BB-GC: Basic-Block Level Garbage Collection

Ozcan Ozturk, Mahmut Kandemir, and Mary Jane Irwin
Computer Science and Engineering Department
The Pennsylvania State University, University Park, PA 16802, USA
{ozturk, kandemir and mji@cse.psu.edu

Abstract and energy efficient, and the lower levels are large, slow, and
energy hungry. A frequent instantiation of this model is a
Memory space limitation is a serious problem fortwo-level hierarchy with an on-chip cache memory (possi-
many embedded systems from diverse application dbly separate components for instructions and data) and an
mains. While circuit/packaging techniques are definitely imeff-chip main memory. However, there are several critical
portant to squeeze large quantities of data/ instructioproblems associated with conventional hardware-managed
into small size memories typically employed by embegaches. First, the success of a cache-based system depends
ded systems, software can also play a crucial role in restrongly on the compatibility between the data access pat-
ducing memory space demands of embedded applicatiot®/n and the hardware-guided cache line replacement pol-
This paper focuses on a software-managed two-level mefgy. In many cases, the cache line-level data management can
ory hierarchy and instruction accesses. Our goal is tde very fine granular for a data-intensive embedded applica-
reduce on-chip memory requirements of a given applicdion. Second, since data transfers in and out of the cache are
tion as much as possible, so that the memory space sav@é@naged by hardware, there is no guarantee that a required
can be used by other simultaneously-executing applicgata item will be in the cache at the time of access. This
tions. The proposed approach achieves this by trackingiay be an important problem in real-time embedded sys-
the lifetime of instructions. Specifically, when an instructems where execution time predictability is a critical issue.
tion is dead (i.e., it could not be visited again in the rest off hird, in many situations, the cache management policy is
execution), we deallocate the on-chip memory space alléeo general for a given embedded application. Fourth, the dy-
cated to it. Working on the control flow graph representanamic mapping of data to cache locations can be costly from
tion of an embedded application, our approach perform&n energy consumption viewpoint. These problems have mo-
basic block-level garbage collection for on-chip memotivated recent research on software-managed on-chip memo-
ries. ries [9, 10], where the data/instruction transfers between the
on-chip and off-chip memories are controlled by the soft-
ware (e.g., compiler).
. L In such a software-controlled two-level memory hierar-
1. Introduction and Motivation chy, one of the critical issues is ensuring effective use of
available on-chip memory. Specifically, it is both perfor-
Embedded or real-time systems include all those in whichhance and energy efficient to satisfy most of instruction/data
constrains imposed by the environment (e.g., available batquests from the on-chip memory. This is particularly im-
tery power and memory capacity) play a critical role in thgortant when available on-chip memory space is shared by
design and implementation of the system. Common areas fgjultiple applications. There are at least two ways of increas-
embedded systems are machine and process control, medigglthe effectiveness of on-chip storage:
instruments, smart telephony and data acquisition, and mem- | Increasing data reuseThis helps reduce the frequency

ory limitation is a serious concern in alj these areas. In adind volume of the transfers between the on-chip and off-chip
dition, as embedded systems become increasingly complexe 1oy The prior work considered code restructuring and

there is a growing demand for executing multiple applicagaya |ayout optimizations for improving data reuse in caches
tions concurrently, thereby putting even higher pressure g software-managed memories.
memory system.

A common soluton to the mermory problem is o design, -t SRR TR SR CREERIEE SRR T
a memory hierarchy where the higher levels are small, fas group exp

check whether two different data can share the same mem-
_ _ ory locations. As in the first group, the existing techniques
+ This work was supported in part by NSF Career Award #0093082. target at both caches and software-managed memories.

