
Studying Storage-Recomputation Tradeoffs in Memory-Constrained Embedded
Processing∗

Mahmut Kandemir, Feihui Li, Guilin Chen, Guangyu Chen, and Ozcan Ozturk
Computer Science and Engineering Department

The Pennsylvania State University, University Park, PA 16802, USA
{kandemir, feli, guilchen, gchen, ozturk}@cse.psu.edu

Abstract

Fueled by an unprecedented desire for convenience and
self-service, consumers are embracing embedded technol-
ogy solutions that enhance their mobile lifestyles. Conse-
quently, we witness an unprecedented proliferation of em-
bedded/mobile applications. Most of the environments that
execute these applications have severe power, performance,
and memory space constraints that need to be accounted
for. In particular, memory limitations can present serious
challenges to embedded software designers. The current
solutions to this problem include sophisticated packaging
techniques and code optimizations for effective memory uti-
lization. While the first solution is not scalable, the second
one is restricted by intrinsic data dependences in the code
that prevent code restructuring. In this paper, we explore
an alternate approach for reducing memory space require-
ments of embedded applications. The idea is to re-compute
the result of a code block (potentially multiple times) in-
stead of storing it in memory and performing a memory op-
eration whenever needed. The main benefit of this approach
is that it reduces memory space requirements, that is, no
memory space is reserved for storing the result of the code
block in question.

1. Introduction and Motivation

One of the major challenges for embedded software writ-
ers is memory space limitation. While memory capacities
attached to embedded systems keep increasing, the rate at
which complexity and dataset sizes of embedded applica-
tions is increasing is much faster. Consequently, making
best use of available memory space is becoming increas-
ingly critical. This is true for diverse embedded application
domains ranging from automobile control to disk process-
ing. There are at least two current solutions to this memory

∗ This work was supported in part by NSF Career Award #0093082.

problem. The first is to use sophisticated circuit/packaging
techniques to cram as much memory as possible in as little
area as possible. This solution is not scalable and is typically
costly from both design and implementation perspectives.
The second solution is to use software techniques to re-
duce memory space requirements by maximizing data reuse
and exploiting data lifetime information. Recent studies ex-
plored this option in different directions that include both
computation space and data space optimizations [8, 4, 5].
While the techniques in this group are effective in many
embedded application domains as has been demonstrated
by prior work, they are inherently limited by the intrin-
sic data reuse in the program and by potential overlap be-
tween lifetimes of different data structures. Consequently,
in cases where there is not much data reuse to exploit and
lifetimes of a large majority of data structures overlap with
each other, such techniques cannot be very successful.

In this paper, we explore an alternate approach for re-
ducing memory space requirements of embedded applica-
tions. The idea is tore-computethe result of a code block
(potentially multiple times) instead of storing it in memory
and performing a memory access whenever needed. In other
words, we study the cases where re-computation can substi-
tute for memory accesses. The main potential benefit of this
approach is to reduce memory space requirements, that is,
no space is reserved for storing the result of the code block
in question. A potential disadvantage is the increase in ex-
ecution cycles as re-computing a result each time it is re-
quired (in particular when the result has a high degree of lo-
cality) can be costly from the performance overhead view-
point. However, this may not always be so since sometimes
accessing a data generates misses in the on-chip storage,
and visiting off-chip memory can cost tens of cycles (which
also keeps increasing). In such cases, re-computation can
bring performance benefits as well. Therefore, the perfor-
mance impact of re-computation should be experimentally
studied and quantified.

Focusing on array-intensive embedded applications that
execute in memory-constrained systems, this paper makes

1530-1591/05 $20.00 © 2005 IEEE

the following contributions:
• We propose two integer linear programming (ILP)

based techniques to study maximum savings that could
come from re-computation. The first ILP strategy is a static
one in which the status of a code block (i.e., whether its
results should be stored or re-computed when needed) is
decided at exactly one point during optimization. In con-
trast, the dynamic scheme re-evaluates the storage versus
re-computation decision multiple times.

