makes it possible to write e = Ap with

A =











PN11
U1 0 · · · 0 −PdY1

0 PN12
U1 · · · 0 −PdY2

...
...

. . .
...

...
0 0 · · · PNnU nY

UnU
−PdYnY











The solution of the WGTLS is given by the singular value
decomposition (SVD) of the matrix WAC−1 were W
and C are weighting matrices mandatory to obtain consis-
tent and nearly ML-efficient estimates [7, 10]. The matrix
W weights the importance of each equation and there-
fore determines the efficiency of the estimator. Optimally,
W equals C

−1/2
e . The weighting matrix C makes the es-

timates consistent if CHC = E[(WA)H(WA)] [14].
Matrix C becomes singular when some of the inputs or out-
puts are known exactly. We therefore advise to compute the
WGTLS solution using a generalized SVD (GSVD) [14].
This avoids the inversion of the – possibly singular – ma-
trix C.

The WLLS and the WGTLS can also be used iteratively
by plugging previous estimates of p into the weighting.
Such WGTLS iterative estimators – known as the Boot-
strapped Total Least-Squares (BTLS) estimator – generates
strongly consistent estimates at each iteration [14].

Restarting the estimation with an improved weighting is
required in three situations

1. If no nonlinear optimizer is available, then the parame-
ters can be estimated by the iterative use of the WLLS
or the BTLS.

2. If the ML nonlinear optimizer gets stuck into a local
minima, then we advice to use the BTLS estimator to
generate an alternative starting point. The BTLS es-
timator is more appropriate than the WLLS since the
latter is a linearized version of the ML cost. Hence,
the probability that the WLLS estimate gets stuck in
the neighborhood of the nonlinear optimizer is signifi-
cantly higher.

3. If the conditioning severely decreases during the op-
timization of the ML-cost, then a re-orthogonalization
is required by restarting with the WLLS or the BTLS
estimator using a weighting evaluated in the previous
ML-estimates.

2.3. Forsythe orthogonal polynomial enable high-
order models

Several strategies are proposed in the literature to im-
prove the numerical conditioning of weighted [1, 6, 13]
and unweighted least-squares problems [2]. Optimal con-
ditioning for polynomial models require Forsythe orthogo-
nal polynomials which make JHJ equals the identity for
the WLLS and the WGTLS [6]. They are constructed using
a 3-term recurrence algorithms for both real-valued poly-
nomials evaluated over the real axis [6] and for complex-
valued polynomials evaluated over the imaginary axis [13].

Optimal conditioning for rational models can be ob-
tained using vector orthogonal polynomials [1]. These poly-
nomials mix all basis functions of the denominator and all



numerators. This makes the use of vector orthogonal poly-
nomials significantly more complex and computationally
slower.

A practical alternative for the complete orthogonaliza-
tion uses the Forsythe orthogonal polynomials to repre-
sent the individual polynomials. Rational approximations
using Forsythe orthogonal polynomials lead to the best-
conditioned representation and are demonstrated up to or-
der 120 [13].

2.4. Model selection problem for MIMO

A model selection algorithm is required to determine the
orders of the numerators Nij(s) and the denominator d(s).
The model selection algorithm is based on the SISO model
selection algorithm of [11]. This algorithm is a two-step or-
der selection method with a coarse and a fine selection.

The coarse selection starts with an over-estimate of the
order. It uses the singular values of a whitened Jacobian ma-
trix to determine a (slight) over-estimate of the order [11].
Whitening the Jacobian is necessary to set the threshold for
the selection procedure.

The fine selection is performed through elimination of
poles/zeros without significant contribution to the model in
the frequency band of interest. The fine selection for SISO
models [11] is adapted when considering the distance be-
tween poles and zeros. A pole/zero pair cancels in the SISO
case if their distance equals zero. This is generalized to
MIMO by considering the distance between a pole and the
zeros of each individual transfer function. A pole/zeros can-
cels if the distances of a pole to a zero in all numerators
Nij(s) equal zero.

2.5. The proposed identification algorithm

An identification Algorithm 1 is based on the results of
the previous sections. Its main properties are:

• each iteration uses a BTLS estimator as starting value
generator. BTLS is preferred over WLLS since it is ob-
served that the algorithm becomes less sensitive to lo-
cal minima.

• the initial weighting W for the BTLS estimator uses
the empirical algorithm based on the measured trans-
fer matrix and the orders of the polynomials.

• each iteration restarts with a new weighting which con-
verges to the optimal ML-weighting.

• each iteration performs a re-orthogonalization to ob-
tain a good conditioning of the final ML-estimate. In-
termediate ML-estimates can suffer from bad condi-
tioning. This occurs when the starting values differ sig-
nificantly from the ML-estimates.

Algorithm 1: The proposed identification algorithm.
weighting W = empirical weighting;
Lopt

ML = ∞ ;
repeat

Compute the orthogonal bases;
p = BTLS estimate using W ;
p = nonlinear minimization of LML;
if LML(p) < Lopt

ML then
popt = p;
Lopt

ML = LML(p);
end
W = ML weighting (p);

until no significant changes of LML;

3. Modeling the poles / zero trajectory

Pole/zero representations of a linear system are indepen-
dent of the polynomial bases used. The pole/zero trajecto-
ries are therefore a good candidate to model the dependency
on external parameter(s).