1530-1591/05 $20.00 © 2005 IEEE

In this paper, we focus on a software-managed two-leveler is focused on instruction accesses (the off-chip memory
memory hierarchy anidistruction accesseQur goalisto re- can also be used to store data). Note that the architecture we
duce on-chip (instruction) memory requirements of a giveare focusing on in this study contains a software-managed hi-
application as much as possible, so that the memory spagearchy and no hardware-managed cache. This allows the
saved can be used by other applications. We achieve this bympiler to explicitly manage the data transfers in the mem-
tracking the lifetime of instructions at the basic block granuery system and discard the basic blocks whose lifetimes are
larity. Specifically, when an instruction éead(i.e., it could over.
not be visited again in the rest of the execution), we deal-
locate the on-chip memory space allocated to it. Working oy Approach
on the control flow graph (CFG) representation of the pro-
cedure, in a sense, our approach perfobasic block-level 3.1. High-Level View
garbage collectiorior on-chip memories.

Our scheme can be used in two differentways. Ina multi- or paseline approach operates as follows. When a pro-
programmed embedded environment, the memory Spaggdure is invoked, all its basic blocks are transferred from
saved can be made available to other applications, theregﬁ_chip memory to on-chip memory. As it executes from
effectively increasing the degree of multi-programming. Alon_chip memory, we check whether any of its basic blocks is
ternately, in a multi-bank on-chip memory, the unusegead at the current point. If this is the case, that basic block
banks can be switched off to a low-power mode to save efk geleted from on-chip memory. In this work, a basic block
ergy. In this paper, we also discuss how careful blocksf code) is callecteadif it is not possible that the execu-
placement in on-chip memory can reduce memory fragmetion thread can visit it in the rest of the program execution.
tation. _ _ . As a simple example to illustrate the concept, we consider

The rest of this paper is structured as follows. Section ¢he CFG depicted in Figure 1(a). When the execution thread
describes our two-level software-managed memory hierafaaches the basic block marked 2 we know for sure that the
chy and code execution model under this memory systerggsic blocks marked as 1, 6, 7, and 8 are dead (i.e., they can-
Sectio_n 3 gives the details ofourapproachto deallqcating tht be accessed); therefore, the on-chip memory space oc-
on-chip memory space of dead basic blocks. Section 4 stughpied by them can safely be deallocated. Similarly, if, on
ies our aggressive on-chip memory deallocation where evefother input, the execution reaches basic block 8, the on-
the space occupied by live basic blocks are recycled for dgnip space reserved for blocks 6 and 7 can be reclaimed (in
creasing average memory occupancy further. Section 5 digqdition to the space allocated for blocks 1, 2, 3, 4, and 5,
cusses the placement of basic block in on-chip memory to rgmich would be deallocated when basic block 6 is reached).
duce memory fragmentation when dead blocks are deletadewever, when a procedure whose on-chip memory space
Section 6 discusses related work, and finally, Section 7 surRas been deallocated is later re-invoked, all its basic blocks

marizes our contributions. must be re-brought into the on-chip memory for execution.
In the remainder of this paper, this approach of deallocating
2. Architecture on-chip storage space of dead basic blocks is referred to as

Basic Block-Level Garbage Collectipaor BB-GC for short.

We assume a two-level Software_managed instrué[he two subsections below describe BB-GC in detail.
tion memory hierarchy, where the first level is on-chip and
the second level is off-chip. Although our software-manage8.2. Basic Block Marking for Space Reclaiming
on-chip instruction memory is similar in performance/energy
characteristics to a conventional hardware-managed on-chipBB-GC gives the task of managing the contents of the
cache memory, its management is very different from that afn-chip instruction memory to the compiler. Specifically, the
an instruction cache. Unlike instruction caches, the instrucompiler analyzes the application code, which is represented
tion flow to the on-chip instruction memory is controlledas a set of connected control flow graphs (CFGs) — one per
by software (compiler in our case). Since the on-chip menprocedure. A section of program code that does not cross any
ory is assumed to be very small in size compared to data valenditional branches, loop boundaries, or other transfers of
ume that needs to be processed, its effective managemenntrol is referred to abasic block(BB). In a basic block,
is critical from both the power and performance perspedhe branch instruction, if any, can occur only as the last in-
tives. In particular, on-chip memory space can be sharesruction in the block. In a control flow graph, each node rep-
by multiple applications at the same time, and its effecresents a basic block, and an edge from a node to another in-
tive use determines the number of applications that could loicates a potential flow of control that could occur at runtime
run simultaneously. In this architecture, the on-chip meni8]. Note that CFG is a conservative representation since it
ory space that could be saved/reclaimed from an applicatiamcludes all possible flows of control in the program, some
can be made available to other applications. We also assumfewhich could not be exercised for a particular input. Our
existence of a separate on-chip data memory, but this peempiler analysis performs two important tasks:

e It inserts a special assembly instruction before each preshen execution arrives & By depends on the edge through
cedure call to copy the contents of the procedure from thehich the execution entei8 By. We can keep track of this
off-chip memory to the on-chip memory, if it is not alreadyat runtime by using some extra variables as explained below
there. Before doing so, however, it also deletes any basfagain with some extra overhead). Finally, when the last ba-
blocks (of that procedure) that might have been left in theic block completes its execution, all remaining basic blocks
on-chip memory from the previous invocation. While at firstof the procedure are deleted from the on-chip memory. In the
glance this might seem overkill as one may potentially reugest of this subsection, we discuss the algorithm that gener-
some of these basic blocks, deleting such basic blocks aates the; sets.
copying the entire procedure from the off-chip memory make The proposed algorithm works on a CFG representation
the implementation much simpler than an alternate schera¢a procedure, and is executed for each procedure in turn. It
that could try to track current locations and status of basigas two steps. The first step is an iterative loop, and in each
blocks at runtime. iteration of this loop, we first determine the set of nodes (ba-

e To each basic block3B;, it attaches a set of basic sic blocks) that areeachablefrom a particular node. Let us
blocks ids ;) observing the following rule: whenevétB; yseC; denote the set of such nodes for basic bl&dg;. We
is reached, all the basic blocksB; < B; can be safely de- efer to the se; = A - ¢; as thepotential dead block set

clared dead, and the on-chip instruction memory space all155r BB;, assuming that set’” contains all the basic blocks in

cated to them can be returned to the pool of free spaces (t . : : .
process is also called memory space reclamation). Note t%:l:l procedure under consideration. We call this set as "po

the set; for a given basic block3B; can be empty. For the ential” since the second step of our algorithm eliminates
7 7 .

example shown in Figure 1(a), we have the followifigsets some of these sets and/or reduces the number of elements
(also called thelead block se)é (basic blocks) in some others. To determine theCsebne

can use either depth-first search (where we search as deeply

B = 0 as possible by visiting a node, and then recursively perform-
B> = {BBi,BBs, BB7, BBs} ing depth-first search on each adjacent node) or breadth-first
B = 0 search (where we search as broadly as possible by visiting
Bs = 0 a node, and then immediately visiting all nodes adjacent to
Bs = 0 that node), the two techniques commonly employed in appli-
Bs = {BB:,BBy, BBs, BBs, BBs} cations that perform graph processing.

Br = 0 In the second step, we use tleminatorconcept from

Bs = {BBs,BBr} the compiler theory [8]. We say nod&B; of the CFGdom-

By = {BB2,BB;, BBs,BBs}or{BBs} inatesnode BB if every path from the initial node of the

i i . CFG toBB; goes throughBB;. That is, it is not possible

We will describe shortly how these sets are automatically reachB B; without first reaching3B;. Let D; represent
Qetermlned by I'BB—'GC. The compiler also inserts an mst.ruqhe set of nodes that are dominatedi;, andD; ! the set
tion at the beginning of blockBB; to delete all the basic of nodes that dominatBB;. In the second step of our algo-
blocks inB; from the on-chip memory (if they have not beenrithm, we reduceP; to B;. Initially, for all the basic blocks
already deleted). Four important points should be noted hetBB; without any predecessors in the dominator tree, we set
First, the instruction to delete the blocks€3nshould attempt B; = P;. Then, we use the following formula recursively to
such a deletion only in its first invocation. For example, condetermine the3 sets of the remaining nodes in the CFG if
sidering the CFG in Figure 1(a) again, when the executiolii€y are not merge nodes:
arrives at the basic block marked 6 the first time, we need to
delete blocksBB;, BB, BBs, BB4, and BBs. In the po- B, =P —| B,
tential subsequent visits of this block (via the edge between k
BB; and BBg), we should not attempt to delete any basic . .
blocks (as the blocks in question would have already beeMhere BB, € D; " andU denotes set union operator. In
deleted, and their space could have been re-assigned to ofAifer words, we exclude from; all the nodes that are al-