• We propose and evaluate a heuristic approach, and
compare it to the ILP-based solution. Our experimental re-
sults reveal that the proposed heuristic performs very well
for most of the time.

• We explain how our approach can be extended to han-
dle multi-level memories, to account for data lifetimes, and
to reduce memory space requirements under performance
constraints.

Our experimental evaluation with six embedded appli-
cations demonstrates that re-computation based ILP and
heuristic solutions are beneficial from both memory space
and performance perspectives.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the formulation for the problem of minimiz-
ing the number of execution cycles under memory space
constraints. Section 3 explains the solutions we propose.
Section 4 discusses several extensions to our baseline ap-
proach. Finally, Section 5 concludes the paper with a sum-
mary.

2. Problem Formulation

We study our memory space optimization problem at two
levels:staticanddynamic.In the static approach, we decide
for each computation whether its results should be stored
in the memory or not at exactly one point during optimiza-
tion, and this decision is maintained throughout the execu-
tion. More specifically, once we decide that the results of a
computation will not be stored, we stick to this decision un-
til the end of execution; i.e., each time we need the result of
that computation, we re-compute it. In contrast, in the dy-
namic scheme, we consider the possibility of storing the re-
sults of a computation several times. Consequently, a com-
putation whose results are not stored at the first time it is en-
countered can still have its result stored at a later step dur-
ing execution (when it is re-computed). Clearly, this poten-
tially brings additional benefits at the cost of additional im-
plementation complexity. This paper evaluates both these
schemes.

Our approach works on a graph calledflow graph,which
captures theproducer-consumerrelationship among differ-
ent code blocks in the application. Each node of this graph is
a code fragment whose granularity can be tuned. For exam-
ple, each node can be an entire procedure, a loop nest, or a

(b)

β

(a)

β7

β6β5

β4

β3β2β1

i

��
��
��
��
��
��
��
��
�
�
�
�

��
��
��
��
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

Figure 1. Two example flow graphs.

sub-nest (which is a small loop that contains a subset of the
iterations of a loop nest in the application). The edges be-
tween the nodes indicate potential data flow between them.
Specifically, a directed edge (arc) from a node to another
indicates that the former generates a result which is subse-
quently used by the latter. It should be noted, though, this is
a conservative approximation of real execution (with a par-
ticular input) since the data transfer implied by an edge may
not be materialized due to control flow. We useT to denote
the set of nodes in the flow graph, and assume that there is a
unique terminal node in the flow graph. If this last assump-
tion fails, we create a terminal node and connect it to all the
other nodes in the graph that have no successors. We useN
to denote the number of nodes in the flow graph being opti-
mized. We also assign alevel(starting with 1) to each node
in the graph. Specifically, the level of nodei is set toL+1,
whereL is the largest level among all the nodes from which
we have an edge to nodei. We useM to indicate the num-
ber of levels in the flow graph. In processing the flow graph
for optimization purposes, we also use the termstepto de-
note the processing of a level, i.e., each step corresponds to
processing of a particular level in the graph.

Before going into our discussion of the static and dy-
namic schemes, let us study an example scenario that il-
lustrates the tradeoffs between storage requirements and re-
computation overheads. We consider the flow graph shown
in Figure 1(a), and focus on two simple scenarios for il-
lustrative purposes. In the first scenario, we assume that
only the results ofβ1, β2, andβ3 are stored in memory,
and results of all other nodes in the graph are re-computed
when they are needed. In the second scenario, the results of
nodesβ1, β2, β3, β4, andβ6 are stored in memory, whereas
nodesβ5 are β7 are re-computed. In both the scenarios,
it is assumed that the results of nodesβ4, β5, β6, andβ7

are needed as output (i.e., none of them is temporary or
intermediate data). In the first scenario, computingβ4 re-
quires memory accesses for the results ofβ1 andβ2. Then,
computingβ5 requires re-computation ofβ4 since the re-
sult of the latter is not stored in memory.1 Note that this

