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Abstract

An efficient methodology is presented to generate the
Pareto–optimal hypersurface of the performance space of
a complete mixed–signal electronic system. This Pareto–
optimal front offers the designer access to all optimal design
solutions: starting from the performance specifications, asat-
isfactory point can a posteriori be selected on the hypersur-
face which immediately determines the final design parame-
ters. Fast execution is guaranteed by using multi–objective
evolutionary optimization techniques and hierachical decom-
position. The presented method takes advantage of the Pareto
hypersurfaces of the subblocks to generate the overall Pareto
front. The hierarchical approach combines behavioral simu-
lation with behavioral models at the higher levels, with SPICE
simulations with transistor–level accuracy at the lowest level.
Storing the performance data of all subblocks enables reuse
for other systems later on.

1. Introduction

To keep up with the drastically increasing complexity of
todays electronic systems, a lot of research has been done in
the field of analog design automation [2]. A lot of prototype
CAD tools resulted from the research [6]: IDAC , OASYS,
OPTIMAN, AMGIE, ASTRX/OBLX, ANACONDA.

The most successful tools use optimization techniques
to search for the optimal design solution according to the
given specifications. Most of these tools however are lim-
ited to rather small building blocks. Because of the in-
creasing complexity of electronic systems, there is a shiftin
the analog/mixed–signal research towards design methodolo-
gies for higher hierarchical design levels. By hierarchically
decomposing the system in smaller less complex building
blocks, dedicated simulators can be used at each hierarchi-
cal level. Examples are SD–OPT [5] and DAISY [1] for the
high–level design of Sigma–Delta converters. However, these

methodologies simulate at a higher hierarchical level without
taking into account lower–level simulations. When enclosing
simulations of lower–level building blocks, the design space
explodes and these methodologies will fail to find an optimum
solution. Moreover, because the majority of the existing tools
is based on the optimization of one single objective function,
the optimum that is found is depending on the a–priori choice
of the weighting coefficients used to combine the different ob-
jectives.
Therefore, the methodology presented in this paper is based
on the hierarchical use of powerful Multiobjective Evolution-
ary Algorithms (MOEA) [7]:

• Through their inherent parallelism, these EA are well
suited in handling the hierarchical decomposition of large
systems.

• These multiobjective techniques are able to find the
Pareto–optimal trade–off hypersurface between the differ-
ent objective functions, in one single optimization run.

• To cope with the disadvantage of the exploding design
space when including lower–level simulations of the build-
ing blocks, we will show that lower–level Pareto–fronts
can be used to store the hierarchical performance informa-
tion and make the whole approach very efficient.

• This also makes it possible to simulate each hierarchical
building block by the best suitable simulator. This way,
the use of SPICE–like simulators at the transistor level pre-
serves the accuracy that these simulators provide.

• The generated Pareto–optimal data points at each level
can be stored and modeled into a continuous Pareto–
hypersurface. The stored data of the subblocks can be
reused in future other systems without the need of resimu-
lation.

The paper is organized as follows. Section 2 describes some
definitions about multi–objective optimization and the algo-
rithm that was selected for use in the presented methodology.
In section 3, the methodology is explained and choices in the
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implementation are discussed. Next, in section 4, the method
is illustrated by generating the Pareto–optimal performance–
hypersurface of a∆Σ converter is generated with and without
the use of lower–level Pareto–optimal surfaces, and the two
methods are compared. The final section, gives conclusions
about the research.

2. Multi–objective Optimization

In this section first some basic definitions aboutmulti–
objective optimization(MOO) and Pareto optimality are
given. Next, the Strength Pareto Evolutionary Algorithm
(SPEA), which was used to implement the presented method-
ology, is briefly discussed. discussed.

