

OS Debugging Method Using a Lightweight Virtual Machine Monitor

Tadashi Takeuchi
Hitachi Systems Development Laboratory, Japan

t-takeu@sdl.hitachi.co.jp

Abstract

Demands for implementing original OSs that can
achieve high I/O performance on PC/AT compatible
hardware have recently been increasing, but
conventional OS debugging environments have not
been able to simultaneously assure their stability, be
easily customized to new OSs and new I/O devices, and
assure efficient execution of I/O operations. We
therefore developed a novel OS debugging method
using a lightweight virtual machine. We evaluated this
debugging method experimentally and confirmed that it
can transfer data about 5.4 times as fast as the
conventional virtual machine monitor.

1. Introduction

Many appliance servers using original real-time
operating systems (OSs) and achieving
high-performance I/O on PC/AT compatible hardware
have been marketed recently. One result of this trend is
increasing demand for efficient debugging
environments for original OSs to support various I/O
devices and efficient debugging mechanisms
monitoring the OS status tracing even while the OS is
executing high-throughput I/O operations.

Because the vendors of PC/AT-compatible
hardware do not provide debugging hardware such as
ICE, the only debugging environments available for
operating systems running on PCs are a hardware
simulator working with a software debugger, a software
remote debugger, and a software debugger embedded in
the operating system under development. These
environments, however, cannot simultaneously assure
their stability when the operating system under
development does not perform properly, be easily
customized for different operating systems and new I/O
devices, and assure efficient execution of I/O
operations.

We therefore developed a novel OS debugging
environment and method that can satisfy the above
three demands simultaneously by using a lightweight
virtual machine monitor. In this paper, we describe our

new environment and method and report the results of
experiments comparing its performance with that of
conventional debugging environments.

2. Debugging Method

Our new debugging method provides the debugging
environment shown in Fig. 2.1.

Software remote
debugger

General-purpose
OS

Communi-
cation
Device

Communi-
cation
device

Remote
debugging
functions

(Stub)

Interruption
controller Timer

Debugging commands

Interruption-
controller
emulator

Timer
emulator

CPU-
resources
emulator

Page/
interruption

handling table,
etc.

Real Hardware Interfaces

Original OS

Indirect
access

Other I/O
devices

Direct
access

Lightweight Virtual Machine MonitorHost Machine

Target Machine

Software remote
debugger

General-purpose
OS

Communi-
cation
Device

Communi-
cation
device

Remote
debugging
functions

(Stub)

Interruption
controller Timer

Debugging commands

Interruption-
controller
emulator

Timer
emulator

CPU-
resources
emulator

Page/
interruption

handling table,
etc.

Real Hardware Interfaces

Original OS

Indirect
access

Other I/O
devices

Direct
access

Lightweight Virtual Machine MonitorHost Machine

Target Machine

Figure 2.1 Architecture of debugging environment

The architecture of our debugging environment is
similar to the one used for conventional remote
debugging. It consists of a host machine and a target
machine. A software remote debugger running on the
host machine receives debugging commands (target
machine memory/register reference/updating, etc.) from
a user and sends the command to the target machine

The target machine architecture differs from that of
classical software remote debugging in that a
lightweight virtual machine monitor implemented
independently of original OSs is embedded in it. The
monitor provides remote debugging functions such as
reception and execution of the debugging commands.
The monitor also provides a partial hardware emulation
mechanism. It emulates only the hardware resources
used by the remote debugging function (such as the
interruption controller or interruption-handling table).
The monitor provides the same interfaces as the real

1530-1591/05 $20.00 © 2005 IEEE

hardware, so it can work with any OSs running on
PC/AT architectures.

The hardware resources used by the remote
debugging functions are accessed by the original OS
via the lightweight virtual machine monitor, so stability
of the debugging environment can be assured because
the real hardware remain in normal states even if the
original OS works improperly because it has bugs. The
other devices, however, especially high-throughput I/O
devices (such as a SCSI controller or Ethernet
controller) can be accessed directly by the original OS.
This direct access enables I/O operations to be executed
efficiently in this debugging environment. The direct
access also makes it unnecessary for the monitor to
emulate the high-throughput I/O devices, so this
debugging environment can be used with various I/O
devices without being customized.

This lightweight virtual machine monitor also
provides a lightweight mechanism protecting memory
regions. Even though x86 architecture provides two
level memory protection mechanism, it can provide
memory protection at three levels: that of the
application on the original OS, that of the original OS,
and that of the lightweight virtual machine monitor.
This mechanism enables the remote debugging
functions to continue working properly even when the
application or the original OS executes illegal memory
accesses to regions used by the monitor.

3. Performance Evaluation

We evaluated the performance of the lightweight
virtual machine monitor by measuring the I/O
performance of our original OS, the HiTactix, running
on this monitor.

We ran the HiTactix OS on the following three
PC/AT-compatible systems with 1.26GHz Pentium III1
processors: real hardware, the lightweight virtual
machine monitor, and a VMware2 Workstation 4[2] for
Linux. The VMware Workstation 4 is a typical example
of a conventional virtual machine monitor for PC/AT
compatible architecture that supports various I/O
devices. On each of the systems running HiTactix, we
executed a data-transfer application that reads 2MB
data from three Ultra 160 SCSI disks at constant rates,
splits them into 1024KB segments, and sends all
segments via gigabit Ethernet using the UDP protocol.
We measured the CPU load variations when we
changed the data reading and transferring rates.
Comparing the load variations measured for the
different systems, we evaluated how much I/O

1

 Pentium III is a trademark of Intel Co. Ltd.
2 VMware is a trademark of VMWare Co. Ltd.

performance was improved by using the lightweight
virtual machine monitor instead of the VMware
Workstation 4 and how much degradation of I/O
performance are caused with real hardware when this
monitor is used.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700
transfer rate (Mbps)

C
PU

 lo
ad

 (%
)

Real hardware

LW virtual machine monitor

Vmware Workstation 4

Figure 3.1 Measured CPU load

The measurement results plotted in Fig.3.1 show

that our lightweight virtual machine monitor can
transfer data 5.4 times as fast as a VMware Workstation
4 , but they also show that our monitor can transfer data
at only about one fourth (26%) of the rate it can be
transferred by real hardware.

4. Conclusion

This paper describes a novel OS debugging method
and environment that can assure the stability of the
debugging environment, be easily customized to a new
OS or to a new I/O device, and assures efficient
execution of I/O operations.

We evaluated the I/O performance provided by our
proposed monitor and confirmed that the monitor can
transfer data 5.4 times faster than a conventional virtual
monitor.

5. References

[1] Damien Le Moal et al., “Cost-Effective Streaming Server
Implementation Using Hi-Tactix,” Proceedings of the 10th
ACM International Conference on Multimedia, pp. 382–391,
2002.
[2] J. Sugerman, “Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor,” USENIX
Annual Technical Conference, pp. 1–14, 2001.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