β1 β2 β3 β4 β5 β6 β7

β1 C, Mw - - - - - -
β2 - C, Mw - - - - -
β3 - - C, Mw - - - -
β4 Mr Mr - C - - -
β5 Mr Mr - R C - -
β6 Mr Mr Mr R - C -
β7 Mr Mr Mr R R R C

β1 β2 β3 β4 β5 β6 β7

β1 C, Mw - - - - - -
β2 - C, Mw - - - - -
β3 - - C, Mw - - - -
β4 Mr Mr - C, Mw - - -
β5 - - - Mr C - -
β6 - - Mr Mr - C, Mw -
β7 - - Mr R R Mr C

Figure 2. Two different scenarios for an ex-
ample data-flow graph. The entry in a cell (βx,
βy) indicates the necessary computation (C), re-
computation (R), memory read (Mr), and memory
write (Mw) of/for βy in order to compute the result
of βx.

re-computation requires fresh accesses to memory for the
results ofβ1 andβ2. Similarly, computingβ6 requires re-
computation ofβ4. The remaining computations for this
scenario as well as the computations/memory accesses for
the second scenario can be identified using a similar strat-
egy. The tables in Figure 2 give, for both the scenarios, the
necessary memory accesses and re-computations. The entry
in a cell (βx, βy) in these tables indicates the necessary com-
putation (C), re-computation (R), memory read (Mr), and
memory write (Mw) of/for βy in order to compute the result
of βx. Note that, while not storing the result of a computa-
tion can save memory space, it can also trigger lots of re-
computations, whose performance implications should be
accounted for. An important question then is to reduce ex-
ecution cycles (improve performance) under a memory ca-
pacity constraint. The tables in Figure 2 also reveal an in-
teresting behavior of re-computation. Suppose that a partic-
ular nodeβi hasp predecessor (βj1 throughβjp). When-
ever we want to computeβi, we need to re-compute all
βjk

s whose results have not been saved in memory. This
in turn requires re-computation of all predecessors ofβjk

s
whose results have not been saved, and so on. For exam-
ple, computation ofβi in Figure 1(b) can trigger a lot of
re-computations depending on how many of the preced-
ing nodes have their results stored in memory. Obviously,
this chain of re-computations can potentially increase over-
all execution cycles.

1 For example, ifβ4 contains a statement such asb=a+3 andβ5 con-
tains a statement such asc=b-2, re-computingβ4 (during the evalua-
tion of β5) would generate a computation likec=(a+3)-2 asb is not
stored in memory.

2.1. Static Scheme

Let βi represent theith computation in the flow graph of
the application, where1 ≤ i ≤ N . The memory space oc-
cupied by storing the results ofβi is denoted byS(βi), and
the computation (or re-computation) time (in cycles) forβi

is expressed usingC(βi). We assume that writing the re-
sult ofβi into memory and accessing the stored result from
memory takeMw(βi) andMr(βi) cycles, respectively. We
use the following 0-1 variable2 to indicate whetherβi is (de-
cided to be) stored in memory or not (when we process the
point where it needs to be computed the first time):

αi =

{
1, if βi is stored in memory
0, otherwise

Based on these 0-1 variables, the total computation (or re-
computation) cost ofβi can be computed as follows:

C(βi) = αiMw(βi) + C(βi) +
∑

βj∈pred(βi)

D(βj),

wherepred(βi) denotes the set of immediate predecessors
of nodeβi. The first term in this expression indicates the to-
tal cost ofaccessingthe results of all the predecessors of
βi. The second component gives cost of writing its result to
the memory (if it is to be stored in memory), and the last
term gives the cost of computingβi itself (note that, irre-
spective of whether the result ofβi is stored in memory or
not, it needs to be computed). For a given nodeβi, D(βi)
gives the cost of accessing its result for the computation of
some other node. It should be noticed that such an access
can involve re-computation (depending on whether its re-
sult has already been stored in memory or not), which can
in turn trigger cascade re-computations. Consequently, we
have the following expression forD(βi):

D(βi) = αiMr(βi) + (1 − αi)C(βi).