2.1. Basic Definitions

In a generalmulti–objective optimization problem the
goal is to find optimal values for the components of a vector
function f (x) subject to some constraintse(x):

minimize/maximize y = f (x) = ( f1(x), f2(x), . . . , fn(x))

subject to e(x) = e1(x),e2(x), . . . ,ek(x) ≤ 0,

with x = (x1,x2, . . . ,xm) ∈ X,

y = (y1,y2, . . . ,yn) ∈Y
(1)

wherex is thedecision vector, y is theobjective vector, X is
called thedecision spaceandY is called theobjective space.
The k constraintse(x) ≤ 0, set restrictions on the decision
space.
The multiple objective functions almost always conflict with
one another. Therefore, for multi–objective problems,Pareto
optimality is used. First the concept ofPareto dominance
should be clear. For a maximization problem, a vectoru =
(u1, . . . ,um) dominates a vectorv = (v1, . . . ,vm) (u≻ v) if and
only if

∀i ∈ {1,2, . . . ,n} : fi(u) ≥ fi(v)

and (2)

∃ j ∈ {1,2, . . . ,n} : f j (u) > f j(v).

Additionally,u coversv (u � v) if and only if u ≻ v or u = v.
A decision vectorx ∈ X is now said to be Pareto–optimal if
and only if there exists noz ∈ X for which f (z) dominates
f (x).

2.2. Strength Pareto Evolutionary Algorithms

Evolutionary algorithms are stochastic optimization meth-
ods designed by analogy with natural evolution [8]. Starting
from a set of solutions (individuals) subsequent sets are com-
posed by means of selection and variation.

We integrated the existing Strength Pareto Evolutionary
Algorithm (SPEA) [10] in the implementation of our method-
ology.
Characteristics of the SPEA are:

• The Pareto–optimal solutions found in each iterative opti-
mization run, are stored in an external set. After each run,
the external set is updated by comparison with the newly
found Pareto–optimal solutions. This way, Pareto–optimal
solutions don’t get lost.

• The important fitness assignment step during selection
uses the concept of Pareto dominance (2). Only the exter-
nally stored Pareto set (sizeNp) determines the fitness of
an individual. Domination by individuals in the population
(sizeN) is irrelevant. In this step, each of the individuals
in the population have to be compared with the individu-
als in the external Pareto set, for all objectives (M). This
is the most time consuming step, resulting in a computing
complexity ofO(MNNp).

• To reduce the size of the Pareto–optimal set, clustering is
used in the original implementation. In particular, the av-
erage linkage method. At the first optimization step, each
individual represents one cluster on its own. Then, in each
step two clusters of individuals are chosen, using the near-
est neighbor criterion, to merge into one cluster. After that,
out of each cluster one individual is chosen to represent the
cluster in the external set.
In our opinion it is better not to loose any Pareto–optimal
solutions, so we didn’t use the clustering technique. A dis-
advantage to this is the increasing individuals in the exter-
nal set (O(MNNp)), but there is a gain from the eliminated
clustering step.

3. System design space Exploration

In this section, first hierarchical decomposition and behav-
ioral performance modeling, and the relevance to our method-
ology is discussed. In the second subsection it is discussed
how the hierarchical performance information of the lower–
level building blocks can be included in the generation of the
Pareto–optimal hypersurface at a higher level.

3.1. Hierarchical decomposition and behavioral per-
formance modeling

To cope with the increasing complexity of current analog
systems, the systems have to be decomposed into smaller less
complex subsystems. When the subsystems are still to com-
plex to design, a second decomposition is performed. This
systematic, hierarchical decompositioncan go on until all
subblocks are manageable for design. If at some hierarchical
level a subblock has already been designed in the past, then
the decomposition of the branch which comprises that block
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will end at the hierarchical level of that block. Figure 1 illus-
trates this. When at some branch in the decomposition, the
system has never before been designed, then the lowest hier-
archical level is the transistor level. At transistor level, the
block can be simulated by a SPICE–like simulator to extract
its performance behavior. If on the other hand a subsystem
has already been used for another system, the past simulation
results can be reused. The subblock is then said to be used as
intellectual property (IP).
After decomposition of the system, at each higher level,be-
havioral modelshave to be used to combine the performance
information of lower levels. A lot of research has been pub-
lished about behavioral performance modeling, and the ma-
jority of them is already implemented in some kind of high–
level simulator, e.g. VHDL–AMS. Our methodology pro-
vides the capability of using all possible simulators for a
building block. The system is defined to the tool by means
of simple description files. For each subsystem a descrip-
tion file has to be composed containing information about
the simulator to be used, the design variables, the subsystems
from which it uses performance information, and which per-
formance variables have to be extracted from the output file
of the simulator.

