
galsC: A Language for Event-Driven Embedded Systems

Elaine Cheong
Department of EECS

University of California, Berkeley
Berkeley, CA 94720

celaine@eecs.berkeley.edu

Jie Liu
Microsoft Research
One Microsoft Way

Redmond, WA 98052
liuj@microsoft.com

Abstract— We introduce galsC, a language designed for programming
event-driven embedded systems such as sensor networks. galsC imple-
ments the TinyGALS programming model. At the local level, software
components are linked via synchronous method calls to form actors. At
the global level, actors communicate with each other asynchronously via
message passing, which separates the flow of control between actors. A
complementary model called TinyGUYS is a guarded yet synchronous
model designed to allow thread-safe sharing of global state between actors
via parameters without explicitly passing messages. The galsC compiler
extends the nesC compiler, which allows for better type checking and
code generation. Having a well-structured concurrency model at the
application level greatly reduces the risk of concurrency errors, such
as deadlock and race conditions. The galsC language is implemented on
the Berkeley motes and is compatible with the TinyOS/nesC component
library. We use a multi-hop wireless sensor network as an example to
illustrate the effectiveness of the language.

I. I NTRODUCTION

Networked embedded software designers face issues such as man-
aging computation as well as communications, maintaining consistent
state across multiple tasks, handling irregular interrupts, avoiding
concurrency errors, and conserving power. These tasks become more
challenging when the resources of the hardware platforms are too
limited, in terms of CPU speed and memory size, to host a full-scale
modern operating system. Traditional technologies for developing
embedded software, inherited from writing device drivers and from
optimizing assembly code to achieve a fast response and a small
memory footprint, do not scale with the growing complexity of
today’s applications. Despite the fact that “high-level” languages
such as C and C++ have recently replaced assembly language as the
dominant embedded software programming languages, most of these
high-level languages are designed for writing sequential programs
to run on an operating system and fail to handle concurrency
intrinsically.

Event-driven embedded software is more like hardware, where
conceptually concurrent components are activated by incoming sig-
nals (or events). Event-driven execution is particularly suitable for
untethered devices such as sensor network nodes, since the node can
be put into a sleep mode to preserve energy when no interesting
events are happening. For many networked embedded systems, there
is a fundamental gap between this event-driven execution model and
sequential programming languages.

TheTinyGALS(Globally Asynchronous and Locally Synchronous)
programming model [1] aims to fill this gap by providing language
constructs to systematically build concurrent tasks (calledactors).

∗This work was supported in part by an Intel Open Collaborative Research
Fellowship, PARC (Palo Alto Research Center), and UC Berkeley CHESS
(Center for Hybrid and Embedded Software Systems). We would like to thank
David Gay (Intel Research Berkeley) for nesC, enabling our extension to the
nesC compiler, and contributions to the connection model; Edward A. Lee
and members of the Ptolemy Project (UC Berkeley) for discussions on the
concurrency model; and Feng Zhao for support at PARC.

At the application level, actors communicate with each other asyn-
chronously via message passing. Within each actor,components
communicate synchronously via method calls, as in most imperative
languages. Thus, the programming model is globally asynchronous
and locally synchronous in terms of transfer of the flow of control.
In order to incorporate shared variable semantics where only the
latest value matters, a set of guarded yet synchronous variables
(called TinyGUYS) is provided at the system level for actors to
exchange global information “lazily.” Access to these variables is
thread-safe, yet components can quickly read their values. In this
programming model, application developers have precise control
over the concurrency in the system, and they can develop software
components without the burden of thinking about multiple threads.

In this paper, we introducegalsC, a language that implements the
TinyGALS programming model. This new approach is based on the
nesC language and compiler [2], and improves on the design in [1]
in the following aspects:

• A real compiler backend allows the galsC compiler to perform
better type checking and code generation.

• A novel global variable (TinyGUYS) handling mechanism does
not require special parameter access keywords. This makes
galsC compatible with all nesC components.

• This paper also contains a deeper discussion on concurrency
features of galsC, in comparison to [1].

