Studying Storage-Recomputation Tradeoffs in Memory-Constrained Embedded
Processing’

Mahmut Kandemir, Feihui Li, Guilin Chen, Guangyu Chen, and Ozcan Ozturk
Computer Science and Engineering Department
The Pennsylvania State University, University Park, PA 16802, USA
{kandemir, feli, guilchen, gchen, oztyt®cse.psu.edu

Abstract problem. The first is to use sophisticated circuit/packaging
techniques to cram as much memory as possible in as little
Fueled by an unprecedented desire for convenience andarea as possible. This solution is not scalable and is typically
self-service, consumers are embracing embedded technoleostly from both design and implementation perspectives.
ogy solutions that enhance their mobile lifestyles. Conse-The second solution is to use software techniques to re-
guently, we witness an unprecedented proliferation of em-duce memory space requirements by maximizing data reuse
bedded/mobile applications. Most of the environments thatand exploiting data lifetime information. Recent studies ex-
execute these applications have severe power, performanceplored this option in different directions that include both
and memory space constraints that need to be accountedomputation space and data space optimizations [8, 4, 5].
for. In particular, memory limitations can present serious While the techniques in this group are effective in many
challenges to embedded software designers. The currenembedded application domains as has been demonstrated
solutions to this problem include sophisticated packaging by prior work, they are inherently limited by the intrin-
techniques and code optimizations for effective memory uti-sic data reuse in the program and by potential overlap be-
lization. While the first solution is not scalable, the second tween lifetimes of different data structures. Consequently,
one is restricted by intrinsic data dependences in the codein cases where there is not much data reuse to exploit and
that prevent code restructuring. In this paper, we explore lifetimes of a large majority of data structures overlap with
an alternate approach for reducing memory space require- each other, such techniques cannot be very successful.
ments of embedded applications. The idea i_s to r.e-com_pute In this paper, we explore an alternate approach for re-
the result of a code block (potentially multiple times) in- g,,cing memory space requirements of embedded applica-
stead of storing it in memory and performing a memory op- yjons The idea is toe-computethe result of a code block
_era'uon_whenever needed. The main be_neflt of this approadkpotentially multiple times) instead of storing it in memory
is that it reduces memory space requirements, that is, N0ynq herforming a memory access whenever needed. In other
memory space is reserved for storing the result of the code, o4 we study the cases where re-computation can substi-
block in question. tute for memory accesses. The main potential benefit of this
approach is to reduce memory space requirements, that is,
no space is reserved for storing the result of the code block
1. Introduction and Motivation in question. A potential disadvantage is the increase in ex-
ecution cycles as re-computing a result each time it is re-
One of the major challenges for embedded software writ- quired (in particular when the result has a high degree of lo-
ers is memory space limitation. While memory capacities cality) can be costly from the performance overhead view-
attached to embedded systems keep increasing, the rate g@oint. However, this may not always be so since sometimes
which complexity and dataset sizes of embedded applica-accessing a data generates misses in the on-chip storage,
tions is increasing is much faster. Consequently, makingand visiting off-chip memory can cost tens of cycles (which
best use of available memory space is becoming increasalso keeps increasing). In such cases, re-computation can
ingly critical. This is true for diverse embedded application bring performance benefits as well. Therefore, the perfor-
domains ranging from automobile control to disk process- mance impact of re-computation should be experimentally
ing. There are at least two current solutions to this memory studied and quantified.
Focusing on array-intensive embedded applications that
* This work was supported in part by NSF Career Award #0093082. execute in memory-constrained systems, this paper makes

1530-1591/05 $20.00 © 2005 IEEE

the following contributions:

e We propose two integer linear programming (ILP) p(g B2
based techniques to study maximum savings that could
come from re-computation. The first ILP strategy is a static pa
one in which the status of a code block (i.e., whether its
results should be stored or re-computed when needed) is 85 86
decided at exactly one point during optimization. In con-
trast, the dynamic scheme re-evaluates the storage versus B7
re-computation decision multiple times.

e We propose and evaluate a heuristic approach, and @ ()
compare it to the ILP-based solution. Our experimental re-
sults reveal that the proposed heuristic performs very well
for most of the time.

e We explain how our approach can be extended to han-sub-nest (which is a small loop that contains a subset of the
dle multi-level memories, to account for data lifetimes, and iterations of a loop nest in the application). The edges be-
to reduce memory space requirements under performanceween the nodes indicate potential data flow between them.
constraints. Specifically, a directed edge (arc) from a node to another

Our experimental evaluation with six embedded appli- indicates that the former generates a result which is subse-
cations demonstrates that re-computation based ILP andjuently used by the latter. It should be noted, though, this is
heuristic solutions are beneficial from both memory space a conservative approximation of real execution (with a par-
and performance perspectives. ticular input) since the data transfer implied by an edge may