One can then formulate the overall cost of executing the en-
tire application as the computation cost of the terminal node
(denotedβs). In mathematical terms:

Ctotal = C(βs),

On the other hand, the total memory space consumption
(Stotal) can be calculated as:

Stotal =
∑
βi∈T

αiS(βi).

It is to be observed that this calculation implicitly assumes
that once a memory space is allocated for the result ofβi,
this allocation is retained until the end of execution. While
this certainly simplifies the formulation of the problem, it
would be more realistic to assume that, once the result of
βi is not needed by any other node in the flow graph, its
memory is deallocated and (potentially) recycled for storing

2 A 0-1 variable is one that takes a value of 0 or 1.

the results for other nodes. Constructing the expression for
the memory space consumption in such a case requires tak-
ing into account lifetimes of (the results of) the flow graph
nodes, and is discussed in Section 4.

Assuming thatSmax is the maximum allowable mem-
ory space consumption (i.e., storage capacity), we are now
ready to formulate our optimization problem in formal
terms:

“Minimize Ctotal underStotal ≤ Smax.”

The 0-1 variables are the only unknowns in this formu-
lation, and the objective of any exact or heuristic solution
would be to determine the values of these variables. In Sec-
tion 3, we will present both exact and heuristic solutions
to this optimization problem. Note that, it is also possible
to define the dual of this problem, that is, minimizing stor-
age occupancy under performance constraints.

2.2. Dynamic Scheme

In this scheme, it is possible to store the result ofβi at
each time stepk, where1 ≤ k ≤ M . Consequently,αi vari-
ables employed in the static scheme are not sufficient. In-
stead, we parameterize these variables with bothi andk. In
mathematical terms:

αi,k =

{
1, if βi is stored in memory at stepk
0, otherwise

We need to change our cost formulation as well. Specif-
ically, C(βi, k) denotes the cost of computing (or re-
computing)βi at stepk. There are two reasons for such a
parameterization. First, it is possible thatβi is not stored
in memory at stepk′ but later is decided to be stored
(say, at stepk′′ where1 ≤ k′ < k′′ ≤ M), when for ex-
ample the available memory capacity changes dynami-
cally. Second, due to the same reason, it is possible that
we first decide to store it in memory but later delete it
(and re-compute it whenever necessary following this dele-
tion point). This second case will be detailed in Section 4.
Our formulation is:

C(βi, k) = αi,kMw(βi) + C(βi) +
∑

βj∈pred(βi)

D(βj , k − 1).

D(βi, k) = αi,kMr(βi) + (1 − αi,k)C(βi, k).

Note that, in computingC(βi, k), we useD(βj , k−1) since
whatever we decide forβj in the previous step (stepk − 1)
will dictate the cost of accessing it at the current step (step
k). In addition to these formulations, we need an additional
constraint if we assume that once the result of a node is de-
cided to be stored, the memory space allocated for it is never
deallocated (i.e., once stored, always stored):

αi,k − αi,k−1 ≥ 0.

Based on these constraints, we can formulate the overall
cost of executing the entire application as:

Ctotal = C(βs, M),

whereβs is the terminal node in the flow graph. On the
other hand, the total memory space consumption at stepk
(Stotal,k) can be calculated as:

Stotal,k =
∑
βi∈T

αi,kS(βi).