The design of galsC is influenced by the trend of introducing
formal concurrency models in embedded software. In particular,
synchronous languages try to compile away concurrency executions
based on the synchronous (zero-execution time) assumption [3].
When it is not possible to compile away concurrency, the port-
based object (PBO) model [4] has a global shared variable space
mediating component interaction. Various dataflow models [5] use
FIFO queues to separate flow of control. The POLIS co-design
approach [6] uses an event-driven model for both hardware and
software executions. To some extent, galsC is closer to system-
level hardware/software codesign languages, such as SystemC [7]
and VCC [8], than embedded software languages such as nesC. galsC
provides basic concurrency constructs and generates executable code,
including an application-specific operating system scheduler, from
high-level specifications. This generative approach allows further
analysis of concurrency problems, such as race conditions, at a high
level. Automatically generated code also reduces implementation and
debugging time, since the developer does not need to reimplement
standard constructs (e.g. communication ports, queues, functions, and
guards on variables).

The remainder of this paper is organized as follows. Section
II describes galsC syntax and semantics, connection model, type
checking, and code generation. Section III discusses concurrency
issues in galsC programs. Section IV describes a sample application

1530-1591/05 $20.00 © 2005 IEEE

implemented in galsC. We conclude with directions for future work.

II. T HE GALSC LANGUAGE

In this section, we overview the galsC syntax and semantics
with a simple sensing application (Figure 1). In this example, a
hardware clock triggers the system to update a time tick counter.
A downsampled clock signal triggers the system to read the light
intensity level from a photoresistor at a lower rate. Reading the
sensor may take time. The system tags the resulting sensor value with
the latest value of the counter and sends it downstream for further
processing.

Counter SenseToIntTrigger

TimerC

TimerControlTimer ADCControlADC

Photo

trigger
trigger

actorControl

trigger
Timer

StdControl StdControl trigger

StdControl
actorControl

TimerActor IntOutput.output

IntOutput.output

SenseActor
countcount

64

uint16_t count = 0

Fig. 1. The SenseTag application.

A. Language constructs

There are three basic constructs in galsC: components, actors,
and applications.Componentsare the most basic elements of a
galsC program and are written in the nesC programming language.
Components provide and/or requireinterfaces, which are collections
of methods. A component that provides an interface contains an
implementation of the interface method(s), whereas a component
that requires an interface expects another component to implement
the interface. A component is either amoduleor a configuration. A
module contains executed code, whereas a configuration only contains
a list of components and the connections between their interface
methods. Figure 2 shows the source code for theTimerC configu-
ration, which contains a module namedTimerM that implements the
provided interface methods.

Actors are the major building blocks of a galsC program and are
written in the galsC programming language. The interface of an actor
consists of a set of input and/or output ports and a set ofparameters.
Parameters are global variables that can be both read and written. An
actor contains a list of components and connections. A connection
can connect a component interface method to one of the following
endpoints: (1) another component interface method, (2) a port, (3) a
parameter, or (4) some combination of these. We discuss connections
in detail in Sections II-C and III. An actor may also contain an
actorControlsection which exports theStdControlinterface of any of
its components to the application level for system initialization (e.g.
for initializing hardware components). Figure 3 shows the source
code for theSenseActoractor.

A galsC program is created by writing a galsCapplicationfile that
contains zero or more parameters and a list of actors and connections.
A connection can connect application parameters (global names) with
actor parameters (local names). A connection can also connect actor

configuration TimerC {
provides interface Timer[uint8_t id];
provides interface StdControl;

} implementation {
components TimerM, ClockC, ...;
TimerM.Clock -> ClockC; ...
StdControl = TimerM.StdControl;
Timer = TimerM.Timer;

}

module TimerM {
provides interface Timer[uint8_t id];
provides interface StdControl;
uses interface Clock;
...

} implementation {
// Interface implementation...