The remainder of this paper is organized as follows. Sec-not be materialized due to control flow. We u5do denote
tion 2 presents the formulation for the problem of minimiz- the set of nodes in the flow graph, and assume that there is a
ing the number of execution cycles under memory spaceunique terminal node in the flow graph. If this last assump-
constraints. Section 3 explains the solutions we propose.tion fails, we create a terminal node and connectit to all the
Section 4 discusses several extensions to our baseline apsther nodes in the graph that have no successors. W& use
proach. Finally, Section 5 concludes the paper with a sum-to denote the number of nodes in the flow graph being opti-
mary. mized. We also assignlavel(starting with 1) to each node
in the graph. Specifically, the level of nodés set toL+1,
wherelL is the largest level among all the nodes from which
we have an edge to nodeWe use)M to indicate the num-
ber of levels in the flow graph. In processing the flow graph
for optimization purposes, we also use the tetepto de-
note the processing of a level, i.e., each step corresponds to
processing of a particular level in the graph.

Before going into our discussion of the static and dy-

Figure 1. Two example flow graphs.

2. Problem Formulation

We study our memory space optimization problem at two
levels:staticanddynamicIn the static approach, we decide
for each computation whether its results should be stored
in the memory or not at exactly one point during optimiza-

tion, and this decision is maintained throughout the execu- ; . .
namic schemes, let us study an example scenario that il-

tion. More specifically, once we decide that the resuilts of a lustrates the tradeoffs between storage requirements and re-

computation will not be stored, we stick to this decision un- : X
. Lo . computation overheads. We consider the flow graph shown
til the end of execution; i.e., each time we need the result of .

. . . in Figure 1(a), and focus on two simple scenarios for il-
that computation, we re-compute it. In contrast, in the dy- . . :
) . - . lustrative purposes. In the first scenario, we assume that
namic scheme, we consider the possibility of storing the re-

sults of a computation several times. Consequently, a com—Only the results off, (>, and 3; are stored in memory,

: TN and results of all other nodes in the graph are re-computed
putation whose results are not stored at the first time it is en- :
when they are needed. In the second scenario, the results of

countered can still have its result stored at a later step dur- .

) . o . nodess:, B2, B3, B4, andFg are stored in memory, whereas

ing execution (when it is re-computed). Clearly, this poten- i
nodesgs are 3; are re-computed. In both the scenarios,

tially bnng; additional peneﬁt_s at the cost of additional im- it is assumed that the results of nodes s, s, and 3;
plementation complexity. This paper evaluates both these ; .
are needed as output (i.e., none of them is temporary or

schemes. intermediate data). In the first scenario, computihgre-

C:ur apt;?]roac: works on a grapl)htpallhhm_tu graph,w(r;];h guires memory accesses for the result§péndg.. Then,
captures therogucer-consumaeiationship among ditter- computingfs requires re-computation gf; since the re-

ent code blocks in the appllcatlon_. Each node of this graph|sSult of the latter is not stored in memoryote that this
a code fragment whose granularity can be tuned. For exam-

ple, each node can be an entire procedure, a loop nest, or a

2.1. Static Scheme

[[Bi [B2 [B3 [Ba]Bs | PBs | Br]
2; © M C, M - e -] - Let §; represent théth computation in the flow graph of
gs Vv u C, My o N the application, wheré < i < N. The memory space oc-
5 | M. M.) rleal - |- cupied by storing the results ¢f is denoted by5(3;), and
Be M, M, M, R c | - the computation (or re-computation) time (in cycles) for
fr | My M, M, | R R|C is expressed using'(3;). We assume that writing the re-
sult of 8; into memory and accessing the stored result from
| [Bv [B [B3 | Bs [Bs[Bs [PBr] memory takeM,, (5;) andM,.(3;) cycles, respectively. We
B | C, My - - - - - - use the following 0-1 variabfdo indicate whetheg; is (de-
gg i) M C. M, i i i i cided to be) stored in memory or not (when we process the
Bs | M, M, - C, My, | - - - point where it needs to be computed the first time):
Bs - - - M, C - -
Be - - M, My - | O My |- - { 1, if B; is stored in memory
Bz - - M, R R M, e} a; = .
0, otherwise
Figure 2. Two different scenarios for an ex-
ample data-flow graph. The entry in a cell (S, Based on these 0-1 variables, the total computation (or re-
f,) indicates the necessary computation (C), re- computation) cost of; can be computed as follows:

computation (R), memory read (M,), and memory

write (M,,) offfor 3, in order to compute the result C(Bi) = aiMw(Bi) + C(8:) + Z D(B5),
of 3. 8, €pred(B;)