3.2. Modeling and reusing lower–level Pareto surfaces

As was mentioned in the previous subsection, performance
trade–off information from previous simulation runs can be
stored and reused when a subblock is used again in another
system. A look–up table could be used, but it would even be
best to find a mathematical model for the hypersurface from
which information can be extracted without performing a sim-
ulation. In this way, only the very first time a subblock is used,
transistor–level simulations are needed to create the dataand
generate the Pareto hypersurface, which can then by used for
all later hierarchical synthesis runs in which that subblock is
used. Advantages of this approach are:

• Algorithm speedup by saving time in the absence of lower–

level simulation runs: either a lookup table used instead,
or the mathematical model for the Pareto–optimal perfor-
mance trade-off hypersurface has to be evaluated.

• When no lower–level performance information is used, the
design variables of the high–level system, as well as the
design variables from all the lower–level building blocks
have to be determined during the optimization. This way
the design space gets very large resulting in a huge popula-
tion set (largeN) and a huge externally stored set (largeNp)
needed to sample that space. Through the use of lower–
level Pareto–optimal performance hypersurfaces, the com-
puting complexity (O(MNNp)) of the algorithm can thus
be reduced.

The following derivation however shows that attention
should be paid to the way the lower–level Pareto–optimal sur-
faces are generated:
In a hierarchical design, performance characteristics from a
lower level are used as design variables at the higher level.
Suppose for the sake of simplicity a minimization problem
with a two–dimensional decision space(x1,x2) and a two–
dimensional objective space( f1(x1,x2), f2(x1,x2)). If it can
be shown that there exists a dominated point (definitions
in section 2.1) in the decision space which contributes to
the Pareto–optimal curve in the objective space, then it is
proven that essential information is lost when only the non–
dominated points (Pareto–optimal 2D–curve) in the decision
space are used.
Suppose a point(x∗1,x

∗
2) in the decision space is dominated

⇒∃(x
′

1,x
′

2) | x
′

1 ≤ x∗1 & x
′

2 ≤ x∗2 (3)
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Figure 2. Algorithm framework.

If (5) and (6) are not met, then the Pareto optimal perfor-
mance trade–off curve (2D–hypersurface)contains points cor-
responding with dominated points in the performance space of
a lower hierarchical building block.
So, in order to use lower–level Pareto–optimal surfaces, a
lower–level solution moving towards its Pareto–optimal sur-
face, should result in a movement of its corresponding higher–
level solution towards the higher–level Pareto-optimal sur-
face. As shown in the above, for both a minimization problem
at the two hierarchical levels, the derivatives of the objective
functions considered should be positive. For the performance
parameters ’power’ and ’area’ for example, which are most
typically used objectives in analog synthesis, this requirement
is obviously met. As an other example, for the calculation of
the Signal-to-Noise Ratio (SNR), calculated with the high–
level simulator depicted in [4], only the position of poles,ze-
ros and the gain of the composing integrators is used from
the lower level. Because the relationship between the gain of
the different integrators and the SNR isn’t as the requirements
above state, gain should not be included as an objective at the
integrator transistor level; it can be handled as a constraint.
If on the other hand certain lower–level performance param-
eters do not influence higher–level objectives, then they can
be included in the list of lower–level objectives as well. Inthe
example of section 4 it will be shown that for performance pa-
rameters at higher and lower hierarchical levels that meet the
requirements stated in the above derivation, significant bene-
fit can be derived from using the lower–level Pareto–optimal
surface instead of lower–level simulations.