}

Fig. 2. Source code for the TimerC and TimerM components.

actor SenseActor {
port {

in trigger;
out output;

} parameter {
uint16_t count;

} implementation {
components SenseToInt, Photo;

SenseToInt.ADC -> Photo;
SenseToInt.ADCControl -> Photo;

trigger -> SenseToInt.trigger;

(SenseToInt.IntOutput.output,
count) -> output;

actorControl {
SenseToInt.StdControl;

}
}

}

application SenseTag {
parameter {

uint16_t count = 0;
} implementation {

actor TimerActor, SenseActor,
...;

count = TimerActor.count;
count = SenseActor.count;

TimerActor.trigger =[64]=>
SenseActor.trigger;

SenseActor.output => ...;

appstart {
SenseActor.trigger();

}
}

}

Fig. 3. Source code for the SenseActor actor and the SenseTag application.

output ports with actor input ports, with an optional declaration of
the port queue size (defaults to size 1). Figure 3 shows the source
code for the SenseTag application.

B. Language semantics

Generally speaking, galsC implements the TinyGALS program-
ming model as described in [1], which we summarize here. We have
also developed an improved way to handle TinyGUYS (parameters),
which differs from the model described in [1].

1) Ports: Each input port of an actor has a FIFO queue. Commu-
nication between actors occurs asynchronously through these queues.
When a component within an actor calls a method that is linked to
an output port, the arguments of the call are converted into events
calledtokens. A copy of the token is placed in the event queue of each
input port connected to the output port. Later, the scheduler removes
the token from the queue and calls the method that is linked to the
input port with the contents of the token as its arguments. Thus, the
queue separates the flow of control between the actors; the call to the
output port returns immediately, and the component within the actor
can proceed. The scheduler processes tokens in the order in which
they are generated. Tokens are dropped if the input port queue is full;
the programmer is currently responsible for selecting the correct size.

2) Parameters:The TinyGALS programming model has the ad-
vantages that actors become decoupled through message passing and
are easy to develop independently. However, each message passed
will trigger the scheduler and activate a receiving actor, which
may quickly become inefficient if there is global state that must
be updated frequently. The TinyGUYS (Guarded Yet Synchronous)
mechanism provides a way for actors to share global data safely. This
is implemented as theparameter feature in the galsC programming
language.

With the TinyGUYS mechanism, actors may read a parameter
synchronously (without delay). However, writes to the parameter are
asynchronous in the sense that all writes are buffered. The buffer is
of size one, so that the last writer to the parameter wins. Parameters
are updated by the scheduler only when it is safe (i.e., after an actor
finishes executing and before the scheduler triggers the next actor).

Parameters have global names that are mapped to the local pa-
rameter names of each actor. In the new TinyGUYS mechanism, a
component interface method or an actor port can write to a parameter
by calling a connected function with a single argument. Parameter
values can be read by passing them as arguments to component
interface methods or actor ports. InSenseActorin Figure 3, thecount
parameter is passed as the last argument to theoutput port.

This design does not require parameter names to appear inside
the component name space. One can develop components in their
own scope, independent of the connected parameters. We no longer
require components to use special methods to access global variables,
which greatly improves the reusability of components.

C. Connection model within actors

A connectionx → y inside an actor consists of a sourcex and a
targety.1 We use regular expressions to describe possible entities of
x andy:

source = (l)∗ (p | f) (l)∗ (1)

target = l | p | f (2)

wherel is the local name of a parameter,p is an actor port name,
and f is a component interface function. Atrigger is a port or
function that appears as the source of a connection. A port is triggered
when the scheduler invokes it with the first token in its queue. A
function is triggered when it is called by another function.

A connectionx → y is valid if the number of arguments and the
types of the arguments of the source match those of the target when
the arguments on each side of the arrow are concatenated separately,
similar to the notion of record types [9]. Additionally, a source port
must be an input port and a target port must be an output port, and
a source function must be a required method and a target function
must be a provided method. The return type of a trigger must also
match that of the target.

For example, supposef1 is a required method with exactly two
arguments.(f1, l1) → p1 is valid if p1 is an output port that has
exactly three arguments whose types match those of the left hand
side (i.e., the types of the first two arguments ofp1 must match
those off1, and the type of the last argument ofp1 must match that
of l1) and if the return type off1 matches that ofp1.