wherepred(3;) denotes the set of immediate predecessors
of nodeg;. The first term in this expression indicates the to-
re-computation requires fresh accesses to memory for thetal C?]St ofaccgssmghe resul_ts of all th? prgdegessorsl of
results of@, and G,. Similarly, computingds requires re- $3;. The second component gives cost of writing its result to
o1 2 e 61" . the memory (if it is to be stored in memory), and the last
computation of3,. The remaining computations for this oy, gives the cost of computing itself (note that, irre-

scenario as well as the computations/memory accesses fogpective of whether the result 6f is stored in memory or
the second scenario can be identified using a similar stratnot, it needs to be computed). For a given ngdeD(5;)
egy. The tables in Figure 2 give, for both the scenarios, thegives the cost of accessing its result for the computation of
necessary memory accesses and re-computations. The entspme other node. It should be noticed that such an access
inacell (3,, 3,) in these tables indicates the necessary com-can involve re-computation (depending on whether its re-
putation (), re-computation®), memory read §Z,.), and sult has already been stored in memory or not), which can
memory write (Z,,) offfor 3, in order to compute the result N turn trigger cascade re-computations. Consequently, we
of 3,. Note that, while not storing the result of a computa- have the following expression fav(j;):
tion can save memory space, it can also trigger lots of re- D(Bi) = ai M (8i) + (1 — o)C(5s).
computations, whose performance implications should be)
accounted for. An important question then is to reduce ex- One can then formulate the overall cost of executing the en-
ecution cycles (improve performance) under a memory ca-tire application as the computation cost of the terminal node

; ; A . (denoteds,). In mathematical terms:
pacity constraint. The tables in Figure 2 also reveal an in-
teresting behavior of re-computation. Suppose that a partic- Ciotat = C(Bs),
ular nodeg; hasp predecessord;, throughp;). When-
ever we want to computg;, we need to re-compute all
B;.S whose results have not been saved in memory. This
in turn requires re-computation of all predecessorgpé Storal = Z @:iS(6:).
whose results have not been saved, and so on. For exam-
ple, computation of3; in Figure 1(b) can trigger a lot of
re_ComputationS depending on hOW many Of the preced_ It is to be observed that this calculation Imp|ICIt|y assumes
ing nodes have their results stored in memory. Obviously, that once a memory space is allocated for the resuft; of
th|S Chain Of re_computations can potentia”y increase over- this allocation is retained until the end of execution. While
all execution cycles. this certainly simplifies the formulation of the problem, it
would be more realistic to assume that, once the result of
0; is not needed by any other node in the flow graph, its

1 For example, if5, contains a statement suchasa+3 and 55 con- memory is deallocated and (potentially) recycled for storing
tains a statement such esb-2, re-computing3, (during the evalua-
tion of 35) would generate a computation like(a+3)-2 asb is not

stored in memory. 2 A 0-1variable is one that takes a value of O or 1.

On the other hand, the total memory space consumption
(Stotal) Can be calculated as:

Bi€T

the results for other nodes. Constructing the expression for where 3, is the terminal node in the flow graph. On the
the memory space consumption in such a case requires takether hand, the total memory space consumption at/step
ing into account lifetimes of (the results of) the flow graph (Stota,k) €an be calculated as:

nodes, and is discussed in Section 4.

Assuming thatS,,,.. is the maximum allowable mem- Stotal,k = Z @i,k S(Bi).
ory space consumption (i.e., storage capacity), we are now B €T
ready to formulate our optimization problem in formal

An important advantage of the dynamic scheme is that it
can adapt itself well to the dynamic changes in available
“Minimize Ciopiq; UNAErSivial < Smax-” memory space. For example, in a multi-programmed em-
. o bedded environment, depending on the relative criticalities
The 0-1 variables are the only unknowns in this formu- ¢ i itaneously running applications, the memory space
lation, and the objective of any exact or heuristic solution 5jiocated to a particular application can change from one
would be to determine the values of these variables. In Secexecution point to another. As a result, a nodg hat has
tion 3, we will present both exact and heuristic solutions been decided not to be stored in memory (due to space con-
to this optimization problem. Note that, it is also possible straints) can later be stored in memory when more space be-
to define the dual of this problem, that is, minimizing stor- comes available. Consequently, in this dynamic scenario, it

terms:

age occupancy under performance constraints. might make more sense to talk about time step-wise mem-
ory capacity limit, that isS,, . », which denotes the maxi-
2.2. Dynamic Scheme mum allowable memory consumption at stegObviously,

the storage consumption at each step (thais,; r) must
In this scheme, it is possible to store the resulgpat P& Smaller than or equal 1,,.,,;. Therefore, our perfor-

each time step, wherel < k < M. Consequentlyy; vari- mance optimization problem under memory constraint can
1 = = . 7 .

ables employed in the static scheme are not sufficient. In-P€ €xpressed as follows:

stead, we parameterize these variables with batfdk. In “Minimize Crotar UNA€rSiotar i < Smas.k, Wherel <

mathematical terms: k< M?

o { 1, if g, is stored in memory at stép
ik — P .