3.3. The optimization framework

The hierarchical multi–objective synthesis method has
been prototyped in a software framework. The framework
contains three major fragments (Figure 2). In theinitializa-
tion part , the complete hierarchically decomposed system is
set up. As described in section 3.1, a description file has to

D/A

Figure 3. A single–loop 3th order Delta–Sigma modulator

architecture.

be given for the complete system. This description file is then
analyzed in theSystem Setupmodule and description files for
the subsystems are systematically included during setup. The
second major part, thesimulation part , consists of a module
(FileWriter) that uses the information extracted from the de-
scription files to generate a new input file for each externally
used simulator. The generation of such an input file is based
on a template file which contains variables for which values
have to be substituted. These values are extracted from lower–
level building blocks or given as design parameters during
simulation startup. After writing the input files, the different
external simulators are executed. When they are finished, a
Simulation Extractormodule extracts the needed performance
and constraint variable values from the simulator outputs.All
simulations are stored in files for later use (see sections 3.1
and 3.2). If on the other hand a flag is set to use previously
stored simulations or a set of Pareto–optimal solutions, then
no file is written and no external simulators are called. The
Pareto–optimal solutions are stored in an ordered set to make
it possible to mutate to nearby optimal solutions. The third
fragment, implements theSPEA optimizer as discussed in
section 2.2. In each optimization run, the design variables
which can not be extracted from lower levels are generated by
the MOEA for each subsystem in the hierarchy. Values for
the design variables are chosen within their boundaries given
in the description files. The complete systems performance
variables are then determined by a call to thesimulator. The
externally stored Pareto set is updated and by assigning fitness
values, individuals are selected to be used for mating (section
2.2) and generating the next set of design variables.

4. Experimental results

In this section we will illustrate the presented methodology
by generating the Pareto–optimal performance–hypersurface
of a third–order single–loop continuous–time delta–sigma
modulator (Figure 3). We chose a simple hierarchical decom-
position of one subblock for the∆Σ converter: the integrator
subblock is represented by a highspeed folded–cascode OTA
(Figure 4), implemented in a 0.25µm CMOS technology. For
the high–level simulation of the∆Σ, the Model of Computa-
tion from [4] was implemented in the MATLAB TM program-
ming language. At transistor–level, HSpice was used.
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tance amplifier.

The information contained in the description file of the∆Σ
modulator is given below:

• The performances chosen for the exploration are power
consumption [W], silicon area [m2], and signal–to–noise
ratio (SNR) [dB].

• The design variables at the modulator level are the over–
sampling ratio (OSR), the input–signal frequency (f0), the
sampling frequency (fs), and the input amplitude (A0).
Also the poles, zeros and gain of the integrators are needed
but they get extracted from the lower level during the sim-
ulation.

• No constraint variables were set for the modulator.

For the description file of the OTA, the following information
is given:

• The performances are power [W], area [m2], UGF [Hz],
phase margin (PM) [◦], noise density [V2/Hz], slew rate
[V/s]. They can all be extracted from the HSpice output
file.

• The design variables include all independent gate-source
and drain-source voltages, transistor widths (operating–
point driven formulation [3]), and biasing currents, and the
integrating capacitance. The supply voltages are fixed to
Vdd = 1.25V and Vss= −1.25V.

• Constraints are drain–source and gate–source voltages to
keep the transistors into saturation. Also the poles and ze-
ros are given in the list of constraints, but without con-
straints, just to make sure they are determined for use at
∆Σ level.

To demonstrate the advantage of using hierarchical perfor-
mance information in the form of Pareto–optimal hypersur-
faces, two methods are compared here. One (A), where the
design space of the∆Σ modulator combines all design spaces
of all the integrators and its own, and another method (B)
where first a Pareto–optimal solution set is generated for the
integrators and then this set is used during optimization ofthe

Table 1. Comparison of the integrators Pareto–optimal

fronts using C metrics.

Int1 Int2 Int3
C� = 1.00 C� = 0.12 C� = 0.16Int1
C≻ = 0.00 C≻ = 0.10 C≻ = 0.14
C� = 0.33 C� = 1.00 C� = 0.26Int2
C≻ = 0.31 C≻ = 0.00 C≻ = 0.25
C� = 0.20 C� = 0.13 C� = 1.00Int3
C≻ = 0.18 C≻ = 0.11 C≻ = 0.00