Using our regular expression model, we have the following valid
types of connections, wherel in (t, l) is an abbreviation for any
number of parameters appearing before or after the triggert:

No parameters

p1 → p2

p1 → f1

f1 → p1

f1 → f2

Param GET

(p1, l) → p2

(f1, l) → p1

(p1, l) → f1

(f1, l) → f2

Param PUT

p → l
f → l

Param GET/PUT

(p, l1) → l2
(f, l1) → l2

For connections with no parameters, the trigger will (a) trigger
the connected function or (b) pass a token to the connected output
port. In a parameter GET connection, the parameter value(s) will be
appended to the trigger’s argument list and passed to the connected
function or port. In a parameter PUT connection, the trigger will write
its argument to the parameter. In a parameter GET/PUT connection,
the trigger will cause the source parameter to be read and its value
stored in the target parameter. Note that for the number of arguments
to match, the trigger in a parameter PUT connection must have only
one argument, and the trigger in a parameter GET/PUT connection
must have no arguments.

What are the semantics of multiple connections (i.e., fanout from
a function)? For example, what is the order of computation when

1This model also applies to connections at the application level. However,
the discussed port directions must be reversed: a source port must be an output
port and a target port must be an input port. Global parameter names should
be used instead of local parameter names.

you havef1 → l1 and f1 → f2? Or when you havef1 → l1 and
f1 → p? In galsC, the write to the parameter occurs first, before any
additional computation or transfer of control. The buffered parameter
value may then get overwritten in the later computation. This policy
gives us a consistent view of ordering in the system.

D. Type inference and type checking

The galsC compiler performs high level type inferencing on the
connection graph of an application. There are two parts to the
type inference system: connections with ports, and connections with
parameters but no ports.2

1) Ports: In galsC, ports are untyped. The actual types of ports
are inferred from the connection graph of a galsC program. In figure
4, an actorA contains a component which has a call to functionf
with type signatureτ1. The input port of actorB is the target of the
concatenation of the output port ofA with a parameter with typeτ3.
The known types (τ1, τ3, τ5, τ8) are shown in bold.

call f() f() {...}

Actor A Actor B Actor C

τ1 τ2 τ6τ4 τ7 τ8

τ3 τ5

Fig. 4. Type checking example.

We write a type equation for each connection in the system:

τ1 = τ2 (3)

τ2 × τ3 = τ4 (4)

τ4 × τ5 = τ6 (5)

τ6 = τ7 (6)

τ7 = τ8 (7)

We can then solve the set of equations to determine the types
of the ports. A valid system has a unique solution to the set of
equations. The galsC compiler derives types for all ports in the
system by matching the return type and the argument types of all
connected upstream and downstream functions. The galsC compiler
detects a type error when the set of equations conflicts with itself or
is unsolvable.

2) Parameters:The type system for parameter connections with-
out ports is straightforward, since there are only two types of
connections: (1) connections between a global name and a local name,
and (2) connections between a function and a local name. Since the
types of all these sources and targets are known, the type checker
merely verifies that all the types in a connection match.

E. Code generation

The highly structured architecture of galsC programs enables us to
automatically generate the communication and scheduling code, al-
lowing software developers to avoid writing error-prone concurrency
control code. We have extended the nesC 1.1.1 toolset [10]. The
resulting galsC toolset can compile both nesC and galsC programs
and its output can be cross-compiled for any platform used with
TinyOS [11], including the Berkeley motes [12].

The TinyGALS code generation tools described in [1], were
compatible with TinyOS 0.6.1 and were implemented in perl and
generated stylized C (using C preprocessor macros). The galsC com-
piler, on the other hand, takes advantage of a real compiler backend.
It uses traditional compiler techniques, including type checking, dead
code elimination, and function inlining. We have modified the data-
race detection feature of nesC, since the decoupling of execution
through ports eliminates some possible sources of race conditions.

2Connections containing only functions are checked with the nesC type
checker.

galsC provides an improved programming model in exchange for
a minimal application-dependent increase in code size for scheduling
and communication between actors [13]. For a simple photosensor
application, the initialization and scheduling code is 662 bytes
compared to 564 bytes for the original nesC code. Theget()andput()
functions for a port of typeuint8_t use 208 bytes. Theget() and
put() functions for a parameter of typeuint16_t use 30 bytes. The
scheduler event queue size is equal to the sum of the user-allocated
size for each port connection (depends on the size of the data type).

