
BB-GC: Basic-Block Level Garbage Collection∗

Ozcan Ozturk, Mahmut Kandemir, and Mary Jane Irwin
Computer Science and Engineering Department

The Pennsylvania State University, University Park, PA 16802, USA
{ozturk, kandemir and mji}@cse.psu.edu

Abstract

Memory space limitation is a serious problem for
many embedded systems from diverse application do-
mains. While circuit/packaging techniques are definitely im-
portant to squeeze large quantities of data/ instruction
into small size memories typically employed by embed-
ded systems, software can also play a crucial role in re-
ducing memory space demands of embedded applications.
This paper focuses on a software-managed two-level mem-
ory hierarchy and instruction accesses. Our goal is to
reduce on-chip memory requirements of a given applica-
tion as much as possible, so that the memory space saved
can be used by other simultaneously-executing applica-
tions. The proposed approach achieves this by tracking
the lifetime of instructions. Specifically, when an instruc-
tion is dead (i.e., it could not be visited again in the rest of
execution), we deallocate the on-chip memory space allo-
cated to it. Working on the control flow graph representa-
tion of an embedded application, our approach performs
basic block-level garbage collection for on-chip memo-
ries.

1. Introduction and Motivation

Embedded or real-time systems include all those in which
constrains imposed by the environment (e.g., available bat-
tery power and memory capacity) play a critical role in the
design and implementation of the system. Common areas for
embedded systems are machine and process control, medical
instruments, smart telephony and data acquisition, and mem-
ory limitation is a serious concern in all these areas. In ad-
dition, as embedded systems become increasingly complex,
there is a growing demand for executing multiple applica-
tions concurrently, thereby putting even higher pressure on
memory system.

A common solution to the memory problem is to design
a memory hierarchy where the higher levels are small, fast,

∗ This work was supported in part by NSF Career Award #0093082.

and energy efficient, and the lower levels are large, slow, and
energy hungry. A frequent instantiation of this model is a
two-level hierarchy with an on-chip cache memory (possi-
bly separate components for instructions and data) and an
off-chip main memory. However, there are several critical
problems associated with conventional hardware-managed
caches. First, the success of a cache-based system depends
strongly on the compatibility between the data access pat-
tern and the hardware-guided cache line replacement pol-
icy. In many cases, the cache line-level data management can
be very fine granular for a data-intensive embedded applica-
tion. Second, since data transfers in and out of the cache are
managed by hardware, there is no guarantee that a required
data item will be in the cache at the time of access. This
may be an important problem in real-time embedded sys-
tems where execution time predictability is a critical issue.
Third, in many situations, the cache management policy is
too general for a given embedded application. Fourth, the dy-
namic mapping of data to cache locations can be costly from
an energy consumption viewpoint. These problems have mo-
tivated recent research on software-managed on-chip memo-
ries [9, 10], where the data/instruction transfers between the
on-chip and off-chip memories are controlled by the soft-
ware (e.g., compiler).

In such a software-controlled two-level memory hierar-
chy, one of the critical issues is ensuring effective use of
available on-chip memory. Specifically, it is both perfor-
mance and energy efficient to satisfy most of instruction/data
requests from the on-chip memory. This is particularly im-
portant when available on-chip memory space is shared by
multiple applications. There are at least two ways of increas-
ing the effectiveness of on-chip storage:

• Increasing data reuse.This helps reduce the frequency
and volume of the transfers between the on-chip and off-chip
memory. The prior work considered code restructuring and
data layout optimizations for improving data reuse in caches
and software-managed memories.

• Reducing memory space requirements.The studies in
this group exploit the lifetime information of different data to
check whether two different data can share the same mem-
ory locations. As in the first group, the existing techniques
target at both caches and software-managed memories.

1530-1591/05 $20.00 © 2005 IEEE

In this paper, we focus on a software-managed two-level
memory hierarchy andinstruction accesses.Our goal is to re-
duce on-chip (instruction) memory requirements of a given
application as much as possible, so that the memory space
saved can be used by other applications. We achieve this by
tracking the lifetime of instructions at the basic block granu-
larity. Specifically, when an instruction isdead(i.e., it could
not be visited again in the rest of the execution), we deal-
locate the on-chip memory space allocated to it. Working
on the control flow graph (CFG) representation of the pro-
cedure, in a sense, our approach performsbasic block-level
garbage collectionfor on-chip memories.