applications). This checking incurs an extra overhead whidig2dY captured by its dominators. On the other hand, for the
erge nodes (i.e., the nodes into which multiple edges en-

is accounted for in our experimental evaluation. The secon), we use:

point is that the determination of th& sets should be done ' '

with care to minimize the overheads. For example, in Fig- Bi =Pi - {U By U Vi},
ure 1(a),Bs is () since whenBB, is visited first time, all k

four blocks BB, BBg, BB7, andBBg) would be deleted, whereV; is the set of basic blocks that become dead when
and no additional basic blocks can be deleted wBé# is the execution reachd3B; but could not be captured by any
visited. The third point is that, due to lack of complete condominator. It is important to note that a basic block can be-
trol flow information at compile time, the determination oflong toUx B, or V; but not both. Note also that, to compute
somep; sets may need runtime information as well. For exy;, at runtime, we need to keep track of the CFG edge from
ample, the basic blocks that will be removed from memorywhich we come taB B;. We do this by associating a variable

determiningB; wherei = 3,4,5, we haveBB; = P; —
{BBs, BB, BB7, BBs}, which gives us the empty set for
all three basic blocks. The dead block set of the other ba-
sic blocks in this example can be found using a similar strat-
egy, except forB By, which we discuss in more detail now.
Note that, forBBgy, UiBy is empty set asB By has only
single dominator (see Figure 1(b)). If, during execution, we
reachB By throughB Bs, we need to delete only nod&33;,
BBs, BBy, and BBs5. The reason that we delete only these
blocks is that the others must have already been deleted by
the time the execution arrives &By (through BB;3). In
other words))s is { BB2, BBs, BB,, BB5}. Note that we
determine the potentidly sets at compile time. Similarly, if
the execution comes & By via B Bs, we have)y = { BBs}.
Again, the reason for this is that, when we comeB®,

via BBg, the latter is the only node (apart fromBy that
Figure 1. (a-c) Two different CFGs. (b) DomiEC) still occupies memory). Our compiler records these alternate

Vg sets, and depending on the value of the runtime variables
mentioned above, it uses (selects) the appropiiateet at
runtime. Therefore, at the end of this process, we findihe
sets shown earlier in this subsection.

& o

®®w6e C

(b)

®
o
®
OO @ CED

nator tree for the CFG in (a).

with each basic block. If there argedges entering this ba-
sic block, this variable can takgdifferent values (from O to]]
f—1). The compiler adds special instructions to set the valu®-3. Discussion
of this variable for each merge node. Our experimental eval-
uation also accounts for the space and performance overheadour approach presented in the previous subsection has
of maintaining these extra variables. the important characteristic that it transfers an entire proce-
Let us now briefly discuss the complexity of our approacHure body to the on-chip memory when the procedure is in-
The asymptotic complexity of the search in the first step i¥oked. It then tries to reduce the on-chip memory space oc-
O(E + N), whereE is the number of edges in the CFG andcupied by the procedure by removing its basic blocks con-
N is the number of nodes. Sindé < F in generaL we sidering their lifetimes. One mlght point out that an alter-
can simplify this cost a§)(E). Therefore, the total cost of nate implementation is also possible. Specifically, instead of
the first step i€) (N E) since the search is repeated for everyringing all the basic blocks at once at the time of invoca-
node. Finding the dominators in flow graphs can be done f#n, we can bring them on a need basis. In other words, we
O(E) time in practice [6] (so can determining the sets), ¢an manage the on-chip memory as a cache for hot basic
which is the main factor that determines the complexity oblocks, i.e., the ones that are executed frequently. In addition,
the second step of the algorithm. Consequently, the overdfhen necessary, we can also employ a block eviction strat-
Comp|exity of the static part of our approacmﬁNE)_ egy based on LRU or a similar algorithm. In faCt, the strat-
Considering the CFG in Figure 1 once more, after the fir&tgy described in [2] implements a similar scheme (though,
step, we determine the potential dead block sets as followsnstead of LRU, it relies on loop structures in the CFG). Un-
fortunately, one of the major consequences of such a scheme