III. C ONCURRENCYISSUES

Concurrency management is a significant concern in event-driven
systems. Poorly implemented systems may suffer from deadlock (i.e.
where no tasks can proceed due to blocking on a shared resource),
livelock (i.e. where the system falls into deadloop and responds to no
further interrupts), and race conditions (i.e. where shared variables
are accessed by multiple threads at the same time).

In this paper, we only consider concurrency issues on single
processor platforms. In galsC, all memory is statically allocated;
there is no dynamic memory allocation. A galsC program runs in
a single thread of execution (single stack), which may be interrupted
by the hardware. An actorA may begin execution when: (1) the
scheduler activatesA in response to an event in its input port, or (2)
an interrupt service component withinA is triggered by an external
interrupt. The execution triggered by interrupts is called theinterrupt
context, and the execution activated by the scheduler is called the
scheduled context. Interrupt handlers preempt scheduled executions,
which is the only source of concurrent execution in galsC. Our
system-level concurrency model allows us to manage the concurrency
issues discussed earlier.

A. Cross-actor concurrency

Since all scheduled executions of actors are in the scheduled con-
text and controlled sequentially by the scheduler, the only possibility
for cross-actor concurrent execution is when one actor is in the
scheduled context, and one or more other actors are in an interrupt
context.

There are two mechanisms for actors to communicate in galsC:
event queues (ports) and guarded global variables. Blocking on shared
resources (e.g., a blocking read) is not part of the semantics across
actors, which gives us:

Theorem 1:Deadlock is not possible across actors.
In event-driven systems, since there are critical system operations,

such as enqueuing and dequeuing events, which are atomic, it is
possible for a scheduler to retain control and disable interrupts
indefinitely. In Figure 5, theLoopactor is first triggered by an internal
interrupt, which produces an event (token) at the output port. The
event loops back to the input port where it is inserted into the event
queue. Interestingly, there is a direct link between the input port and
the output port inside the actor. Can this self-loop prevent further
interrupts from entering the system?

interrupt

Actor Loop

Fig. 5. A self-loop actor triggered by an interrupt.

Once the event is enqueued, the scheduler (1) dequeues the event,
with interrupts disabled and (2) calls the function connected to
the inside of the input port, in this case theput() function of the

output port. Within theput() function, the code that inserts the event
back into the event queue is also atomic. So, without a careful
implementation of the scheduler, there is a risk of livelock. However,
in the galsC scheduler, interrupts are enabled between dequeuing
the event and enqueuing the event, so future interrupts will not be
blocked, which gives us:

Theorem 2:Livelock is not possible across actors.
Race conditions are another major concurrency concern. Since

there are shared data between actors, an actor may be in the middle
of writing the data when another actor tries to read it. Two actors
may also try to write to a shared variable at the same time.

There are two forms of shared data across actors: tokens and
parameters. Tokens are stored in event queues, and access to them
is atomic and controlled by the scheduler. Parameters, as discussed
in the previous section, are always guarded, whose value updates are
again controlled by the scheduler (where the last value written wins).
Thus,

Theorem 3:Race conditions are not possible across actors.
As a result of these claims, concurrency errors will not happen

at the application level across actors. So, programmers can focus on
concurrency issues within each actor, which is a problem with a much
smaller scope.

B. Component-level concurrency

Concurrent execution may occur within actors if multiple threads of
control enter the same component through its input ports or interrupt
handlers. Problems may occur if they try to change the component
state at the same time.

A piece of code isreentrant if multiple simultaneous, interleaved,
or nested invocations do not interfere with each other. We assume that
interrupts handlers are not reentrant, and that interrupts are masked
while servicing them (interleaved invocations of the same interrupt
are disabled). However, other (different) interrupts may occur while
servicing an interrupt. Hardware interrupts are the only sources of
preemption.

A componentC may begin execution if: (1) the hardware thatC
encapsulates interrupts (C is a “source component”), (2) an event
arrives on the actor input port linked to one of the interface methods
of C (“ triggered component”), or (3) another component calls one
of the interface methods ofC (“called component”). Once activated,
a component executes to completion. That is, the interrupt service
routine or method finishes.

