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Abstract methodologies simulate at a higher hierarchical level aith
taking into account lower—level simulations. When encigsi
An efficient methodology is presented to generate thesimulations of lower—level building blocks, the design epa
Pareto—optimal hypersurface of the performance space ofexplodes and these methodologies will fail to find an optimum
a complete mixed-signal electronic system. This Pareto—solution. Moreover, because the majority of the existirajgo
optimal front offers the designer access to all optimal gesi  is based on the optimization of one single objective fungtio
solutions: starting from the performance specificationsat the optimum that is found is depending on the a—priori choice
isfactory point can a posteriori be selected on the hypersur of the weighting coefficients used to combine the differdnt o
face which immediately determines the final design parame-jectives.
ters. Fast execution is guaranteed by using multi—-objectiv Therefore, the methodology presented in this paper is based
evolutionary optimization techniques and hierachicalalee on the hierarchical use of powerful Multiobjective Evoautt
position. The presented method takes advantage of thedParetary Algorithms (MOEA) [7]:
hypersurfaces of the subblocks to generate the overalt®are o _
front. The hierarchical approach combines behavioral simu ® Through their inherent parallelism, these EA are well

lation with behavioral models at the higher levels, with GBI suited in handling the hierarchical decomposition of large
simulations with transistor—level accuracy at the lowesl. systems.

Storing the performance data of all subblocks enables reusee These multiobjective techniques are able to find the
for other systems later on. Pareto—optimal trade—off hypersurface between the differ

ent objective functions, in one single optimization run.

e To cope with the disadvantage of the exploding design
1. Introduction space when including lower—level simulations of the build-
ing blocks, we will show that lower—level Pareto—fronts
can be used to store the hierarchical performance informa-

To keep up with the drastically increasing complexity of tion and make the whole approach very efficient,

todays electronic systems, a lot of research has been done in

the field of analog design automation [2]. A lot of prototype e This also makes it possible to simulate each hierarchical

CAD tools resulted from the research [6]: IDAC , OASYS, building block by the best suitable simulator. This way,

OPTIMAN, AMGIE, ASTRX/OBLX, ANACONDA. the use of SPICE-like simulators at the transistor level pre
The most successful tools use optimization techniques serves the accuracy that these simulators provide.

to search for the optimal design solution according to the

given specifications. Most of these tools however are lim-

ited to rather small building blocks. Because of the in-  pyhersurface. The stored data of the subblocks can be
creasing complexity of electronic systems, there is a sfift reused in future other systems without the need of resimu-
the analog/mixed-signal research towards design metbedol  |54jon.

gies for higher hierarchical design levels. By hierarclyjca

decomposing the system in smaller less complex building The paper is organized as follows. Section 2 describes some
blocks, dedicated simulators can be used at each hierarchidefinitions about multi—objective optimization and theaalg

cal level. Examples are SD—OPT [5] and DAISY [1] for the rithm that was selected for use in the presented methodology
high—level design of Sigma—Delta converters. Howevesghe In section 3, the methodology is explained and choices in the

The generated Pareto—optimal data points at each level
can be stored and modeled into a continuous Pareto—
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implementation are discussed. Next, in section 4, the ngetho

is illustrated by generating the Pareto—optimal perforcgan
hypersurface of &% converter is generated with and without

We integrated the existing Strength Pareto Evolutionary
Algorithm (SPEA) [10] in the implementation of our method-

ology.

the use of lower—level Pareto—optimal surfaces, and the twoCharacteristics of the SPEA are:
methods are compared. The final section, gives conclusions

about the research.

2. Multi—-objective Optimization

In this section first some basic definitions aboolti—
objective optimization(MOO) and Pareto optimality are
given. Next, the Strength Pareto Evolutionary Algorithm

(SPEA), which was used to implement the presented method-

ology, is briefly discussed. discussed.
2.1. Basic Definitions

In a generaimulti-objective optimization problem the

goal is to find optimal values for the components of a vector R

function f (x) subject to some constrairgéx):

minimize/maximize y = f(x) = (f1(x), fa(x),..., fn(X))
subject to e(x) = e1(X),e(x),...,e(x) <0,
with X = (X1,X2,...,Xm) € X,
y=(yLy2-...,¥n) €Y

1)
wherex is thedecision vectary is theobjective vectarX is
called thedecision spacandY is called theobjective space
The k constraintse(x) < 0, set restrictions on the decision
space.