An important advantage of the dynamic scheme is that it
can adapt itself well to the dynamic changes in available
memory space. For example, in a multi-programmed em-
bedded environment, depending on the relative criticalities
of simultaneously running applications, the memory space
allocated to a particular application can change from one
execution point to another. As a result, a node (βi) that has
been decided not to be stored in memory (due to space con-
straints) can later be stored in memory when more space be-
comes available. Consequently, in this dynamic scenario, it
might make more sense to talk about time step-wise mem-
ory capacity limit, that is,Smax,k, which denotes the maxi-
mum allowable memory consumption at stepk. Obviously,
the storage consumption at each step (that is,Stotal,k) must
be smaller than or equal toSmax,k. Therefore, our perfor-
mance optimization problem under memory constraint can
be expressed as follows:

“Minimize Ctotal underStotal,k ≤ Smax,k, where1 ≤
k ≤ M .”

3. Proposed Solutions

In this section, we propose two different solutions to our
memory space management problem. The first solution is
based on zero-one integer linear programming (ILP). ILP is
suitable for our particular memory utilization problem since
our formulation of the problem described above lends it-
self to ILP computation very well. In this formulation, our
objective is to determineαi (in the static scheme), or de-
termineαi,k for eachβi and time stepk (in the dynamic
scheme) – where1 ≤ i ≤ N and1 ≤ k ≤ M . However,
one point needs to be clarified here. While the static scheme
operates on a one-dimensional space (iterated byi), the dy-
namic scheme operates on a two-dimensional scheme (it-
erated by bothi andk). This can potentially increase the
number of 0-1 variables dramatically, making an ILP-based
solution infeasible in some cases. However, it must be ob-
served that, many of the(i, k) pairs are not feasible in prac-
tice anyway (for a given application), and the costs expres-
sions involving them do not need to be constructed at all.
This is because, for a given flow graph node represented by
βi, the possible time steps that need to be considered are
between the step where it is first encountered in process-
ing the graph and the last step of the execution. In addi-
tion, one might be able to further shrink the feasible search
space by taking into account the lifetimes of (the results of)
the nodes, as will be further elaborated in Section 4. This
ILP-based solution can be useful in its own right, but it can

also be used for evaluating the quality of the heuristic solu-
tions. That is, once a heuristic solution has been developed,
the results it generates can be compared to those obtained
through the ILP-based method. This can help one evaluate
the quality of the heuristic in question, and refine it as nec-
essary. Still, for very large problem sizes/applications, one
may need to resort to fast heuristic solutions.

Our second solution to this optimization problem is a
heuristic based on a greedy approach. In this approach, we
consider all the nodes of the flow graph, and decide whether
the result of each node should be stored in memory or not.
To guide this decision, one obviously needs a metric or
a cost function. Our approach to this problem can be ex-
plained as follows. For each node, we compute the number
of potential consumers,i.e., the set of nodes that will use
the result generated (produced) by this node directly or in-
directly (again note that a potential consumer may not be
an actual consumer at runtime due to dynamic flow of con-
trol). After this, we select the node with themaximumnum-
ber of such consumers and decide to store its result in mem-
ory provided that doing so does not lead to consuming more
memory space than the available capacity. In doing so, we
also keep track of the memory space consumed (occupied)
so far. In the next step, we select, from the remaining nodes,
the one with the maximum number of consumers and sched-
ule it if the memory capacity constraint allows doing so. We
continue this way until all the nodes have been processed or
the available memory capacity has already been reached. If
this latter case occurs, the results of the remaining (unpro-
cessed) nodes are decided not to be stored in memory; that
is, they are marked for re-computation. The goal behind this
heuristic is to store the most frequently used results as much
as possible, thereby utilizing the available memory space in
the most effective way. Notice that this heuristic tends to
store the results of the nodes that reside in the upper por-
tions of the flow graph as they are typically the ones whose
results are used by many nodes (consumers).