Reentrancy problems may arise if a component is both a source
component and a triggered component. An event on a linked actor
input port may trigger the execution of a component method. While
the method runs, an interrupt may arrive, leading to possible race
conditions if the interrupt modifies internal variables of the same
component.

Cycles within actors (between components) are not allowed,
otherwise reentrant components are required.3 Therefore, any valid
configurations of components within an actor can be modeled as a
directed acyclic graph (DAG). Asource DAGis formed by starting
with a source component and following all forward links between it
and other components in the actor (Figure 6(a)). Atriggered DAG
is similar to a source DAG but starts with a triggered component
instead (Figure 6(b)). Race conditions and reentrancy problems may
occur if source DAGs and triggered components are connected within
an actor. In Figure 6(c), the source DAG (C1, C3) is connected

3Recursion within components is allowed. However, the recursion must be
bounded for the system to be live.

C1 C2

Actor A

C1 C2

Actor A
C3C1

C2
Actor A

Fig. 6. a) Source DAG b) Triggered DAG c) Source DAG & triggered DAG

to the triggered DAG (C2, C3). Race conditions and reentrancy
problems may occur ifC3 is running in a scheduled context and an
interrupt causesC1 to preemptC3. We can relax the restriction on
cycles between components and only disallow cycles in method call
chains between components by first separating the methods within a
component into separate source and triggered components.

If all interrupts are masked during interrupt handling (interrupts are
disabled), then we need not place any additional restrictions on source
DAGs. However, if interrupts are not masked (interrupts are enabled),
then a source DAG must not be connected to any other source DAG
within the same actor. Triggered DAGs can be connected to other
triggered DAGs, since with a single thread of execution, it is not
possible for a triggered component to preempt a component in any
other triggered DAG.

Some configurations of connections between component methods
and actor ports may lead to nondeterministic component firing order.
Let us first assume that both actor input ports and actor output ports
are totally ordered (we use the order specified in theport section of
the galsC actor file), but that components are not ordered. Then actor
input ports may either be associated with one (provided) method
of a single componentC or with one or more actor output ports.
Likewise, outgoing component methods (required) may be associated
with either one (provided) method of a single componentC or with
one or more actor output ports.4 Provided component methods may
be associated with any number or combination of required component
methods and actor input ports, but they may not be associated with
actor output ports. Likewise, actor output ports may be associated
with any number or combination of required component methods
and actor output ports. However, if we assume that neither actor
input ports nor actor output ports are ordered, then actor input ports
and outgoing component methods may only be associated with either
a single method or with a single output port.

The components within a single galsC actor must satisfy the fol-
lowing conditions to be well-formed and avoid concurrency problems:

• Source components may not also be triggered components nor
called components.

• Cycles among components within an actor are not allowed, but
loops around actors are allowed.

• Component source DAGs and triggered DAGs must be discon-
nected.

• Component source DAGs must not be connected to other source
DAGs, but triggered DAGs may be connected to other triggered
DAGs. Assumes that an interrupt whose handler is running is
masked, but other interrupts are not masked.

• Outgoing component methods may be associated with 1 method
of another component, or with≥1 output ports.

4In the existing TinyOS constructs, one caller (outgoing component method)
can have multiple callees. The interpretation is that when the caller calls, all
the callees will be called in a possibly non-deterministic order. A combination
of the callees’ return values will be returned to the caller. Although multiple
callees are not part of the TinyGALS semantics, it is supported by our software
tools for TinyOS compatibility.

base
station

neighborReadings

timeCount

MessageReceiver

TimerActor

parentNode

hopCount

LocalBroadcast

SenseAndSend

MessageForwarder

Fig. 7. a) Sensor array for object detection and reporting. b) Top-level,
per-node view of the object detection application.

• Input ports may be associated with 1 method of a single
component, or with≥1 output ports.

C. Determinacy

Notice that lacking of concurrency errors does not mean galsC
programs are deterministic. Thesystem stateof a galsC program
consists of (1) the internal state of all components, (2) the contents of
the global event queue5 and (3) the values of all global parameters.
The question ofdeterminacyis that given a unique initial state of
a galsC program and a set of known interrupts (in terms of both
interrupt time and value), will the program have a unique state
trajectory independent of the execution/CPU speed? Note that single
thread sequential programs, where all inputs are read into the system,
are determinate. Concurrent models, such as Kahn process networks,
which sacrifices real-time properties, can also be determinate [14].
However, for event-driven systems, determinacy may be sacrificed
for reactiveness.