The multiple objective functions almost always conflictiwit
one another. Therefore, for multi-objective problePaeto
optimality is used. First the concept #fareto dominance
should be clear. For a maximization problem, a vectes
(ug,...,um) dominates a vector= (va,...,Vm) (u > v)ifand
only if

Vie{1,2,...,n}: fi(u) > fi(v)
and
Jje{1,2,...,n}: fj(u) > fj(v).

)

Additionally, u coversv (u = v) ifand only ifu = voru=v.
A decision vectoix € X is now said to be Pareto—optimal if
and only if there exists na € X for which f(z) dominates

f(x).
2.2. Strength Pareto Evolutionary Algorithms

Evolutionary algorithms are stochastic optimization meth
ods designed by analogy with natural evolution [8]. Startin
from a set of solutions (individuals) subsequent sets ame co
posed by means of selection and variation.

e The Pareto—optimal solutions found in each iterative opti-
mization run, are stored in an external set. After each run,
the external set is updated by comparison with the newly
found Pareto—optimal solutions. This way, Pareto—optimal
solutions don't get lost.

e The important fitness assignment step during selection
uses the concept of Pareto dominance (2). Only the exter-
nally stored Pareto set (si2d,) determines the fitness of
an individual. Domination by individuals in the population
(sizeN) is irrelevant. In this step, each of the individuals
in the population have to be compared with the individu-
als in the external Pareto set, for all objectiviey.( This
is the most time consuming step, resulting in a computing
complexity of O(MNNp).

To reduce the size of the Pareto—optimal set, clustering is
used in the original implementation. In particular, the av-
erage linkage method. At the first optimization step, each
individual represents one cluster on its own. Then, in each
step two clusters of individuals are chosen, using the near-
est neighbor criterion, to merge into one cluster. Aftet,tha
out of each cluster one individual is chosen to represent the
cluster in the external set.

In our opinion it is better not to loose any Pareto—optimal
solutions, so we didn’t use the clustering technique. A dis-
advantage to this is the increasing individuals in the exter
nal set O(MNNp)), but there is a gain from the eliminated
clustering step.

3. System design space Exploration

In this section, first hierarchical decomposition and behav
ioral performance modeling, and the relevance to our method
ology is discussed. In the second subsection it is discussed
how the hierarchical performance information of the lower—
level building blocks can be included in the generation ef th
Pareto—optimal hypersurface at a higher level.

3.1. Hierarchical decomposition and behavioral per-
formance modeling

To cope with the increasing complexity of current analog
systems, the systems have to be decomposed into smaller less
complex subsystems. When the subsystems are still to com-
plex to design, a second decomposition is performed. This
systematic, hierarchical decompositiorcan go on until all
subblocks are manageable for design. If at some hieratchica
level a subblock has already been designed in the past, then
the decomposition of the branch which comprises that block



level simulation runs: either a lookup table used instead,
,,,,,,,,,,,,,,,,,,,,,,,,, Level3 or the mathematical model for the Pareto—optimal perfor-
mance trade-off hypersurface has to be evaluated.