Our scheme can be used in two different ways. In a multi-
programmed embedded environment, the memory space
saved can be made available to other applications, thereby
effectively increasing the degree of multi-programming. Al-
ternately, in a multi-bank on-chip memory, the unused
banks can be switched off to a low-power mode to save en-
ergy. In this paper, we also discuss how careful block
placement in on-chip memory can reduce memory fragmen-
tation.

The rest of this paper is structured as follows. Section 2
describes our two-level software-managed memory hierar-
chy and code execution model under this memory system.
Section 3 gives the details of our approach to deallocating the
on-chip memory space of dead basic blocks. Section 4 stud-
ies our aggressive on-chip memory deallocation where even
the space occupied by live basic blocks are recycled for de-
creasing average memory occupancy further. Section 5 dis-
cusses the placement of basic block in on-chip memory to re-
duce memory fragmentation when dead blocks are deleted.
Section 6 discusses related work, and finally, Section 7 sum-
marizes our contributions.

2. Architecture

We assume a two-level software-managed instruc-
tion memory hierarchy, where the first level is on-chip and
the second level is off-chip. Although our software-managed
on-chip instruction memory is similar in performance/energy
characteristics to a conventional hardware-managed on-chip
cache memory, its management is very different from that of
an instruction cache. Unlike instruction caches, the instruc-
tion flow to the on-chip instruction memory is controlled
by software (compiler in our case). Since the on-chip mem-
ory is assumed to be very small in size compared to data vol-
ume that needs to be processed, its effective management
is critical from both the power and performance perspec-
tives. In particular, on-chip memory space can be shared
by multiple applications at the same time, and its effec-
tive use determines the number of applications that could be
run simultaneously. In this architecture, the on-chip mem-
ory space that could be saved/reclaimed from an application
can be made available to other applications. We also assume
existence of a separate on-chip data memory, but this pa-

per is focused on instruction accesses (the off-chip memory
can also be used to store data). Note that the architecture we
are focusing on in this study contains a software-managed hi-
erarchy and no hardware-managed cache. This allows the
compiler to explicitly manage the data transfers in the mem-
ory system and discard the basic blocks whose lifetimes are
over.

3. Our Approach

3.1. High-Level View

Our baseline approach operates as follows. When a pro-
cedure is invoked, all its basic blocks are transferred from
off-chip memory to on-chip memory. As it executes from
on-chip memory, we check whether any of its basic blocks is
dead at the current point. If this is the case, that basic block
is deleted from on-chip memory. In this work, a basic block
(of code) is calleddeadif it is not possible that the execu-
tion thread can visit it in the rest of the program execution.

As a simple example to illustrate the concept, we consider
the CFG depicted in Figure 1(a). When the execution thread
reaches the basic block marked 2 we know for sure that the
basic blocks marked as 1, 6, 7, and 8 are dead (i.e., they can-
not be accessed); therefore, the on-chip memory space oc-
cupied by them can safely be deallocated. Similarly, if, on
another input, the execution reaches basic block 8, the on-
chip space reserved for blocks 6 and 7 can be reclaimed (in
addition to the space allocated for blocks 1, 2, 3, 4, and 5,
which would be deallocated when basic block 6 is reached).
However, when a procedure whose on-chip memory space
has been deallocated is later re-invoked, all its basic blocks
must be re-brought into the on-chip memory for execution.
In the remainder of this paper, this approach of deallocating
on-chip storage space of dead basic blocks is referred to as
Basic Block-Level Garbage Collection, or BB-GC for short.
The two subsections below describe BB-GC in detail.

