
Compiler-Directed Instruction Duplication for Soft Error Detection∗

Jie S. Hu1, Feihui Li2, Vijay Degalahal2, Mahmut Kandemir2, N. Vijaykrishnan2, Mary J. Irwin2

1Department of Electrical and Computer Engineering, New Jersey Institute of Technology
2Department of Computer Science and Engineering, The Pennsylvania State University

Abstract
In this work, we experiment with complier-directed in-

struction duplication to detect soft errors in VLIW datap-
aths . In the proposed approach, the compiler determines
the instruction schedule by balancing the permissible per-
formance degradation with the required degree of duplica-
tion. Our experimental results show that our algorithms al-
low the designer to perform tradeoff analysis between per-
formance and reliability.

1. Introduction
Transient faults due to soft errors are becoming an im-

portant concern in current computing systems. Conse-
quently, techniques to improve the reliability of appli-
cation execution in VLIW processors are of interest.
In this work, we focus on detecting the transient er-
rors in the VLIW datapath through complier directed
instruction duplication. Since the compiler has full con-
trol of instruction scheduling in VLIW architectures, the
duplication is controlled at compilation time. This has a dis-
tinct advantage over runtime techniques as the compiler
can balance power, performance, and code size require-
ments when performing the duplication. Prior work [2, 1]
on soft error detection in VLIW architectures fully du-
plicates instructions and includes additional comparison
instructions to check the results of the duplicate execu-
tions. Our experiments reveal that full duplication can be
costly from both performance and energy perspectives. In
fact, while full duplication is essential in safety-critical ap-
plications, for large segments of embedded markets, factors
such as power and performance will continue to be as im-
portant as reliability.

2. Compiler-Directed Instruction Duplication
The main idea behind our algorithm is to fill empty ex-

ecution slots (cells) with duplicate instructions under a per-
formance bound. The instruction duplication mechanism in
our approach is supported by an hardware enhancement for
efficient result comparison that significantly improves our
full-duplication scheme with a performance loss of 10%
compared to 70.9% reported in [1]. We implemented our in-
struction duplication approach within the Trimaran frame-
work, which is an integrated compiler/simulation environ-
ment. Our results clearly show that our algorithms can be
used for improving reliability against soft errors under per-
formance bounds. The following subsections present the ar-
chitecture and compiler support needed to implement the
scheme.

∗ This work was supported by NSF grant no. 0093082, 0093085 and
0202007

2.1. Architectural Support
Architectural support is required for associating a par-

ticular instruction with its duplicate. We maintain a
integer/floating-point register value queue (IRVQ/FRVQ)
and a load/store address queue (LSAQ) for verify-
ing the outputs of instructions (see Figure 1). When a
register-output instruction (generates register value) com-
pletes, it writes the value into the output register as well as
in the RVQ. When the duplicate of this instruction com-
pletes its execution, its results are compared with the con-
tents of the RVQ entry associated with the original. A
single bit (B1) is used for identifying the instruction as ei-
ther original (1) or duplicate (0), and the ordering require-
ment is achieved by appropriate labeling of this bit based
on the relative ordering between the original and the du-
plicate in the instruction schedule. There is an additional
bit (B2) associated with each instruction indicating the re-
quired action to the RVQ. If the original instruction pre-
cedes its duplicate, B2 bit of the original instruction is set.
In the duplicate instruction, B2 is also set and B1 is re-
set to 0. After finishing execution, the original instruction
writes to the tail slot of the RVQ, and the duplicate com-
pares its output with this corresponding entry in the RVQ.
If both the original and duplicate instructions are sched-
uled at the same cycle, both B2 bits are reset. These two
instructions compare their outputs immediately after ex-
ecution without invoking any Write/Read to the RVQ.
2.2. Compiler Support

We see the compiler-scheduled code as a two-
dimensional table, where the rows correspond to schedule
cycles and the columns represent functional units. Each en-
try in this table is referred to as acell. An emptycell repre-
sents an idle cycle.Duplication range of an instructioni is
the range of cycles within which a duplicate of the instruc-
tion can be scheduled. This range is determined by the in-
structions thati depends on as well as the instructions that
overwrite the register read byi. More specifically, we can-
not schedule the duplicate before the source operands for
the instruction are ready. Similarly, we need to sched-
ule the duplicate before any of the source operands are
overwritten (see Figure 2).
2.2.1. Duplication under Performance Bound For du-
plicating under the presence of a performance bound, given
that the original (i.e., without any duplicates) schedule
length isC cycles, our objective is to maximize the num-
ber of instructions with duplicates so that the new schedule
length,C ′, is smaller than or equal to(1 + f) × C, where
f is an input parameter, set by the user, that enforces the
tolerable limit in performance degradation. One can con-
duct a reliability-performance tradeoff analysis by varying
the value off . Basically, this algorithm considers each in-
struction in turn, identifies its duplication range, and cre-