Pro= 0 is that, at a given time, some of the basic blocks of the pro-
P> = {BB\, BBs, BBy, BDs} cedure can reside in the on-chip memory, whereas the others
Ps = {BB\, BBs, BBy, BBs} are in the off-chip memory, and the location of a basic block
i B {BB1, BBs, BBy, BBs} with respect to its neighbors can change during the course of
gz _ %ggi’ ggz’ gg;’ ggi}BBs} execution. As a result, each time a basic block changes loca-
P, — {BBlzBBQZBBngB4:BB5} tion (and the number of such location changes can be very
Ps — {BBi, BB, BBy, BBy, BBs, BBs, BBr} high in a typical exgcutlon), the target addresses of all the
Py — {BBi, BBs, BBy, BBy, BBs, BBs, BB, BBs} branches to that basic block must be updated for correct exe-

cution. This situation is depicted in Figure 2. In Figure 2(a),
Figure 1(b) illustrates thdominator treefor the CFG in three basic blocks® Bs, B Bs, andBB,) are in the on-chip
Figure 1(a). A dominator tree is a convenient way of prememory, whereas in Figure 2(b) two basic blockds; and
senting dominator information, in which the initial node isBB,). Notice that, depending on where basic blagiB;
the root, and each nodBB; dominates only its descen- is, the target of the branches to it from basic blaBiB,
dants in the tree. We see from this dominator tree thatill be different (similar argument goes for blodgB, as
BB, dominatesBB3, BB4, and BBs;. Consequently, in well, which also branches to blodk B3). This type of dy-

Off-Chip On-Chip off-Chip On-Chip

®
&) €
® ©)
© ©)
© ©)
Figure 2. Two different cases for basic block
level on-chip memory management. Figure 3. An example CFG with branch proba-
bilities.

namic address management at runtime is very difficult to We expect this scheme to be most effective in applications
track, is time consuming, and makes the underlying imple- P PP

mentation very complex. This complexity can in turn hav ih%sle IC(:FGCS gai\ée rafb'rg l)?orﬁ slurrtcr)1ung::rng (rjnosit tofdtir;le':ti)a—
negative impacts on execution cycles and power consum r% 1?(3 SA'n i(r)n Sorfaht%if?e%ngeebetfveen thise%(lig and tr?(;
tion of the entire design. In contrast, in our proposal, all the ¥ P

intra-procedure branches are within the same memory coi® in Figure 1(a) is that former has a large outermost loop,
ponent (on-chip), and consequently, the address managem‘é’ﬂf)se back edge goes fmﬁ.'ES to BB,. The scheme de- .

is much simpler. We rely on the fact that most of the branchﬁ”bed in the previous sectl'on cannot be very successful in
among the basic blocks are within procedures not across t s CFG as most of the basic blocks are dead only after ba-

procedures. The basic block branches across procedures C%?-blOCkBBS exits (which is toc_) late to save any memory
respond to procedure calls and are relatively rare. space). In contrast, the aggressive scheme can be effective in

such scenarios. Consider, for example, the loop that consists
of blocks B B; andB Bs in this CFG. The aggressive scheme

deallocates the on-chip memory space allocated to them af-
ter the loop exits, i.e., the execution takes the edge between

. . . . Bs and BB4. The reason is that, wheBB, is reached,
It is to be noted that the approach discussed in Sect|onr visiting BB, will require two loops (i.e.,3B,-BBs and

is a conservative one. That is, the on-chip memory space g, ~ ; :
located to a basic block is deallocated only when the blo Be-B Br) to be completed. In our experimental evaluation,

is dead, i.e., there is no CFG arch using which the block ¢ e compare our baseline implementation with this aggres-

be re-visited. While this conservative strategy eliminates aigyive dead block elimination scheme.