In general, a galsC program is non-determinate. The source of
non-determinacy is the preemptive handling of interrupts. Suppose
that while an actor is being iterated, it is interrupted by another
actor. If both of these actors produce events at their output ports,
the order of events in the global event queue may not be consistent
when the system is executed at different speeds. If both of these
actors write to a global variable (i.e. parameter), then without exact
timing information, we cannot predict the final value of the global
variable at the end of the iteration.

IV. EXAMPLE

To illustrate the effectiveness of the galsC language, let us consider
a classical sensor network application that detects and monitors point-
source targets. A set of sensor nodes (called motes) are deployed in
a 2-D field. To simplify the discussion, we assume that the motes
are deployed on a perturbed grid, as shown in Figure 7(a). The goal
of the sensor network is to detect moving objects modeled as point
signal sources, and to report the detection to a central base station,
located at the lower-left corner of the field. Please note that the goal
here is to illustrate the language, rather than to develop sophisticated
algorithms to solve the problem optimally.

We assume that the motes know their locations on the grid and the
grid size. The application primarily consists of two tasks: exchanging
local sensor readings to determine the “leader” responsible for re-
porting a detection, and multi-hop forwarding of the report messages
to the base station. For simplicity, the leader election is achieved
by having every mote periodically broadcast a packet containing the

5The global event queue is defined as the ordered sequence of tokens in
the event queues of all actor ports.

location of the mote and its sensor reading. These packets also serve
as beacons to establish a multi-hop routing structure.

The multi-hop routing is implemented as a routing tree rooted at
the base station. Assume that no mote has the global topology of the
network; a mote finds out its parent in the tree by eavesdropping on
other messages. These messages include sensor reading broadcasts
and forwarded report messages. Every message contains the hop
count of the sender, which indicates the level of the sender in the
routing tree. For example, the mote directly connected to the base
station has hop count 0. Whenever it broadcasts a message, everyone
who can overhear the message will note that it is probably one hop
away from the base station. As illustrated by the dashed line in
Figure 7(a), the reachable nodes of a wireless broadcast may have a
complicated shape. To compensate for the unreliable and sometimes
asymmetric wireless communication links, a mote maintains a list
of senders it has heard in the pastT seconds and chooses the most
reliable one (measured by, for example, a trade-off between low hop
count and message repeatability) as its parent node. It then calculates
its own hop count from its parent’s hop count.

A high-level view of the implementation of the object detection
application in galsC is shown in Figure 7(b). All motes run the
identical code modular to their locations. The execution of a mote is
driven by two event sources – clock interrupts and received messages.
Similar to the example in Figure 1, theTimerActor handles clock
interrupts and updates the latest timer count in a parameter named
timeCount. Every half second,TimerActoremits a token that triggers
the SenseAndSendactor.

The MessageReceiveractor receives messages from the radio and
chooses an action based on the message type:

• If the message is a local broadcast, it updates theneighborRead-
ingstable. Note that since only the latest neighbor sensor reading
matters, the overriding semantics of TinyGUYS variables is a
natural fit.

• Also for each broadcast message, it updates an internal routing
table by looking at the repetition frequency of the sender node.
Note that it requires thetimeCountvalue to determine the rate of
the messages heard. Whenever there is a change of the desired
parent node, and thus this node’s hop count, it updates the
parentNodeandhopCountparameters.

• If the message is a forwarding message, it sends the content of
the message to the downstreamMessageForwarderactor.

TheSenseAndSendactor activates the ADC to get a sensor reading.
Once the sensor reading is available, it queues a local broadcast of the
sensor reading. It also compares its own reading with the latest values
from its neighbors.6 If this mote has the highest sensor reading (i.e.
it is closest to the signal source),SenseAndSendgenerates a report
message and queues it with theMessageForwarderactor.

Both the LocalBroadcastactor and theMessageForwarderactor
send out packets with this mote’shopCountso that other motes can
use it to build the multi-hop routing tree. TheMessageForwardactor
also takes theparentNodeID as part of the input token, merged with
the requests fromSenseAndSendandMessageReceiver.