1530-1591/05 $20.00 © 2005 IEEE

BRU

C
on

fir
m

Excetpion

LSAQFRVQIRVQ

ICACHE

Instruction Register

Load/Store Queue

DCACHE

Register

File

GPR

L/SU 0IALU 0 IALU 1 FALU 0

cmpcmpcmp cmp cmp cmp

Fig 1: Architectural support

Add

Ld

St r4

r3 r2

Ld r2

0

r4

Add r3 1

r2

r4 r3 1

11

10

St

0

I. Code Segment II. Scheduled Original Code

III. Scheduled Code (extended) with Duplication

1

1 0

B1 B2

3

0

1

2

4

5

6

Add r2 r1 0 Add r1 0

1

1 0

12’

00 0 0

Add r1 0 Add r1r2 1 1

13’13

001 0

1

6’
LSAQ index

r2

Cmp id

r2

0

0

12

4

6

7

7’

4’

0

12: Add r2, r1, 0
4 : Ld r3, r2
6 : Add r4, r3, 1
13: Add r2, r1, 1

3

0

1

2

4

Add r1 1r2

7 : St r2, r4
St r4

Add r2 r1 0

Ld r3 r2

Add r4 r3 1

Fig 2: An example code (shaded instructions are dupli-
cates)

Fig 3: FWD values Fig 4: Increase in the original
schedule length

Fig 5: Percentage instruction
executions with duplicates

Fig 6: Increase in the original
execution cycles

ates a duplicate for it if doing so does not cause the sched-
ule length to exceed(1 + f) × C.
3. Results

We evaluate the proposed technique using both compile-
time and run-time metrics. The compile-time reliability
metric is thefraction of instructions with duplicates, or
FWD for short. Intuitively, more duplication should result
in more reliable execution assuming a uniform distribu-
tion of potential soft errors. The run-time reliability met-
ric, on the other hand, is the fraction of instructions ex-
ecuted with their duplicates. As for the performance met-
ric, the compile-time one is the percentage increase in the
static schedule length, and the run-time one is the percent-
age increase in the program execution time with respect to
the case without any duplication. Throughout our discus-
sion we use the termoriginal schedule to refer to the ver-
sion without any duplication.
3.1. Compile-Time Evaluation

Our experimental results show that the average FWD
values across our benchmarks are 86.8% and 41.4% for the
full-duplication scheme and the scheme with zero perfor-
mance penalty. The encouraging news is that our approach
is able to duplicate more than 40% of the instructions with-
out an increase in the original schedule cycles. Note that,
the full-duplication scheme also incurs an average increase
of 42.2% in the original schedule length. These FWD and
schedule length results clearly illustrate the tradeoffs be-
tween reliability and performance. Figure 3 shows the FWD
values under different bounds on the percentage increase
in the original schedule length. For example, a pointx%
on the x-axis indicates that we can tolerate at mostx% in-
crease in the original schedule length. We see that, as ex-
pected, the FWD value increases as we relax the perfor-
mance bound. The curves in Figure 4 shows the actual in-
crease in the original schedule length. The curve labeled
“reference” represents the worst case scenario where the
schedule for each basic block is increased byx%. We see
that the actual schedule length increases are always lower
than the maximum allowable limit.
3.2. Run-Time Evaluation

Our experimental results show that the runtime behavior
matches very well the static behavior extracted by the com-
piler. Figure 5 gives the percentage of instructions that are
executed with their duplicates under different maximum al-
lowable increases in the original schedule length. We see
that these values are similar to the corresponding values
given in Figure 3 and 4, indicating that the compile-time
reliability estimate is reasonable. The graph in Figure 6
shows the percentage increase in the original execution cy-
cles. Note that these values are lower than the correspond-
ing bounds for all benchmarks.
4. Concluding Remarks

In this paper, we present a study of instruction duplica-
tion for detecting soft errors in VLIW datapaths and present
compiler algorithms for this purpose. The characteristic of
the algorithm is that it improves reliability under perfor-
mance constraints. Overall, this paper shows that our algo-
rithm allows the designer to conduct tradeoff analyses be-
tween performance and reliability.
References
[1] C. Bolchini and F. Salice. A software methodology for detecting hardware faults

in vliw data path. InProc. IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, 2001.

[2] J. Holm and P. Banerjee. Low cost concurrent error detection in a vliw architec-
ture using replicated instructions. InProc. International Conference on Parallel
Processing, 1992.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