potential negative impact of space deallocation on execution
cycles, one could do even better from a pure memory spaBe Memory Placement of Basic Blocks
saving perspective if one could deallocate blocks before they
become dead. The main potential drawback of this strategy One of the characteristics of BB-GC is that it deallocates
is the increase in execution cycles due to increased traffic b&-memory region (that holds a dead basic block or a block
tween the on-chip and off-chip memories. whose next invocation is far in execution) whenever it is pos-
While it is possible to adopt several strategies to decidgble to do so. As a consequence, it is possible that the in-
which basic blocks to deallocate, any viable scheme must ostruction memory space is fragmented as the execution pro-
serve the rule that the space of a basic block that will be rgresses. Unfortunately, it is well known [5] that a fragmented
accessed (executed) shortly should not be deallocated (as tiigmory (where numerous small free regions/chunks are dis-
can significantly increase the volume of transfers betwedributed all over the memory space) makes it difficult to uti-
the off-chip and on-chip memory). In other words, one needize it for allocating space for new data/code structures. In
to select the victim block(s) among the ones with large intether words, one would prefer a few large free regions in
access time gap. An important question then is how one camemory instead of many small free regions. In this section,
decide whether the next access to a basic block is really fae discuss a strategy, using which basic blocks of a proce-
in execution. The scheme proposed in this section assunmgre can be mapped to the on-chip instruction memory such
that the next access to a given basic block can be predictduit the deallocations generate large free spaces in memory
to be far if between the current access and next access thegemuch as possible.
is at least doopto be executed. The rationale behind this as- To achieve this, the proposed approach makes upeef
sumption is that most loops iterate large number of times bée data.The specific profile information we use is the execu-
fore they terminate. Consequently, during long loop execuion probabilities for CFG edges. Using these probabilities,
tion, one can achieve large savings in average memory ocauir approach, which is an iterative process, decides how the
pancy. basic blocks of the procedure should be laid out in memory.

4. Aggressive Memory Deallocation

Algorithm 1 ProfileBasedSearch(v, L) 6. Related Work

1. putw to the end ofL..))
2: while there are unvisited edges incidentodo Several prior studies focused on the use of scratch-pad

find e with smallest probability among unvisited edges incidenvon memories (SPMs) for data accesses. For example, Panda et

4: findw such thate = (v, w) : e !

5. if all incoming edges tav are visitecthen aI._[Q] present a powerful static data partitioning scheme for

6: ProfileBasedSearch(w, L) efficient utilization of scratch-pad memory. Cooper and Har-

gf fn”;rl'(fe as visited vey [3] present two compiler-directed methods for software-

o managing a small cache for holding spilled register values.
Hallnor and Reinhardt [4] propose a new software-managed

end while
cache architecture and a new data replacement algorithm.

The approach can be best explained using an example. Cfkg55 et al. [1] present an SPM management scheme for
sider the CFG illustrated in Figure 3. The numbers attachqggir ction accesses. Steinke et al. [10] focus on a strat-

to the edge_s_ rep_resen@ branch probgbilities. As an exampéegy for placing program and data objects into SPM for sav-
the probability with which the execution moves BB, af- ing energy. Lee et al. [7] also focus on reducing the energy

ter exiting block BB, is 90%, whereas that of proceeding.ns\mption due to instruction accesses using a software-
with B B3 (again, after exiting3 B;) is 10%. Based on these managed SPM (called loop cache).

probabilities, we can decide that it is better to stété;
and B B; consecutively in memory since it is more likely .
that they will be dead at the same time, and (when this hag-' Concluding Remarks

pens) their space can be dealloca'ted to.gethef (.Wh'Ch resultsOne of the biggest roadblocks preventing software writers
in a larger free space). After making this decision, our ap-

proach continues with the next (unprocessed) smallest prolté})_achleve higher performance in embedded environments is

ability edge as deep as possible in the CFG. In our eXam_emoryI|m|tat|on. Consequently, utilizing available on-chip

: memory space in the most effective way has been one of the
ple, the next basic block to be stored (nexfiB; andB53,) .most attractive research topics. Focusing on on-chip memory