V. CONCLUSION AND FUTURE WORK

This paper describes galsC, a language for event-driven embedded
systems that allows developers to use high-level constructs such
as ports and parametersto create thread-safe, multitasking pro-
grams. We have created a type system for checking connections

6Here, the neighbors are defined as the motes directly above, below, left,
and right of this mote in the grid.

across synchronous and asynchronous communication boundaries.
The galsC compiler automatically generates communication and
scheduling code for programs specified in the galsC language, which
allows developers to avoid writing error-prone task synchronization
code. Our compiler backend also allows traditional type checking,
dead code elimination, and function inlining, as well as checking for
possible race conditions. The language and compiler are implemented
for the Berkeley motes and extend TinyOS/nesC by providing a
higher level programming abstraction than the TinyOS primitives.

There are several directions for further research. Currently, devel-
opers must use trial and error to find appropriate port queue sizes to
avoid token loss when the buffers are full. We could instrument the
generated galsC code and scheduler to determine the rate at which
tokens are generated and automatically determine the best queue sizes
for the application.

Ptolemy II (ptII) [15] is a Java-based system for modeling and
simulating heterogeneous concurrent systems. We could generate
galsC/nesC code from within ptII, allowing programmers to model
and simulate within a graphical interface and move seamlessly to
running programs in the field. The message passing and parameter
semantics of galsC can support many other models of computation
in ptII, such as synchronous dataflow, discrete event, Kahn process
networks, and Giotto. galsC code generated from ptII could contain
a replacement scheduler to implement these other models of compu-
tation, while taking advantage of its system-level type system [16].

The current galsC language and compiler only address programs
running on a single node. Communication across multiple nodes is a
natural extension of asynchronous communication in galsC between
actors on a single node. Developers could then write programs for
entire sensor networks, rather than programs for individual nodes,
which can be difficult and unintuitive without specialized knowledge
about the specific node and its interactions with other nodes.

REFERENCES

[1] E. Cheong, J. Liebman, J. Liu, and F. Zhao, “TinyGALS: A program-
ming model for event-driven embedded systems,” inSAC’03, pp. 698–
704.

[2] D. Gay et al., “The nesC language: A holistic approach to networked
embedded systems,” inPLDI 2003.

[3] N. Halbwachs,Synchronous Programming of Reactive Systems. Kluwer
Academic Publishers, 1993.

[4] D. B. Stewartet al., “Design of dynamically reconfigurable real-time
software using port-based objects,”IEEE Trans. on Software Engineer-
ing, pp. 759–776, December 1997.

[5] W. A. Najjar, E. A. Lee, and G. R. Gao, “Advances in the dataflow
computational model,”Parallel Computing, January 1999.

[6] F. Balarinet al., “Synthesis of software programs for embedded control
applications,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, pp. 834–849, June 1999.

[7] J. Bhasker,A SystemC Primer, 2nd ed. Star Galaxy Pub.
[8] W. LaRueet al., “Functional and performance modeling of concurrency

in vcc,” in Concurrency and Hardware Design : Advances in Petri Nets.
LNCS 2549, Springer-Verlag Heidelberg, 2002, pp. 191 – 227.

[9] M. Wand, “Type inference for record concatenation and multiple inher-
itance,” in4th Annual Symposium on Logic in Computer Science, 1989.

[10] “nesC compiler,” http://sourceforge.net/projects/nescc/.
[11] “TinyOS: a component-based OS for the networked sensor regime,”

http://www.tinyos.net/.
[12] Crossbow Technology, Inc., http://www.xbow.com/.
[13] E. Cheong and J. Liu, “galsC: A language for event-driven embedded

systems,” University of California, Berkeley, Memorandum UCB/ERL
M04/7, April 2004.

[14] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proceedings of the IFIP Congress 74, 1974, pp. 471–475.

[15] “The Ptolemy project,” http://ptolemy.eecs.berkeley.edu.
[16] E. A. Lee and Y. Xiong, “System-level types for component-based

design,” inEMSOFT 2001, October, pp. 237–253.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

