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Abstract
In this work, we experiment with complier-directed in-

struction duplication to detect soft errors in VLIW datap-
aths . In the proposed approach, the compiler determines
the instruction schedule by balancing the permissible per-
formance degradation with the required degree of duplica-
tion. Our experimental results show that our algorithms al-
low the designer to perform tradeoff analysis between per-
formance and reliability.

1. Introduction
Transient faults due to soft errors are becoming an im-

portant concern in current computing systems. Conse-
quently, techniques to improve the reliability of appli-
cation execution in VLIW processors are of interest.
In this work, we focus on detecting the transient er-
rors in the VLIW datapath through complier directed
instruction duplication. Since the compiler has full con-
trol of instruction scheduling in VLIW architectures, the
duplication is controlled at compilation time. This has a dis-
tinct advantage over runtime techniques as the compiler
can balance power, performance, and code size require-
ments when performing the duplication. Prior work [2, 1]
on soft error detection in VLIW architectures fully du-
plicates instructions and includes additional comparison
instructions to check the results of the duplicate execu-
tions. Our experiments reveal that full duplication can be
costly from both performance and energy perspectives. In
fact, while full duplication is essential in safety-critical ap-
plications, for large segments of embedded markets, factors
such as power and performance will continue to be as im-
portant as reliability.

2. Compiler-Directed Instruction Duplication
The main idea behind our algorithm is to fill empty ex-

ecution slots (cells) with duplicate instructions under a per-
formance bound. The instruction duplication mechanism in
our approach is supported by an hardware enhancement for
efficient result comparison that significantly improves our
full-duplication scheme with a performance loss of 10%
compared to 70.9% reported in [1]. We implemented our in-
struction duplication approach within the Trimaran frame-
work, which is an integrated compiler/simulation environ-
ment. Our results clearly show that our algorithms can be
used for improving reliability against soft errors under per-
formance bounds. The following subsections present the ar-
chitecture and compiler support needed to implement the
scheme.
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2.1. Architectural Support
Architectural support is required for associating a par-

ticular instruction with its duplicate. We maintain a
integer/floating-point register value queue (IRVQ/FRVQ)
and a load/store address queue (LSAQ) for verify-
ing the outputs of instructions (see Figure 1). When a
register-output instruction (generates register value) com-
pletes, it writes the value into the output register as well as
in the RVQ. When the duplicate of this instruction com-
pletes its execution, its results are compared with the con-
tents of the RVQ entry associated with the original. A
single bit (B1) is used for identifying the instruction as ei-
ther original (1) or duplicate (0), and the ordering require-
ment is achieved by appropriate labeling of this bit based
on the relative ordering between the original and the du-
plicate in the instruction schedule. There is an additional
bit (B2) associated with each instruction indicating the re-
quired action to the RVQ. If the original instruction pre-
cedes its duplicate, B2 bit of the original instruction is set.
In the duplicate instruction, B2 is also set and B1 is re-
set to 0. After finishing execution, the original instruction
writes to the tail slot of the RVQ, and the duplicate com-
pares its output with this corresponding entry in the RVQ.
If both the original and duplicate instructions are sched-
uled at the same cycle, both B2 bits are reset. These two
instructions compare their outputs immediately after ex-
ecution without invoking any Write/Read to the RVQ.
2.2. Compiler Support

We see the compiler-scheduled code as a two-
dimensional table, where the rows correspond to schedule
cycles and the columns represent functional units. Each en-
try in this table is referred to as acell. An emptycell repre-
sents an idle cycle.Duplication range of an instructioni is
the range of cycles within which a duplicate of the instruc-
tion can be scheduled. This range is determined by the in-
structions thati depends on as well as the instructions that
overwrite the register read byi. More specifically, we can-
not schedule the duplicate before the source operands for
the instruction are ready. Similarly, we need to sched-
ule the duplicate before any of the source operands are
overwritten (see Figure 2).
2.2.1. Duplication under Performance Bound For du-
plicating under the presence of a performance bound, given
that the original (i.e., without any duplicates) schedule
length isC cycles, our objective is to maximize the num-
ber of instructions with duplicates so that the new schedule
length,C ′, is smaller than or equal to(1 + f) × C, where
f is an input parameter, set by the user, that enforces the
tolerable limit in performance degradation. One can con-
duct a reliability-performance tradeoff analysis by varying
the value off . Basically, this algorithm considers each in-
struction in turn, identifies its duplication range, and cre-
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Fig 1: Architectural support
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ates a duplicate for it if doing so does not cause the sched-
ule length to exceed(1 + f) × C.
3. Results

We evaluate the proposed technique using both compile-
time and run-time metrics. The compile-time reliability
metric is thefraction of instructions with duplicates, or
FWD for short. Intuitively, more duplication should result
in more reliable execution assuming a uniform distribu-
tion of potential soft errors. The run-time reliability met-
ric, on the other hand, is the fraction of instructions ex-
ecuted with their duplicates. As for the performance met-
ric, the compile-time one is the percentage increase in the
static schedule length, and the run-time one is the percent-
age increase in the program execution time with respect to
the case without any duplication. Throughout our discus-
sion we use the termoriginal schedule to refer to the ver-
sion without any duplication.
3.1. Compile-Time Evaluation

Our experimental results show that the average FWD
values across our benchmarks are 86.8% and 41.4% for the
full-duplication scheme and the scheme with zero perfor-
mance penalty. The encouraging news is that our approach
is able to duplicate more than 40% of the instructions with-
out an increase in the original schedule cycles. Note that,
the full-duplication scheme also incurs an average increase
of 42.2% in the original schedule length. These FWD and
schedule length results clearly illustrate the tradeoffs be-
tween reliability and performance. Figure 3 shows the FWD
values under different bounds on the percentage increase
in the original schedule length. For example, a pointx%
on the x-axis indicates that we can tolerate at mostx% in-
crease in the original schedule length. We see that, as ex-
pected, the FWD value increases as we relax the perfor-
mance bound. The curves in Figure 4 shows the actual in-
crease in the original schedule length. The curve labeled
“reference” represents the worst case scenario where the
schedule for each basic block is increased byx%. We see
that the actual schedule length increases are always lower
than the maximum allowable limit.
3.2. Run-Time Evaluation

Our experimental results show that the runtime behavior
matches very well the static behavior extracted by the com-
piler. Figure 5 gives the percentage of instructions that are
executed with their duplicates under different maximum al-
lowable increases in the original schedule length. We see
that these values are similar to the corresponding values
given in Figure 3 and 4, indicating that the compile-time
reliability estimate is reasonable. The graph in Figure 6
shows the percentage increase in the original execution cy-
cles. Note that these values are lower than the correspond-
ing bounds for all benchmarks.
4. Concluding Remarks

In this paper, we present a study of instruction duplica-
tion for detecting soft errors in VLIW datapaths and present
compiler algorithms for this purpose. The characteristic of
the algorithm is that it improves reliability under perfor-
mance constraints. Overall, this paper shows that our algo-
rithm allows the designer to conduct tradeoff analyses be-
tween performance and reliability.
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