3.2. Basic Block Marking for Space Reclaiming

BB-GC gives the task of managing the contents of the
on-chip instruction memory to the compiler. Specifically, the
compiler analyzes the application code, which is represented
as a set of connected control flow graphs (CFGs) – one per
procedure. A section of program code that does not cross any
conditional branches, loop boundaries, or other transfers of
control is referred to asbasic block(BB). In a basic block,
the branch instruction, if any, can occur only as the last in-
struction in the block. In a control flow graph, each node rep-
resents a basic block, and an edge from a node to another in-
dicates a potential flow of control that could occur at runtime
[8]. Note that CFG is a conservative representation since it
includes all possible flows of control in the program, some
of which could not be exercised for a particular input. Our
compiler analysis performs two important tasks:

• It inserts a special assembly instruction before each pro-
cedure call to copy the contents of the procedure from the
off-chip memory to the on-chip memory, if it is not already
there. Before doing so, however, it also deletes any basic
blocks (of that procedure) that might have been left in the
on-chip memory from the previous invocation. While at first
glance this might seem overkill as one may potentially reuse
some of these basic blocks, deleting such basic blocks and
copying the entire procedure from the off-chip memory make
the implementation much simpler than an alternate scheme
that could try to track current locations and status of basic
blocks at runtime.

• To each basic blockBBi, it attaches a set of basic
blocks ids (Bi) observing the following rule: wheneverBBi

is reached, all the basic blocksBBj ∈ Bi can be safely de-
clared dead, and the on-chip instruction memory space allo-
cated to them can be returned to the pool of free spaces (this
process is also called memory space reclamation). Note that
the setBi for a given basic blockBBi can be empty. For the
example shown in Figure 1(a), we have the followingBi sets
(also called thedead block sets):

B1 = ∅
B2 = {BB1, BB6, BB7, BB8}
B3 = ∅
B4 = ∅
B5 = ∅
B6 = {BB1, BB2, BB3, BB4, BB5}
B7 = ∅
B8 = {BB6, BB7}
B9 = {BB2, BB3, BB4, BB5} or {BB8}

We will describe shortly how these sets are automatically
determined by BB-GC. The compiler also inserts an instruc-
tion at the beginning of blockBBi to delete all the basic
blocks inBi from the on-chip memory (if they have not been
already deleted). Four important points should be noted here.
First, the instruction to delete the blocks inBi should attempt
such a deletion only in its first invocation. For example, con-
sidering the CFG in Figure 1(a) again, when the execution
arrives at the basic block marked 6 the first time, we need to
delete blocksBB1, BB2, BB3, BB4, andBB5. In the po-
tential subsequent visits of this block (via the edge between
BB7 andBB6), we should not attempt to delete any basic
blocks (as the blocks in question would have already been
deleted, and their space could have been re-assigned to other
applications). This checking incurs an extra overhead which
is accounted for in our experimental evaluation. The second
point is that the determination of theBi sets should be done
with care to minimize the overheads. For example, in Fig-
ure 1(a),B3 is ∅ since whenBB2 is visited first time, all
four blocks (BB1, BB6, BB7, andBB8) would be deleted,
and no additional basic blocks can be deleted whenBB3 is
visited. The third point is that, due to lack of complete con-
trol flow information at compile time, the determination of
someBi sets may need runtime information as well. For ex-
ample, the basic blocks that will be removed from memory

when execution arrives atBB9 depends on the edge through
which the execution entersBB9. We can keep track of this
at runtime by using some extra variables as explained below
(again with some extra overhead). Finally, when the last ba-
sic block completes its execution, all remaining basic blocks
of the procedure are deleted from the on-chip memory. In the
rest of this subsection, we discuss the algorithm that gener-
ates theBi sets.

The proposed algorithm works on a CFG representation
of a procedure, and is executed for each procedure in turn. It
has two steps. The first step is an iterative loop, and in each
iteration of this loop, we first determine the set of nodes (ba-
sic blocks) that arereachablefrom a particular node. Let us
useCi denote the set of such nodes for basic blockBBi. We
refer to the setPi = N - Ci as thepotential dead block set
for BBi, assuming that setN contains all the basic blocks in
the procedure under consideration. We call this set as “po-
tential” since the second step of our algorithm eliminates
some of these sets and/or reduces the number of elements
(basic blocks) in some others. To determine the setCi, one
can use either depth-first search (where we search as deeply
as possible by visiting a node, and then recursively perform-
ing depth-first search on each adjacent node) or breadth-first
search (where we search as broadly as possible by visiting
a node, and then immediately visiting all nodes adjacent to
that node), the two techniques commonly employed in appli-
cations that perform graph processing.