77777777777777777777777777777777 Level2 e When no lower-level performance information is used, the
design variables of the high—level system, as well as the
Level 1 design variables from all the lower—level building blocks
”””””””””””””””””””””””””””””””” have to be determined during the optimization. This way
Level 0 the design space gets very large resulting in a huge popula-
___Level 0 = transistor level tion set (largN) and a huge externally stored set (lakgg
{__ = past simulation results available needed to sample that space. Through the use of lower—
level Pareto—optimal performance hypersurfaces, the com-
Figure 1. Decomposition of a complex system. Ending puting complexity O(MNNp)) of the algorithm can thus
nodes in the branches represent subsystems for which no be reduced.

lower—level performance information is needed.
The following derivation however shows that attention

, ) , ) , should be paid to the way the lower—level Pareto—optimal sur
will end at the hierarchical level of that block. Figure Lt faces are generated:

trates this. When at some branch in the decomposition, the\, 5 hierarchical design, performance characteristics feo
system has never before been designed, then the lowest hiefg er jevel are used as design variables at the higher level.

archical level |_s the transistor level. At tr§n5|stor levible Suppose for the sake of simplicity a minimization problem
block can be simulated by a SPICE-like simulator to extract,, .., 4 wwo—dimensional decision spate,xz) and a two—

its performance behavior. If on the other hand a subsystemyimensional objective spaddy (x1,X2), f2(x1,%2)). If it can
has already been used for anothersy'stem, the'pastsmnulanobe shown that there exists a dominated point (definitions
results can be reused. The subblock is then said to be used a8 section 2.1) in the decision space which contributes to

intellectual property (IP). _ the Pareto—optimal curve in the objective space, then it is
After decomposition of the system, at each higher lebel, ., en that essential information is lost when only the non—

havioral modelshave to be used to combine the performance y,minated points (Pareto—optimal 2D—curve) in the denisio
information of lower levels. A lot of research has been pub- space are used.
lished about behavioral performance modeling, and the ma'Suppose a poin(ix
jority of them is already implemented in some kind of high—
level simulator, e.g. VHDL-AMS. Our methodology pro-
vides the capability of using all possible simulators for a

building block. The system is defined to the tool by means g this point not to contribute to a Pareto—optimal objeti
qf swpple description files. For each 'sub'system a descrlp-poim' (£, £5) = (10X %), f2(x;,%5)) should be dominated.
tion file has to be composed containing information about

the simulator to be used, the design variables, the sulmgste 1o / . ' .
from which it uses performance information, and which per- M f) | =t & B<1; (4)
formance variables have to be extracted from the output file Combining (3) and (4) results in the 2 following requirensent
of the simulator.

1,%5) in the decision space is dominated

= 3%y %) | X <X & X <X 3)

1) of >0 & o >0
3.2. Modeling and reusing lower—level Pareto surfaces X1 |, Oz |,
. . . ) ., ofp of1 of1
As was mentioned in the previous subsection, performance or if 5. < 0= H o ‘ o (5)
trade—off information from previous simulation runs can be "1l "1l %2l
stored and reused when a subblock is used again in another or if ofy <0= ’ ofy ’ ofy
system. A look—up table could be used, but it would even be OX2 | s 0% || 4 OXy ||
best to find a mathematical model for the hypersurface from 2 2 !
which information can be extracted without performing a-sim 5f, 5f,
ulation. In this way, only the very first time a subblock isdise 2) S >0 & 50 >0
transistor—level simulations are needed to create theahata Lhg 21
generate the Pareto hypersurface, which can then by used for orit 221 _ oo ’ &2 ’ ofz )
all later hierarchical synthesis runs in which that subblisc OX1 X OX1 x; OX2 X5
used. Advantages of this approach are:
or if % <0= H% ’ %
e Algorithm speedup by saving time in the absence of lower— OX2 X OX2 X OX1 x:
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Simulation
_— analyzed in th&System Setupnqdule _and descript@on files for
@ the subsystems are systematically included during seto@. T
second major part, theamulation part, consists of a module
Figure 2. Algorithm framework. (FileWriter) that uses the information extracted from the de-
] scription files to generate a new input file for each exteynall