::osr,ﬁlzcged \?viieg 0?Or:bﬁiEOb;blzlgLss,BO;thvioeu?gebsecmgo'gﬁd instruction accesses, this paper presents a scheme that re-
next onegiﬁ the IistpAfter thi)s/ we coonsidTBrB since it is duces the average memory occupancy of instructions by re-
' ! 8 claiming the space allocated to dead basic blocks, i.e., ba-

g:/i??rllﬁrceagfiga;fhga(hﬁofgiebszéz;)"gzeggrg?éﬁgox sic blocks that completed their last execution. The paper also
' P 9 studies a more aggressive scheme and discusses the trade-

it can be seen from the CFG that it is not possible to deallg- .
cate the space fdB Bg until the entire procedure terminates.Offs between memory savings and performance overhead. In

Consequently, our algorithm checks whether all of the ine-ldedr::'c())rr;’ we study the impact of basic block placement in

coming edges of a basic block are visited before it is decided
to be stored next to the blocks that have already been pr&-
cessed. Therefore, after having reactfs, our algorithm References
backtracks taB B; and thenBB3. The next smallest prob-
ability edge would lead to basic blodkBgs and this shapes ergy and performance improvements in microprocessor design using
our current list of blocks to be stored next to each other as aloop cache. In Proc. ICCD, 1999, pp. 378-383.

[1] N. Bellas, I. N. Hajj, C. Polychronopoulos, and G. Stamoulis. En-

BB,, BB3, BB, BBs. Since BBy still has unvisited in- [2] G.Chen etal. Compiler-directed management of instruction accesses.
coming edges, our algorithm backtracksB@;. In a sim-

ilar fashion, we compute the next set of basic blocks to be[3]

stored one next to another 8-, BB, and BBs. Finally,

In Proc. Euromicro Symposium on Digital System Design, Architec-
tures, Methods and Tools, Turkey, September, 2003.

K. D. Cooper and T. J. Harvey. Compiler-controlled memory. In Proc.
ASPLOS, CA, November 1998.

[4] E. G. Hallnor and S. K. Reinhardt. A fully-associative software-
managed cache design. In Proc. International Conference on
Computer Architecture, pp. 107-116, Vancouver, British Columbia,
Canada, 2000.

BBg would be the last basic block in the list since the edge
betweenBBs; and BBs is the last unvisited edge incoming
to BBs. So, the final storage order would @&5;, BBs, _ lection: Aldorithms f _
BB, BB, BB, BBy, BB, BBy, In comparison, fwe 5 & Jones . L, carbage colecter: orims ot
were to use a depth first Sear(_:h (DFS) glgorlthm to deter{s] T.'Lengauer and E. Tarjan. A fast algorithm for finding dominators
mine the storage order for basic blocks, it would be as fol- igaﬂow gra|c|>h. ACM Transactions on| Programming Languages and
lows: BB, BB;, BBy, BBs, BBs, BB3, BB, BB;. And ystems, Vol.1, No.1, pp.121-141, July, 1979

. ' ’ ! ’ ’ ! " . [7] L.H. Lee, B. Moyer and J. Arends. Instruction fetch energy reduction
S|m|!arly, a breadth first search (BFS) algorithm would re- " sing loop caches for embedded applications with small tight loops.
sultin BBy, BBy, BB3, BB,, BBs, BBg, BB7, BBg. Al- In Proc. ISLPED, San Diego, CA, August, 1999,
gorithm 1 gives the sketch of our algorithm for determin- [8l S-S-é\ﬂu?hniCk-ﬁdglanhced Cgmp:I:er design egg irlngp;mentation. Mor-
; gan Kaufmann Publishers, San Francisco, CA, .
Ing the order in WhICh basic blocks are laid out in mem- [9] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization of
ory. A call to ProfileBasedSearch(s, L) forms the lay- scratch-pad-memory in embedded processor applications.
out: L[0] ... L[[v|], where|v]| is the number of basic blocks [10] S. Steinke et al. Assigning program and data objects to scratch-pad
ands is the first basic block in the CEG for energy reduction. In Proc. DATE'02, Paris, France, 2002.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