In the second step, we use thedominatorconcept from
the compiler theory [8]. We say nodeBBi of the CFGdom-
inatesnodeBBj if every path from the initial node of the
CFG toBBj goes throughBBi. That is, it is not possible
to reachBBj without first reachingBBi. Let Di represent
the set of nodes that are dominated byBBi, andD−1

i the set
of nodes that dominateBBi. In the second step of our algo-
rithm, we reducePi to Bi. Initially, for all the basic blocks
BBi without any predecessors in the dominator tree, we set
Bi = Pi. Then, we use the following formula recursively to
determine theB sets of the remaining nodes in the CFG if
they are not merge nodes:

Bi = Pi −
⋃

k

Bk,

whereBBk ∈ D−1
i and∪ denotes set union operator. In

other words, we exclude fromPi all the nodes that are al-
ready captured by its dominators. On the other hand, for the
merge nodes (i.e., the nodes into which multiple edges en-
ter), we use:

Bi = Pi − {
⋃

k

Bk ∪ Vi},

whereVi is the set of basic blocks that become dead when
the execution reachesBBi but could not be captured by any
dominator. It is important to note that a basic block can be-
long to∪kBk or Vi but not both. Note also that, to compute
Vi, at runtime, we need to keep track of the CFG edge from
which we come toBBi. We do this by associating a variable

3

2

4

1

(b)
8

7

5

(c)

8

9

7

6

4

9

8

7

6

5

3 4

2

1

53

69

1

2

(a)

Figure 1. (a-c) Two different CFGs. (b) Domi-
nator tree for the CFG in (a).

with each basic block. If there aref edges entering this ba-
sic block, this variable can takef different values (from 0 to
f−1). The compiler adds special instructions to set the value
of this variable for each merge node. Our experimental eval-
uation also accounts for the space and performance overhead
of maintaining these extra variables.

Let us now briefly discuss the complexity of our approach.
The asymptotic complexity of the search in the first step is
O(E + N), whereE is the number of edges in the CFG and
N is the number of nodes. SinceN � E in general, we
can simplify this cost asO(E). Therefore, the total cost of
the first step isO(NE) since the search is repeated for every
node. Finding the dominators in flow graphs can be done in
O(E) time in practice [6] (so can determining theVi sets),
which is the main factor that determines the complexity of
the second step of the algorithm. Consequently, the overall
complexity of the static part of our approach isO(NE).

Considering the CFG in Figure 1 once more, after the first
step, we determine the potential dead block sets as follows:

P1 = ∅
P2 = {BB1, BB6, BB7, BB8}
P3 = {BB1, BB6, BB7, BB8}
P4 = {BB1, BB6, BB7, BB8}
P5 = {BB1, BB6, BB7, BB8}
P6 = {BB1, BB2, BB3, BB4, BB5}
P7 = {BB1, BB2, BB3, BB4, BB5}
P8 = {BB1, BB2, BB3, BB4, BB5, BB6, BB7}
P9 = {BB1, BB2, BB3, BB4, BB5, BB6, BB7, BB8}
Figure 1(b) illustrates thedominator treefor the CFG in

Figure 1(a). A dominator tree is a convenient way of pre-
senting dominator information, in which the initial node is
the root, and each nodeBBi dominates only its descen-
dants in the tree. We see from this dominator tree that
BB2 dominatesBB3, BB4, and BB5. Consequently, in

determiningBi where i = 3, 4, 5, we haveBi = Pi −
{BB1, BB6, BB7, BB8}, which gives us the empty set for
all three basic blocks. The dead block set of the other ba-
sic blocks in this example can be found using a similar strat-
egy, except forBB9, which we discuss in more detail now.
Note that, forBB9, ∪kBk is empty set asBB9 has only
single dominator (see Figure 1(b)). If, during execution, we
reachBB9 throughBB5, we need to delete only nodesBB2,
BB3, BB4, andBB5. The reason that we delete only these
blocks is that the others must have already been deleted by
the time the execution arrives atBB9 (throughBB5). In
other words,V9 is {BB2, BB3, BB4, BB5}. Note that we
determine the potentialV9 sets at compile time. Similarly, if
the execution comes atBB9 viaBB8, we haveV9 = {BB8}.
Again, the reason for this is that, when we come toBB9

