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Abstract
The knowledge of optimal design space boundaries of

component circuits can be extremely useful in making
good subsystem-level design decisions which are aware of
the parasitics and other second-order circuit-level details.
However, direct application of popular Multi-objective ge-
netic optimization algorithms were found to produce Pareto
fronts with poor diversity for analog circuits problems. This
work proposes a novel approach to control the diversity
of solutions by paritioning the solution space, using Local
Competition to promote diversity and Global competition
for convergence, and by controlling the proportion of these
two mechanisms by a Simulated Annealing based formula-
tion. The algorithm was applied to extract numerical results
on analog switched capacitor integrator circuits with a wide
range of tight specifications. The results were found to be
significantly better than traditional GA based uncontrolled
optimization methods.

1. Introduction
Including an optimization framework in the design of

analog circuits has become fairly important in recent times.
Typical analog circuit sizing optimization problems require
handling of multiple, usually non-commensurate and of-
ten conflicting cost criteria. Earlier efforts in this area fo-
cussed on methodologies which converted some of the de-
sign objectives into constraints and combined the remain-
ing into a single objective function[1]. However, compar-
atively newer analog systems design methodologies[2] re-
quire design of component circuits with optimal design sur-
faces instead of an optimal design point. At the circuit
level, this translates into a problem of optimization to ob-
tain parameterized behavior of circuits. An example of
such a parameter is the load capacitance for analog com-
ponents in MOS integrated analog systems. This necessi-
tates a methodology for generating multiple optimal solu-
tions for the circuits in the entire range of the parameterized
variables/specifications. Traditionally, multi-objective opti-
mization methods try to address this problem of generating
near-optimal, non-dominated design points (Pareto Front)
that are well distributed over the design space[3][4][5][6].

One method of solving a multi-objective circuit opti-
mization problem is to transform it into a set of scalarized
single objective optimization problems by the weighted sum

approach or the Normal-Boundary Intersection method[4].
However, methods applying deterministic algorithms like
steepest descent or quadratic programming for solving the
single objective optimization problems have been known
to get trapped in local optima. Recently, application of
sequential stochastic refinement methods like Genetic Al-
gorithms(GA) for analog circuits design space exploration
have been successfully reported in [5][6]. The population
based approach of GA makes it very suitable for multi-
objective optimization problems, where multiple solutions
are sought in a single run of the algorithm. This work ex-
plores the possibility of obtaining near-optimal design sur-
faces using GA methods for analog circuits. An example
analog circuit is described in Section 2. Results obtained
by application of known GA approaches to this problem
are presented in Section 3. We then propose a variation
based on mixture of local and global competition in GA and
present the associated results in Section 4. For the sake of
clarity of expression and explanation, these algorithms have
been described for two-objective problems. The extension
to an arbitrary number of objective functions is straight-
forward. Section 5 concludes the paper with a brief dis-
cussion on the results in the previous section.

2. Integrator Circuit
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Figure 1. CDS Offset-compensated Switched-
Capacitor Integrator

Our chosen example sub-circuit is a correlated double
sampling (CDS) offset-compensated switched-capacitor in-
tegrator, which is the basic building block for sigma-delta
modulators used extensively to build filters and data con-
verters. We wish to use the optimal design surface of this
circuit for the construction of a fourth-order sigma-delta
modulator. Fig.1 shows a typical CDS offset-compensated
integrator with sampling, feedback and offset cancellation
capacitors in the differential configuration.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/05 $20.00 © 2005 IEEE 



Standard two-stage opAmp topology was used in the in-
tegrator for this work. Apart from the gate capacitances
of MOSFETs, we consider bottom-plate parasitic capaci-
tances of standard integrated capacitors and drain diffusion
and overlap capacitances of MOSFETs for more accurate
description and prediction of circuit behaviour. We com-
bine velocity saturation effect and advanced mobility mod-
els to arrive at the MOSFET model (shown in eqn.1) for
deep submicron MOS circuit optimization.
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where θ1, θ2 and VK are fitting parameters, and the rest
of the symbols have their usual meanings. Here, n = 1
for NMOS and 2 for PMOS. The target technology is an
industry-standard 0.18µm, 1.8 Volts, n-well digital CMOS
process.