∆Σ level.
To compare the two solution setsA and B, we selected the
Coverage metricC (A,B) from [9]. This metric represents the
amount of individuals in populationB that are dominated by
an individual in populationA divided by the total amount of
individuals inB. So,C (A,B) = 1 means that all individuals in
B are dominated by or equal to individuals inA. C (A,B) = 0
means that none of the individuals inB are dominated. In ac-
cordance to the definitions from [11], the following relations
between objective vectors (zi) are used:zA ∈ A strictly dom-
inateszB ∈ B (zA ≻ zB) if all objective values inzA are better
than inzB, zA dominateszB (zA � zB) if all objective values
in zA are better or equal than inzB. Using these relations, a
distinction is made betweenC≻(A,B) andC�(A,B). For ex-
ample, if 0< C�(A,B) < 1 and 0< C�(B,A) < 1 then both
sets contain solutions which dominate solutions in the other
set. But if for the same setsC≻(A,B) = 0 andC≻(B,A) > 0 it
can be concluded that onlyB contains solutions which strictly
dominate solutions inA, thusB is better thenA in relation to
approximating the Pareto–optimal front.
First an optimization was started to find an approximation of
the Pareto–optimal set for all 3 integrators. Keep in mind that
this should normally only be done once, because the result-
ing set can be used for all three integrators and for future de-
sign as well. This is only done here to have different sim-
ulation data when we use methodA. Table 1 shows that the
fronts don’t dominate each other. MethodA consists of high–
level optimization while using all generated simulation results
stored while generating the lower–level Pareto–optimal sur-
faces. MethodB uses only final the Pareto–optimal sets of the
integrators.
The total amount of optimization generations at∆Σ level was

limited to 100. While a population limit of 100 individuals
was set, the external Pareto set was not limited. For method
A, a total of about 6300 good individuals were generated and
an other 12200 individuals were discarded because they didn’t
meet the specs (e.g. transistors in saturation). For methodB, a
total of about 5400 good individuals were generated and about
12000 were discarded.
Figure 5 compares the solution sets from methodA and B
during optimization. The curves in the figure show the values
of the four coverage metrics (C�(A,B), C≻(A,B), C�(B,A),
C≻(B,A)) as defined before. The results are better then ex-
pected actually. We wanted to show that the use of only the
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Pareto–optimal performance information doesn’t abundantly
deteriorate the quality of the Pareto–optimal set (solution set
of methodB shouldn’t be strictly dominated by the solution
set of methodA). As can be concluded from figure 5, method
B even results in solution sets that dominate the solution sets
of methodA. The randomly generated initial population gen-
erated in methodB is already slightly dominating the ini-
tial population in methodA. This can be explained by the
fact that the ’power’ and ’area’ performance parameters meet
the requirements depicted in subsection 3.2, and because in
methodB only Pareto–optimal lower–level values are used the
higher–level values of ’power’ and ’area’ are already Pareto–
optimal.
Over the 100 generations, the solution set from methodB al-
most always dominates the solution set of methodA. For later
generation howeverC�(A,B) andC≻(A,B) curves are slightly
rising again andC�(B,A) andC≻(B,A) curves are decreasing.
So, the solution sets of methodA start to cath up with the so-
lution sets of methodB. Eventually both solutions should be
at least as good because all the Pareto–optimal lower–levelso-
lutions used in methodB are also contained in the lower–level
solution set used byA. This only takes more generation runs.

5. Conclusions

In this paper, an efficient methodology was presented for
the generation of Pareto–optimal performance tradeoff sur-
faces of complex systems. The objective was to use hi-
erarchical performance information from lower hierarchical
subblocks in the form of Pareto–optimal performance hy-
persurfaces. It was shown that under certain requirements,
these lower–level Pareto–optimal fronts can indeed be used

to extract performance information of the subblocks avoiding
time–consuming transistor–level simulations. Advantages of
this approach are the limited dimension of the high–level de-
sign space, the storage memory reduction by modeling the
Pareto–optimal performance trade–off surface, the significant
speedup of the optimization algorithm, while the quality of
the eventually generated high–level performance trade–off is
maintained. The surfaces generated by this methodology can
be used by an analog designer to a priori choose a perfor-
mance configuration that best meets the given specifications
and hereby immediately determines the values of all design
parameters of all the subsystems.
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