via BB8, the latter is the only node (apart fromBB9 that
still occupies memory). Our compiler records these alternate
V9 sets, and depending on the value of the runtime variables
mentioned above, it uses (selects) the appropriateV9 set at
runtime. Therefore, at the end of this process, we find theB
sets shown earlier in this subsection.

3.3. Discussion

Our approach presented in the previous subsection has
the important characteristic that it transfers an entire proce-
dure body to the on-chip memory when the procedure is in-
voked. It then tries to reduce the on-chip memory space oc-
cupied by the procedure by removing its basic blocks con-
sidering their lifetimes. One might point out that an alter-
nate implementation is also possible. Specifically, instead of
bringing all the basic blocks at once at the time of invoca-
tion, we can bring them on a need basis. In other words, we
can manage the on-chip memory as a cache for hot basic
blocks, i.e., the ones that are executed frequently. In addition,
when necessary, we can also employ a block eviction strat-
egy based on LRU or a similar algorithm. In fact, the strat-
egy described in [2] implements a similar scheme (though,
instead of LRU, it relies on loop structures in the CFG). Un-
fortunately, one of the major consequences of such a scheme
is that, at a given time, some of the basic blocks of the pro-
cedure can reside in the on-chip memory, whereas the others
are in the off-chip memory, and the location of a basic block
with respect to its neighbors can change during the course of
execution. As a result, each time a basic block changes loca-
tion (and the number of such location changes can be very
high in a typical execution), the target addresses of all the
branches to that basic block must be updated for correct exe-
cution. This situation is depicted in Figure 2. In Figure 2(a),
three basic blocks (BB2, BB3, andBB4) are in the on-chip
memory, whereas in Figure 2(b) two basic blocks (BB2 and
BB4). Notice that, depending on where basic blockBB3

is, the target of the branches to it from basic blockBB2

will be different (similar argument goes for blockBB4 as
well, which also branches to blockBB3). This type of dy-

(b)(a)
Off−Chip On−Chip

5

4

3

2

1 1

4

3

2

5

1

2

3

4

5

1

2

3

4

5

On−ChipOff−Chip

Figure 2. Two different cases for basic block
level on-chip memory management.

namic address management at runtime is very difficult to
track, is time consuming, and makes the underlying imple-
mentation very complex. This complexity can in turn have
negative impacts on execution cycles and power consump-
tion of the entire design. In contrast, in our proposal, all the
intra-procedure branches are within the same memory com-
ponent (on-chip), and consequently, the address management
is much simpler. We rely on the fact that most of the branches
among the basic blocks are within procedures not across the
procedures. The basic block branches across procedures cor-
respond to procedure calls and are relatively rare.

4. Aggressive Memory Deallocation

It is to be noted that the approach discussed in Section 3
is a conservative one. That is, the on-chip memory space al-
located to a basic block is deallocated only when the block
is dead, i.e., there is no CFG arch using which the block can
be re-visited. While this conservative strategy eliminates any
potential negative impact of space deallocation on execution
cycles, one could do even better from a pure memory space
saving perspective if one could deallocate blocks before they
become dead. The main potential drawback of this strategy
is the increase in execution cycles due to increased traffic be-
tween the on-chip and off-chip memories.

While it is possible to adopt several strategies to decide
which basic blocks to deallocate, any viable scheme must ob-
serve the rule that the space of a basic block that will be re-
accessed (executed) shortly should not be deallocated (as this
can significantly increase the volume of transfers between
the off-chip and on-chip memory). In other words, one needs
to select the victim block(s) among the ones with large inter-
access time gap. An important question then is how one can
decide whether the next access to a basic block is really far
in execution. The scheme proposed in this section assumes
that the next access to a given basic block can be predicted
to be far if between the current access and next access there
is at least aloop to be executed. The rationale behind this as-
sumption is that most loops iterate large number of times be-
fore they terminate. Consequently, during long loop execu-
tion, one can achieve large savings in average memory occu-
pancy.