After initial topology based reduction of design param-
eters, the optimization problem is framed with 15 design
parameters. The two objectives are Power dissipation and
the Load capacitance. The other circuit performance pa-
rameters, viz., Dynamic Range (DR), Settling Time (ST),
Settling error (SE), Area, Output voltage range (OR) and
Yield Calculation[6] (Robustness) were fixed as circuit con-
straints. Further the problem was constrained by the re-
quirement of all the transistors to be in the proper DC op-
erating region and matching constraints across all manufac-
turing process corners. It may be noted here that the ef-
fect of non-dominant poles and zeros was included in the
equations for ST, SR and DR, which makes them more
non-linear than those obtained by standard dominant pole
analysis based derivations. This helps in making the entire
search-space available to the optimizer by means of a small
number of analytical equations. 20 different specifications
of the circuit graded by their level of difficulty were chosen
and the Pareto Fronts were obtained for all of them using
the algorithms described in the following sections. The re-
sults obtained for all of the cases showed some common
trends, which we will present with explicit illustrations for
only one of them due to space limitations in this paper. The
specifications for the chosen case are : DR ≥ 96 dB, OR
≥ 1.4 volts, ST ≤ 0.24 µsec, SE ≤ 7 × 10−4, Robustness
≥ 0.85.

3. Applying known GA approaches
A popular Multi-objective Genetic optimization algo-

rithm called Elitist non-dominated sorting GA (NSGA-
II)[3] with a real-parameter continuous space was cho-
sen for approaching the above problem. However, the re-
sults obtained were not very encouraging. Fig.2 shows the
Pareto-optimal front obtained after 800 iterations of NSGA-

II. Here, it was desired that the algorithm produce Pareto-
optimal solutions which are well-distributed over the entire
range of Load capacitance from 0 to 5 pF, but the solutions
were found to cluster mostly between 4 and 5 pF.
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Figure 2. Pareto-optimal Front after 800 itera-
tions of NSGA-II

Investigations into such clustered behavior of the Pareto-
optimal solutions revealed the following :

• Loss of diversity : If in the early phase of GA, a com-
paratively higher number of solutions are produced in
a small part of the objective function space in compar-
ison to the rest of the space, the ”cross-over” operator
tends to produce more solutions ”in between” the so-
lutions in the cluster and thus tends to make the cluster
more dense.

• Premature Termination : Comparatively weaker so-
lutions from the rest of the space are gradually lost
due to failure to win in the global competition. This
leads to further loss in diversity and ultimately prema-
ture termination of evolution.

• Population Size: Clustering effect can be reduced by
increasing population size considerably, but this in-
creases the computational cost also.

4. Partition based Multiple Objectives Opti-
mization Methodology

The core problem identified in the previous section was
to introduce mechanisms which can preserve diversity in the
population while not sacrificing the speed of convergence to
the near-optimal Pareto Front in a resource-efficient man-
ner. A first approach for increasing diversity is to increase
the mutation probability. Increased mutation helps upto a
certain extent beyond which the entire optimization process
becomes random and loses the focus required for conver-
gence in reasonable time. Also, the optimal value of muta-
tion probability is heavily problem-dependent and its esti-
mation is non-trivial.



4.1. Contribution of this work
A known method of diversity preservation is parallel

population GA with inter-population migration controlled
in a tribe or island based framework[7], which can be ex-
tended for Multi-objective GA. However, in this work, we
try to establish that this objective can be accomplished by
a simple modification in the traditional single-population
GA. We argue that if the relatively weaker solutions from
sparsely populated regions of the objective function space
can be protected from global competition and evolved until
they become strong enough to compete globally, one would
get reasonably diverse solutions in the final Pareto opti-
mal front. To achieve this, a Simulated Annealing driven
Competition in Genetic Algorithm (SACGA) is proposed in
this paper, where the objective function space is partitioned
and a purely Local Competition in each partition transforms
into a purely Global competition in the entire space in the
course of the evolution of the GA. Further, a Multi-phase
Expanding-partitions SACGA (MESACGA) is proposed to
speed up the rate of advancement of the Pareto Front.
4.2. Performance Metric

The performance metric for the results obtained from
a Multi-objective Optimization Algorithm should evaluate
both the diversity of the solutions and their convergence to
the near-optimal Pareto front. One such metric for mini-
mization problems is the Hypervolume Metric[3]. Mathe-
matically, for each solution i, a hypercube vi is constructed
with the origin of the objective function space and the solu-
tion i as the diagonal corners of the hypercube. Thereafter,
a union of all hypercubes is found and its hypervolume is
calculated. Obviously, a lower value of the hypervolume
indicates a better pareto front.
4.3. Local Competition only

Given two objective functions, we propose to partition
the associated function space into m equal partitions in-
duced by the division of the range space of any one of the
objective functions into m equal, disjoint partitions. In each
iteration, only Local competition is allowed within each par-
tition for non-dominated ranking of individuals. A Global
Mating Pool is created by rank-based selection of individ-
uals from the entire population of solutions at the end of
each iteration and the candidates for next iteration are cre-
ated by performing cross-over and mutation operations in
the Global Mating Pool. After a fixed number of iterations,
Global Competition is performed once on the entire popu-
lation to find the Global Pareto Front containing the set of
globally non-dominated solution points.