The modeling of the pole/zero trajectories requires the
grouping of the poles and zeros such that they form a
smooth trajectory as a function of the external parameter.
The results obtained in Section 4 use a nearest neighbor al-
gorithm to determine the pole/zero trajectories.

Another issue is the modeling of the pole/zero trajecto-
ries themselves: when two real poles move to each other and
become a complex pole-pair, then the derivatives of the tra-
jectory are discontinuous. This problem can be solved by
either splitting the trajectory into pieces or by combining
pole pairs into second-order sections. The latter strategy –
used in the below examples – writes the different polynomi-
als as the product of first and second order polynomials.

4. Examples

The most important aspects of the proposed algorithm
are illustrated on three examples.

A. The extraction of a scalable model from microwave
measurements is required when introducing state-of-the-art
inductor technology into a spice-like simulator.

The scalable inductor model was extracted for off-chip
inductors made in MCM technology. The 1.5-turn induc-
tors had identical inner diameters (100µm) and conduc-
tor spacing (20µm). The conductor width w was changed
from 50µm, 77µm, 100µm till 150µm, resulting in nomi-
nal inductor values of 1.62, 1.74, 1.80, 2.04nH. All induc-
tors were measured from 45MHz till 50GHz.

5th order models were extracted out of the measurements
from DC up to two times the frequency of the first min-
imum in S21. This minimum changes from 34GHz down
to respectively 25, 20.8 and 14.8GHz for the 50µm, 77µm,
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Figure 1. The pole trajectories of a 5th order
inductor model. A cubic interpolation is used
to predict (◦) starting from the estimates (+).
Ideally, the interpolations (◦) coincide with
the estimates of the 100µm inductor (×).

PSfrag replacements

S
1
2
(d

B
)

Frequency (GHz)

S
1
1
(d

B
)

Frequency (GHz)

S
2
1
(d

B
)

Frequency (GHz)

S
2
2
(d

B
)

Frequency (GHz)
0 20 400 20 40

0 20 40 0 20 40

-50

-25

0

-50

-25

0

-50

-25

0

-50

-25

0

Figure 2. Comparison between the measured
transfer function of the 100µm inductor (×)
and the prediction using the scalable in-
ductor model (–). The complex difference (·)
shows the excellent agreement between the
measurements and the prediction.

100µm and 150µm inductors. The wide frequency range
used implies that the model is valid far beyond the region
were it operates as an inductor.

The validation of the scalable model was done as fol-
lows:

1. 5th order models were extracted for all inductors and
the pole/zero trajectories were determined. The mea-
surement allowed to obtain modeling errors of below
−30dB for all extracted models. The trajectories of the
poles are illustrated in Figure 1. The trajectories for the
zeros are similar but are not shown due to the lack of
space.

2. The poles and zeros for the 50µm, 77µm and 150µm
inductors were used as reference to predict the poles
and zeros from the 100µm inductor. Figure 1 shows
the good correspondence of the predicted poles (us-
ing a cubic interpolation) and the estimated poles (ob-
tained through the identification algorithm on the mea-
sured 100µm inductor).

3. The difference between the predicted and the measured
S-parameters was determined, showing a prediction er-
ror of about −25 dB as illustrated in Figure 2.

The results in Figure 2 clearly demonstrate that it is pos-
sible to extract an accurate scalable model for microwave
inductors using the proposed technique.

B. VGA modeling from network analyzer measurements
for variable gain settings shows the ability of predicting the
pole/zero trajectories of complex systems. The measured
device is a three stage 5GHz BiCMOS VGA mounted on
a PCB and connected through 3cm long transmission lines.
The complete system is modeled from 500MHz to 14GHz
with a 30th order model, resulting in a relative accuracy
of about −30 dB. The VGA is measured in 9 gain settings
(from 5 to 25 dB). The pole trajectories are shown in Fig-
ure 3. Half of the poles were used as reference while the
remaining poles are used to determine the interpolation er-
ror of a cubic interpolation.

C. SAW-filter modeling of 30th order shows the ability
of extracting high-order models. The model order selec-
tion scheme started at model order 60 without numerical
problems. The measured and modeled transfer functions are
given in Figure 4, together with the complex modeling er-
rors.

5. Conclusions

This paper describes a frequency-domain identification
technique to extract the pole/zero trajectories for systems
which depend on an external parameter. The identification
technique estimates a common-denominator MIMO ratio-
nal model in an errors-in-variables framework. Solutions
are presented to estimate high-order models, to deal with
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Figure 3. The pole trajectories of a 30th or-
der model for a three-stage VGA with trans-
mission lines included. A cubic interpolation
is used to predict (◦) starting from the esti-
mates (+). Ideally, the interpolations (◦) coin-
cide with the estimates (×).

the starting value problem, to reduce the problem of local
minima and to handle the model selection problem.

The proposed algorithm shows excellent results for ex-
tracting a scalable model for a microwave inductor and a
variable gain amplifier. High-order models can also be han-
dled as shown through the modeling of the SAW-filter. Sta-
ble models were extracted in all cases and the pole/zero tra-
jectories were found to be smooth functions of the external
parameter.

We therefore recommend the proposed identification al-
gorithm to extract the physically relevant pole/zero infor-
mation for building scalable models out of tabular simula-
tion or measurement results.
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