4 5 6 7

2 3

8

1
1 1 1

0.60.4 0.8 0.2

0.10.9
1

Figure 3. An example CFG with branch proba-
bilities.

We expect this scheme to be most effective in applications
whose CFGs have a big loop surrounding most of the ba-
sic blocks. Consider, for example, the CFG depicted in Fig-
ure 1(c). An important difference between this CFG and the
one in Figure 1(a) is that former has a large outermost loop,
whose back edge goes fromBB8 to BB2. The scheme de-
scribed in the previous section cannot be very successful in
this CFG as most of the basic blocks are dead only after ba-
sic blockBB8 exits (which is too late to save any memory
space). In contrast, the aggressive scheme can be effective in
such scenarios. Consider, for example, the loop that consists
of blocksBB2 andBB3 in this CFG. The aggressive scheme
deallocates the on-chip memory space allocated to them af-
ter the loop exits, i.e., the execution takes the edge between
BB3 andBB4. The reason is that, whenBB4 is reached,
re-visitingBB2 will require two loops (i.e.,BB4-BB5 and
BB6-BB7) to be completed. In our experimental evaluation,
we compare our baseline implementation with this aggres-
sive dead block elimination scheme.

5. Memory Placement of Basic Blocks

One of the characteristics of BB-GC is that it deallocates
a memory region (that holds a dead basic block or a block
whose next invocation is far in execution) whenever it is pos-
sible to do so. As a consequence, it is possible that the in-
struction memory space is fragmented as the execution pro-
gresses. Unfortunately, it is well known [5] that a fragmented
memory (where numerous small free regions/chunks are dis-
tributed all over the memory space) makes it difficult to uti-
lize it for allocating space for new data/code structures. In
other words, one would prefer a few large free regions in
memory instead of many small free regions. In this section,
we discuss a strategy, using which basic blocks of a proce-
dure can be mapped to the on-chip instruction memory such
that the deallocations generate large free spaces in memory
as much as possible.

To achieve this, the proposed approach makes use ofpro-
file data.The specific profile information we use is the execu-
tion probabilities for CFG edges. Using these probabilities,
our approach, which is an iterative process, decides how the
basic blocks of the procedure should be laid out in memory.

Algorithm 1 ProfileBasedSearch(v, L)
1: putv to the end ofL.
2: while there are unvisited edges incident onv do
3: finde with smallest probability among unvisited edges incident onv.
4: findw such thate = (v, w)
5: if all incoming edges tow are visitedthen
6: ProfileBasedSearch(w,L)
7: end if
8: marke as visited
9: end while

The approach can be best explained using an example. Con-
sider the CFG illustrated in Figure 3. The numbers attached
to the edges represent branch probabilities. As an example,
the probability with which the execution moves toBB2 af-
ter exiting blockBB1 is 90%, whereas that of proceeding
with BB3 (again, after exitingBB1) is 10%. Based on these
probabilities, we can decide that it is better to storeBB3