If (5) and (6) are not met, then the Pareto optimal perfor- ;seq simulator. The generation of such an input file is based
mance trade—off curve (2D-hypersurface) contains poatts ¢ o 5 template file which contains variables for which values
responding with dominated points in the performance spce 0 haye to be substituted. These values are extracted fronHowe
a lower hierarchical building block. _ level building blocks or given as design parameters during
So, in order to use lower—level Pareto—optimal surfaces, agjmuylation startup. After writing the input files, the diféat
lower—level solution moving towards its Pareto-optimatsu  gyternal simulators are executed. When they are finished, a
face, should resultin a movementof its corresponding tighe - gimy|ation Extractomodule extracts the needed performance

level solution towards the higher—level Pareto-optimat SU 41 constraint variable values from the simulator outpAils.
face. As shown in the above, for both a minimization problem g;mjations are stored in files for later use (see sectiobs 3.

at the two hierarchical levels, the derivatives of the objec 414 3.2). If on the other hand a flag is set to use previously
functions considered should be positive. For the. perfoo®an  gigred simulations or a set of Pareto—optimal solutioren th
parameters ‘power’ and 'area’ for example, which are most 4 file is written and no external simulators are called. The
typically used objectives in analog synthesis, this reraent  pareto—optimal solutions are stored in an ordered set temak
is obviously met. As an other example, for the calculation of i hsssible to mutate to nearby optimal solutions. The third
the Signal-to-Noise Ratio (SNR), calculated with the high— fagment, implements th8PEA optimizer as discussed in
level simulator depicted in [4], only the position of poles;  gection 2.2. In each optimization run, the design variables
ros and the gain of the composing integrators is used fromyyhich can not be extracted from lower levels are generated by
the lower level. Because the relationship between the dain 0 the MOEA for each subsystem in the hierarchy. Values for
the differentintegrators and the SNR isn'tas the require®ie  {he design variables are chosen within their boundariesngiv
above state, gain should not be included as an objectiveat th, ihe description files. The complete systems performance
integrator transistor level; it can be handled as a comdtrai 5riaples are then determined by a call to sirulator The

If on the other hand certain lower—level performance param-oyiernally stored Pareto set is updated and by assignirg$tn

eters do not influence higher—level objectives, then they ca \4)yes, individuals are selected to be used for matingitsect
be included in the list of lower—level objectives as wellthe 2.2) and generating the next set of design variables.

example of section 4 it will be shown that for performance pa-
rameters at higher and lower hierarchical levels that nfeet t
requirements stated in the above derivation, significanebe
fit can be derived from using the lower—level Pareto—optimal
surface instead of lower—level simulations.

4. Experimental results

In this section we will illustrate the presented methodglog
by generating the Pareto—optimal performance—hypersairfa
o of a third-order single—loop continuous—time delta—sigma
3.3. The optimization framework modulator (Figure 3). We chose a simple hierarchical decom-

position of one subblock for th&X converter: the integrator

The hierarchical multi-objective synthesis method has subblock is represented by a highspeed folded—cascode OTA
been prototyped in a software framework. The framework (Figure 4), implemented in a 0.26n CMOS technology. For
contains three major fragments (Figure 2). In thigaliza- the high—level simulation of thAZ, the Model of Computa-
tion part, the complete hierarchically decomposed system is tion from [4] was implemented in the MLAs ™ program-
set up. As described in section 3.1, a description file has toming language. At transistor-level, HSpice was used.
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* A level.
To compare the two solution sefsand B, we selected the
Coverage metri¢ (A, B) from [9]. This metric represents the
amount of individuals in populatioB that are dominated by
an individual in populatio divided by the total amount of
The information contained in the description file of the individuals inB. So,C(A,B) = 1 means that all individuals in
modulator is given below: B are dominated by or equal to individualsAn C(A,B) =0
. means that none of the individualsBrare dominated. In ac-

» The performances chosen for the exploration are powercorgance to the definitions from [11], the following relatso

consumption [W], silicon areanf], and signal~to-noise  petween objective vectors) are usedz* € A strictly dom-

Figure 4. CMOS folded—cascode operational transconduc-
tance amplifier.