Figure 3 gives a sketch of this heuristic solution. Con-
sidering the flow graph in Figure 1 once more and assum-
ing that all the nodes in this graph require a memory space
of the same size to store their results, and that the on-chip
memory can hold the result of only one node, this heuristic
would selectβ4 amongβ4, β5, andβ6 (under the assump-
tion that the results ofβ1, β2, andβ3 are already in mem-
ory), and store its result in memory. Note that, while this
heuristic is a static one, it is easy to convert it to a dynamic
one. In the dynamic version of the heuristic algorithm, one
can take lifetimes of individual graph nodes into account,
and also performs transfers betweenG andT , depending on
the dynamic variations in available memory size. This can
in turn lead to better utilization of available memory space.

NOTATION:
T : the set of nodes in the flow graph
G: the set of nodes whose results are decided to be stored
Stotal : the current memory space occupation
Stotal : the maximum allowable memory occupation

ALGORITHM:
compute the consumer setCSi for each nodeβi

G = ∅
Stotal = 0
order the nodes according to non-increasing values of|CSi|
while (there is still available space in memory andT 6= ∅)
{
select the nodeβi from T with the largest|CSi|
if (Stotal + S(βi) ≤ Smax) then
{
removeβi from T
addβi to G
Stotal = Stotal + S(βi)
}

}

Figure 3. The sketch of the heuristic algorithm
(the static approach).

4. Extensions

In this section, we discuss three important issues. The
first issue is about making our approach more effective by
taking into account lifetimes of data. Next, we discuss how
our baseline approach can be extended to work with multi-
level memories.

So far, we have assumed that when the results of a node
is stored in memory, it remains there until the end of ex-
ecution. In many cases, this may not be necessary as we
can deallocate the memory space as soon as the result of
that node is not needed anymore by any of the remaining
nodes, i.e., it isdead.The time frame between the genera-
tion of the result and the point at which it is dead (i.e., it will
not be needed in the rest of execution) is called itslifetime.
It is to be noted that the lifetime for a given data (the result
of a node) can be identified (conservatively) by analyzing
the flow-graph. Identifying lifetimes means that, for each
nodeβi, we need to determine the validk values (where
1 ≤ k ≤ M). It does not make sense to reserve a space for
the result(s) ofβi before we reach it during evaluation. And
similarly, it is possible to save memory space by deallocat-
ing the memory space allocated toβi once it is last used.
Therefore, for eachβi, one can have the following bounds
for k: kmin,i ≤ k ≤ kmax,i. Note that,kmax,i − kmin,i

gives the region in which the result ofβi is live. LetLi re-
fer to the lifetime of nodeβi. We can change the memory
space consumption expression in the static scheme as fol-
lows:

Stotal = max{
∑

βi∈T ′
αiS(βi)}.

In this expression,T ′ refers to a subset ofT (which repre-
sents all nodes in the flow graph) with the property that life-

times of all the nodes inT ′ overlap with each other. The
max expression finds the setT ′ such that the cumulative
memory space occupied by the results of all the nodes in it
is the largest among all possible alternativeT ′s. This can
be incorporated into our ILP formulation by constraining
the range ofk for eachβi and by dropping the constraints
αi,k − αi,k−1 ≥ 0 from consideration.

We now discuss how our approach can be extended
to work with multi-level memories. While our discussion
mainly focuses on a two-level memory, it is straightfor-
ward to extend it to memory hierarchies with larger num-
ber of levels. We denote the first level and the second level
memory using L1 and L2, respectively. Typically, the first
level memory is smaller, faster, more power-efficient, and
more expensive (in terms of dollars/bit) than the second
level memory. We mainly focus on the static scheme here
but it is not difficult to extend this description to the dy-
namic scheme. We first need some modifications to the def-
inition of our 0-1 variables. Specifically, the new variables
should distinguish between the two memory levels:

αi,L1 =
{

1, if βi is stored in L1 memory
0, otherwise

αi,L2 =
{

1, if βi is stored in L2 memory
0, otherwise

An important design decision needs to be made about
whether two copies of the same data (one in L1 and the
other in L2) are allowed or not. If multiple copies are not al-
lowed, we need the following additional constraint:

∀βi : αi,L1 + αi,L2 ≤ 1.