This method produces reasonably diverse solutions and
keeps the eligible candidates from partitions falling within
the feasible objective function space alive for large num-
ber of iterations, thus allowing them improved chance to
participate in the Global Mating Pool. However, after
the initial stage of a couple of hundred iterations, the

Global Pareto Front was found to progress towards the
near-optimal Pareto front extremely slowly and would re-
quire large number iterations to reach there. The reason
for this observation can be better explained by defining a
few terms: The population members on the Pareto front
of the global population are called Globally Superior so-
lutions and the remaining are termed Globally Inferior so-
lutions. Similarly, the best individuals obtained from Lo-
cal competition of individuals in a subset of the population
form the Local Pareto Front and are termed Locally Supe-
rior solutions. Thus, in a GA, the cross-over operation has
a better chance of producing more Globally Superior solu-
tions when operating on two Globally Superior solutions,
than when operating on two Globally Inferior solutions or
a Globally Superior solution with a Globally Inferior solu-
tion. In absence of any Global Competition, there are typ-
ically many Locally Superior solutions which are Globally
Inferior. This causes slow production of Globally Superior
solutions.

4.4. Mixing Local and Global Competition
It is evident that while Local competition improves the

diversity of the solutions along the Global Pareto Front,
Global Competition improves the speed of movement of
the front towards the global near-optimal front. We pro-
pose a Simulated Annealing driven Competition in Ge-
netic Algorithm (SACGA) to allow the evolution process
in the algorithm to gradually transit from pure Local com-
petition in the initial phase to pure Global Competition in
the final phase of the duration of solving the problem. Fig.3
shows the flow of this algorithm. The phase of mixed local
and global competition is preceded by a phase of pure local
competition which ends after each partition has evolved at
least one solution which satisfies all the constraints. How-
ever, some partitions may be in the infeasible region. So, we
define an upper limit on the number of iterations allowed
in this phase, after which partitions with no constraint-
satisfying solutions are discarded. Let n be the desired
number of globally non-dominated (i.e., superior) solutions
per partition at the end of the second phase and gent be
the number of iterations required for the first phase. Let
span be the total number of iterations allowed in the sec-
ond phase.

In any iteration in the second phase, let mp be the num-
ber of locally superior solutions in partition p and c be the
cost of allowing a locally superior solution to participate in
the global competition. Then, we formulate :

c = k1e

(

k2
i

n−1

)

(2)

where, k1,k2 are constants to be chosen for shaping the cost
functions and i assumes the values 1, 2, . . . ,mp for partition
p. Thus, the locally superior solution i will participate in
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Figure 3. SACGA Algorithm flow
global competition with probability prob given by :

prob = 1− e

(

−α
c×TA

)

(3)

where α is a chosen constant and Annealing temperature
TA is given by the temperature schedule :

TA = Tinite

(

−k3×
ln(Tinit)

span
×(gen−gent)

)

(4)

where, gen is the current iteration number and TA is cooled
down from Tinit to a value of 1.
This formulation of probability prob provides the following
features :

1. It encourages pure local competition in the initial iter-
ations and pure global competion in the final iterations
of this phase.

2. The more the number of locally superior solutions pro-
duced by a partition, the better the partition is. How-
ever, we do not allow all such ”good” solutions to par-
ticipate in the Global Competition till the very final
phase of the evolution. This is necessary because if
some of these solutions are retained, then the parti-
tion will maintain its representation in the Global pool
even if all its participants in the Global Competition
are dominated by solutions from other partitions. This
is accomplished by assigning different probabilities to
different locally superior solutions. Thus, if the mp

”good” solutions in a partition p are considered in a
randomly determined sequence for evaluation of their
candidature for global competition, the solutions con-
sidered earlier have a higher probability than those
considered later.

3. The shapes of the probability curves can be easily
controlled by selecting the parameters k1,k2 and k3

for desired values of probability at iteration gen =
gent + span

2 for i = 1, n and that at iteration gen =
gent + span for i = 1, . . . , n. Fig.4 shows the proba-
bility curves for n = 5 and span = 100.
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Figure 5. Pareto Fronts after 800 iterations
of i) Traditional Purely Global competition
based and ii) SACGA based evolution