ratio (SNR) [dB]. inates?® € B (2 >~ Z°) if all objective values ir?* are better
e The design variables at the modulator level are the over—than inz%, z* dominates?® (z* = %) if all objective values
sampling ratio (OSR), the input—signal frequenty) (the in Z* are better or equal than @¥. Using these relations, a

sampling frequencyf§), and the input amplitudeAp). distinction is made betweefi (A,B) and G- (A,B). For ex-
Also the poles, zeros and gain of the integrators are neede@mple, if 0< C-(A,B) < 1 and 0< C-(B,A) < 1 then both
but they get extracted from the lower level during the sim- Sets contain solutions which dominate solutions in the rothe
ulation. set. But if for the same sets_(A,B) =0 andC-(B,A) > 0 it
can be concluded that onB/contains solutions which strictly
dominate solutions i\, thusB is better therA in relation to

For the description file of the OTA, the following informatio ~ @pproximating the Pareto—optimal front.

e No constraint variables were set for the modulator.

is given: First an optimization was started to find an approximation of
the Pareto—optimal set for all 3 integrators. Keep in mirat th
e The performances are power [W], are&’], UGF [Hz], this should normally only be done once, because the result-

phase margin (PM)°], noise density [W/Hz], slew rate ing set can be used for all three integrators and for future de
[VIs]. They can all be extracted from the HSpice output sign as well. This is only done here to have different sim-
file. ulation data when we use methdd Table 1 shows that the

« The design variables include all independent gate-sourcdnts don’tdominate each other. Methactonsists of high—
and drain-source voltages, transistor widths (operating—'evel optimization while using all generated simulatiosulks

point driven formulation [3]), and biasing currents, anel th  Stored while generating the lower—level Pareto—optimal su
integrating capacitance. The supply voltages are fixed tofaces. Method® uses only final the Pareto—optimal sets of the

Vdd = 1.25V and Vss— —1.25V. integrators. o ,
The total amount of optimization generation@atlevel was

o Constraints are drain—source and gate-source voltages tfmited to 100. While a population limit of 100 individuals
keep the transistors into saturation. Also the poles and zey55 set, the external Pareto set was not limited. For method
ros are given in the list of constraints, but without con- A 5 total of about 6300 good individuals were generated and
straints, just to make sure they are determined for use alyp gther 12200 individuals were discarded because thejtdidn
AZ level. meet the specs (e.g. transistors in saturation). For m&had

To demonstrate the advantage of using hierarchical perfor-tOtaI of about 5400 good individuals were generated and@bou
12000 were discarded.

mance information in the form of Pareto—optimal hypersur- . 5 h luti ts f tAodnd B

faces, two methods are compared here. O Where the d'g%”e gomp?res Tf? solution ths f'rom mﬁ thn |

design space of th&#> modulator combines all design spaces uring optimization. 1he curves in the figure snow the values
of the four coverage metricg( (A, B), G- (A,B), G-(B,A),

of all the integrators and its own, and another methB® .
nes oo a (h C-(B,A)) as defined before. The results are better then ex-

where first a Pareto—optimal solution set is generated for t q v, Wi g h hat th ¢ only th
integrators and then this set is used during optimizatidhef pected actually. We wanted to show that the use of only the
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Figure 5. Comparison of AZ Pareto—optimal fronts gener-
ated by method A and B, at different generations in the
optimization process starting from the initial population ,
using the coverage metric (.

Pareto—optimal performance information doesn’t aburigant

deteriorate the quality of the Pareto—optimal set (sofusiet

of methodB shouldn’t be strictly dominated by the solution
set of method\). As can be concluded from figure 5, method
B even results in solution sets that dominate the solution set
of methodA. The randomly generated initial population gen-
erated in method is already slightly dominating the ini-
tial population in methodA. This can be explained by the

to extract performance information of the subblocks avadi
time—consuming transistor—level simulations. Advansagfe

this approach are the limited dimension of the high—level de
sign space, the storage memory reduction by modeling the
Pareto—optimal performance trade—off surface, the sianifi
speedup of the optimization algorithm, while the quality of
the eventually generated high—level performance tradés-of
maintained. The surfaces generated by this methodology can
be used by an analog designer to a priori choose a perfor-
mance configuration that best meets the given specifications
and hereby immediately determines the values of all design
parameters of all the subsystems.
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