This constraint can easily be included into the ILP-based
formulation. Based on theseαi,L1 andαi,L2 variables, new
cost formulations are as follows:

C(βi) = αi,L1MwL1(βi) + αi,L2MwL2(βi) + C(βi)
+

∑
βj∈pred(βi)

D(βj).

D(βi) = αi,L1MrL1(βi) + αi,L2MrL2(βi)
+(1 − (αi,L1 + αi,L2))C(βi).

In this expression,MwL1 andMwL2 refer to memory write
costs (in terms of execution cycles) for L1 and L2, respec-
tively. Similarly,MrL1 andMrL2 denote the corresponding
memory read costs. Then, the overall cost can be expressed
as:

Ctotal = C(βs),

whereβs is the terminal node in the graph. Finally, the to-
tal memory space consumptions in memories L1 and L2 can
be computed as:

Stotal,L1 =
∑

βi∈T
αi,L1S(βi).

Stotal,L2 =
∑

βi∈T
αi,L2S(βi).

Consequently, assuming thatSmax,L1 (resp.Smax,L2) is the
maximum allowable memory space consumption (i.e., stor-
age capacity) for memory L1 (resp. L2), we can formulate
our optimization problem for two-level memory in formal
terms:

“Minimize Ctotal underStotal,L1 ≤ Smax,L1 and
Stotal,L2 ≤ Smax,L2.”

We also want to mention that there are other possi-
ble memory constraints when a multi-level memory hi-
erarchy is considered. For example, instead of the one
above, one could try to minimizeCtotal underσ1Stotal,L1

+ σ2Stotal,L1, ≤ Smax whereσ1 andσ2 are positive con-
stants that satisfyσ1 + σ2 = 1.

5. Conclusions

Most embedded systems operate under tight memory and
power constraints. Therefore, their performance require-
ments must be carefully balanced against their memory
space requirements and power consumption. While state-
of-the-art code/data optimization techniques try to make
best use of available memory space, they are inherently
restricted by available data reuse. The work presented in
this paper takes an alternate approach where it employs re-
computation instead of memory accesses if doing so is ben-
eficial from performance and/or memory space occupancy
viewpoints.

References

[1] T. M. Austin. The SimpleScalar/ARM Toolset.
http://www.eecs.umich.edu/∼taustin/simplescalar

[2] F. Catthoor et al.Custom Memory Management Methodology – Ex-
ploration of Memory Organization for Embedded Multimedia Sys-
tem Design. Kluwer Academic Publishers, June 1998.

[3] J. Huang and D. Lilja. Exploiting Basic Block Value Locality with
Block Reuse. InProc. the Fifth International Symposium on High
Performance Computer Architecture,Orlando, Florida, 1999.

[4] M. Kandemir et al. Dynamic Management of Scratch-Pad Memory
Space. InProc. the 38th Design Automation Conference,Las Vegas,
NV, June 2001.

[5] P. R. Panda et al. Efficient Utilization of Scratch-Pad Memory in
Embedded Processor Applications. InProc. European Conference
on Design and Test,1997.

[6] A. Sodani and G. Sohi. Dynamic Instruction Reuse. InProc. the 24th
International Symposium on Computer Architecture,Denver, Col-
orado, 1997.

[7] R. P. Wilson et al. SUIF: An Infrastructure for Research on Paral-
lelizing and Optimizing Compilers,ACM SIGPLAN Notices,29(12),
December 1994, pp. 31–37.

[8] L. Wang et al. Optimizing on-chip memory usage through loop re-
structuring for embedded processors. InProc. 9th International Con-
ference on Compiler Construction,March 30–31 2000, pp. 141–156,
Berlin, Germany.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