and BB1 consecutively in memory since it is more likely
that they will be dead at the same time, and (when this hap-
pens) their space can be deallocated together (which results
in a larger free space). After making this decision, our ap-
proach continues with the next (unprocessed) smallest prob-
ability edge as deep as possible in the CFG. In our exam-
ple, the next basic block to be stored (next toBB3 andBB1)
is selected based on the probabilities of the edges outgoing
from BB3. With a probability of 20%,BB7 would be the
next one in the list. After this, we considerBB8 since it is
the only candidate that could be reached fromBB7. How-
ever, there exist other (unprocessed) edges enteringBB8. As
it can be seen from the CFG that it is not possible to deallo-
cate the space forBB8 until the entire procedure terminates.
Consequently, our algorithm checks whether all of the in-
coming edges of a basic block are visited before it is decided
to be stored next to the blocks that have already been pro-
cessed. Therefore, after having reachedBB8, our algorithm
backtracks toBB7 and thenBB3. The next smallest prob-
ability edge would lead to basic blockBB6 and this shapes
our current list of blocks to be stored next to each other as
BB1, BB3, BB7, BB6. SinceBB8 still has unvisited in-
coming edges, our algorithm backtracks toBB1. In a sim-
ilar fashion, we compute the next set of basic blocks to be
stored one next to another asBB2, BB4 andBB5. Finally,
BB8 would be the last basic block in the list since the edge
betweenBB5 andBB8 is the last unvisited edge incoming
to BB8. So, the final storage order would beBB1, BB3,
BB7, BB6, BB2, BB4, BB5, BB8. In comparison, if we
were to use a depth first search (DFS) algorithm to deter-
mine the storage order for basic blocks, it would be as fol-
lows:BB1, BB2, BB4, BB8, BB5, BB3, BB6, BB7. And,
similarly, a breadth first search (BFS) algorithm would re-
sult inBB1, BB2, BB3, BB4, BB5, BB6, BB7, BB8. Al-
gorithm 1 gives the sketch of our algorithm for determin-
ing the order in which basic blocks are laid out in mem-
ory. A call to ProfileBasedSearch(s, L) forms the lay-
out: L[0] . . . L[|v|], where|v| is the number of basic blocks
ands is the first basic block in the CFG.

6. Related Work

Several prior studies focused on the use of scratch-pad
memories (SPMs) for data accesses. For example, Panda et
al. [9] present a powerful static data partitioning scheme for
efficient utilization of scratch-pad memory. Cooper and Har-
vey [3] present two compiler-directed methods for software-
managing a small cache for holding spilled register values.
Hallnor and Reinhardt [4] propose a new software-managed
cache architecture and a new data replacement algorithm.
Bellas et al. [1] present an SPM management scheme for
instruction accesses. Steinke et al. [10] focus on a strat-
egy for placing program and data objects into SPM for sav-
ing energy. Lee et al. [7] also focus on reducing the energy
consumption due to instruction accesses using a software-
managed SPM (called loop cache).

7. Concluding Remarks

One of the biggest roadblocks preventing software writers
to achieve higher performance in embedded environments is
memory limitation. Consequently, utilizing available on-chip
memory space in the most effective way has been one of the
most attractive research topics. Focusing on on-chip memory
and instruction accesses, this paper presents a scheme that re-
duces the average memory occupancy of instructions by re-
claiming the space allocated to dead basic blocks, i.e., ba-
sic blocks that completed their last execution. The paper also
studies a more aggressive scheme and discusses the trade-
offs between memory savings and performance overhead. In
addition, we study the impact of basic block placement in
memory.

References

[1] N. Bellas, I. N. Hajj, C. Polychronopoulos, and G. Stamoulis. En-
ergy and performance improvements in microprocessor design using
a loop cache. In Proc. ICCD, 1999, pp. 378–383.

[2] G. Chen et al. Compiler-directed management of instruction accesses.
In Proc. Euromicro Symposium on Digital System Design, Architec-
tures, Methods and Tools, Turkey, September, 2003.

[3] K. D. Cooper and T. J. Harvey. Compiler-controlled memory. In Proc.
ASPLOS, CA, November 1998.

[4] E. G. Hallnor and S. K. Reinhardt. A fully-associative software-
managed cache design. In Proc. International Conference on
Computer Architecture, pp. 107–116, Vancouver, British Columbia,
Canada, 2000.

[5] R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley and Sons, 1996.

[6] T. Lengauer and E. Tarjan. A fast algorithm for finding dominators
in a flow graph. ACM Transactions on Programming Languages and
Systems, Vol.1, No.1, pp.121–141, July, 1979.

[7] L. H. Lee, B. Moyer and J. Arends. Instruction fetch energy reduction
using loop caches for embedded applications with small tight loops.
In Proc. ISLPED, San Diego, CA, August, 1999.

[8] S. S. Muchnick. Advanced compiler design and implementation, Mor-
gan Kaufmann Publishers, San Francisco, CA, 1997.

[9] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization of
scratch-pad-memory in embedded processor applications.

[10] S. Steinke et al. Assigning program and data objects to scratch-pad
for energy reduction. In Proc. DATE’02, Paris, France, 2002.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