In the example circuit problem, the objective func-
tion space partitioning is induced by the division of the
range space of the Load Capacitance. Fig.5 presents the
Pareto Front obtained after 800 iterations of an 8−partition
SACGA and its comparison with that obtained earlier by
NSGA-II using purely global competition. A prominent is-
sue which affects the efficiency of SACGA is the problem
of selecting the optimal number of partitions with respect
to each objective function and determining their (generally,
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unequal) sizes. They are dependent upon the solution space
and no method is known of finding them. A simplified ap-
proach may be to choose partitions of equal sizes. However,
it is intuitive and our studies have shown that the optimal-
ity of the solutions obtained by a finite number of itera-
tions depends upon the chosen number of partitions. Fig.6
shows the quality of results obtained after 1200 iterations
for the example problem. Dividing the objective function
space into 16 equal partitions was found to be optimal for
this problem instance. At present, no alternative to com-
plete experimentation is known for finding this number. It
is to circumvent this problem coupled with a few other ad-
vantages that we suggest a modified version of SACGA in
the next subsection.
4.5. Multi-phase Expanding-partitions SACGA

(MESACGA)
A better option to chosing a set of static partitions would

be to start with a high number of partitions and gradually
expand the partition-size, thereby reducing their number.
Such a method would essentially ”grow” the individual Lo-
cal Pareto Fronts till they combine together to form the
Global Pareto Front in the final phase having just one par-
tition covering the entire objective function space. Essen-
tially, MESACGA is a SACGA running in multiple phases
where the number of partitions is reduced and their size in-
creased at the end of each phase. A brief overview is shown
in Fig.7. MESACGA provides a systematic method for
striking a balance between preserving Pareto front diversity
and convergence to global near-optimal. In MESACGA,
at the end of each phase of SACGA, the partitions start to
cover a wider region in the objective function space in the
current phase as compared to that in the previous phase.
This causes some Locally Superior but Globally Inferior
solutions to be thrown away and there is a tendency of de-
crease in the proportion of Globally Inferior solutions in the
pool of Locally Superior solutions and hence, faster move-
ment of the pareto front. However, the presence of such
solutions over periods of iterations is necessary for preserv-

ing diversity. The parameter span, i.e., the number of it-
erations for each phase of MESACGA provides a direct
control to maintain the above mentioned balance. Thus,
a smaller value of span would give quick results which
may not cover a significant portion of the objective func-
tion space, whereas, a higher value of span would make
the conversion of Local Pareto Fronts to the Global Pareto
Front more gradual and would, in general, produce solu-
tions with higher diversity. In addition, MESACGA was
found to produce results comparable in quality to those pro-
duced by selecting the best possible number of equal parti-
tions in SACGA.
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Figure 7. MESACGA Algorithm Flow

MESACGA was applied to the example problem with 7
successive phases of SACGA containing 20, 13, 8, 5, 3, 2, 1
partitions respectively. Fig.8 shows the MESACGA re-
sults in comparison to the both traditional and SACGA ap-
proaches.
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Figure 8. Pareto Fronts obtained after 800 iter-
ations of i) Purely Global competiton based,
ii) SACGA based, and iii) MESACGA based
evolution

5. Discussions and Conclusion
The results obtained for all the 20 different circuit

specifications showed similar trends with both SACGA and
MESACGA, taking, on an average, 18% more computa-



tional time compared to NSGA-II, due to additional over-
heads of these algorithms. In brief, the trends were as fol-
lows :

1. In all cases, where the evolution was continued for
more than 650 iterations, the quality of the solu-
tions obtained for equal number of iterations for TPG
(Traditional Purely Global competition based GA),
SACGA and MESACGA were found to be in the or-
der MESACGA ≥ SACGA ≥ TPG. Fig.8 shows the
Pareto Fronts obtained for 800 iterations from the three
approaches. However, no clear trends were visible for
lesser number of iterations.

2. It was observed in SACGA, that the differential gain
obtained by increasing the number of iterations beyond
700 turned out to be very low. Fig.9 plots the Hyper-
volume metric calculated for the Pareto fronts obtained
by setting the span parameter to progressively increas-
ing values in an 8−partition SACGA. It is clear that
not much improvement of the Pareto front is obtained
for span > 1000.

3. Fig.10 shows the Hypervolume metric calculated for
the Pareto fronts at the end of each phase of SACGA
in a 7−phase MESACGA. The value of span was kept
the same for each phase and the results were found to
improve by increasing the value of span. It was shown
in Fig.6 that a 1200 iteration SACGA produces best
results for 16 partitions. It can be clearly observed
in Fig.11 that a 1250 iteration MESACGA having a
purely local competition phase of 200 iterations fol-
lowed by 7 phases of 150 iterations each produces
comparable results. The Hypervolume metric calcu-
lated for the Pareto fronts are 22.19 and 21.83 for
SACGA and MESACGA respectively.
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Thus, we conclude that the poor diversity of the Pareto
fronts obtained from application of traditional, purely
global competition based Multi-objective genetic optimiza-
tion algorithms can be remedied to a large extent by the
proposed MESACGA approach.
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