0, otherwise 3. Proposed Solutions

. We need to change our cost formulation as.weII.Spemf- In this section, we propose two different solutions to our
ically, C(5;,k) denotes the cost of computing (or re-

computing)g; at stepk. There are two reasons for such a memory space manageme_nt problem. The_ first solution_is
parameterization. First, it is possible thatis not stored ~ Pased on zero-one integer linear programming (ILP). ILP is
in memory at stepk’ but later is decided to be stored Suitable for our particular memory utilization problem since
(say, at stegk” wherel < k' < k” < M), when for ex- our formulation of the problem described above lends it-
ample the available memory capacity changes dynami-self to ILP computation very well. In this formulation, our
cally. Second, due to the same reason, it is possible thaibbjective is to determine; (in the static scheme), or de-
we first decide to store it in memory but later delete it termineq; ; for eachps; and time steps (in the dynamic
(_and re-compute it whenever necessary fqllovv_ing this_ de|e'scheme) —wheré < i < N andl < k < M. However,

tion point). This second case will be detailed in Section 4. e point needs to be clarified here. While the static scheme
Our formulation is: operates on a one-dimensional space (iterated), tige dy-

C(Bik) = irMy(B:)+C(B)+ Z D(B;,k—1). namic scheme operates on a two-dimensional scheme (it-
8, €pred(B;) erated by both and k). This can potentially increase the
D(Bi k) = airxMq(8i)+ (1 —air)C(Bi, k). number of 0-1 variables dramatically, making an ILP-based
Note that, in computing (4, k), we useD(5;, k—1) since solution infeasible in some cases. However, ?t must be ob-
whatever we decide fos; in the previous step (stefp— 1) served that, many of thg, k) pairs are not feasible in prac-

will dictate the cost of accessing it at the current step (stepfice anyway (for a given application), and the costs expres-
k). In addition to these formulations, we need an additional Sions involving them do not need to be constructed at all.
constraint if we assume that once the result of a node is de-This is because, for a given flow graph node represented by
cided to be stored, the memory space allocated for it is nevers;, the possible time steps that need to be considered are
deallocated (i.e., once stored, always stored): between the step where it is first encountered in process-
Qi — Qig_1 > 0. ing the graph and the last step of the execution. In addi-
) tion, one might be able to further shrink the feasible search
Based on these constraints, we can formulate the overalspace py taking into account the lifetimes of (the results of)
cost of executing the entire application as: the nodes, as will be further elaborated in Section 4. This
Ctotar = C(Bs, M), ILP-based solution can be useful in its own right, but it can

also be used for evaluating the quality of the heuristic solu- ygrarion:

tions. That is, once a heuristic solution has been developed, 7:the setof nodes in the flow graph

the results it generates can be compared to those obtained g " 3 9iodes vhose fesuls are doe e © Pe stored
through the ILP-based method. This can help one evaluate S:ota:: the maximum allowable memory occupation

the quality of the heuristic in question, and refine it as nec- 5 gorTum:

essary. Still, for very large problem sizes/applications, one compute the consumer sets; for each nodes;

may need to resort to fast heuristic solutions. g;fil -0

order the nodes according to non-increasing valug¢€'dt; |
while (there is still available space in memory &hd# 0)

Our second solution to this optimization problemis a { _
heuristic based on a greedy approach. In this approach, we ,Sfe(';ftfh? 1°ds‘§‘ﬁf3°2 gf’::;?ﬁ;ﬁrgestcsil
consider all the nodes of the flow graph, and decide whether {
the result of each node should be stored in memory or not. ;Zf;‘gfi?g”"”
To guide this decision, one obviously needs a metric or Stotal = Stotar + 5(Bi)
a cost function. Our approach to this problem can be ex- }
plained as follows. For each node, we compute the number
of potential consumers,e., the set of nodes that will use
the result generated (produced) by this node directly or in-
directly (again note that a potential consumer may not be
an actual consumer at runtime due to dynamic flow of con-
trol). After this, we select the node with theaximurmum-)
ber of such consumers and decide to store its resultin mem#4. EXtensions
ory provided that doing so does not lead to consuming more
memory space than the available capacity. In doing so, we In this section, we discuss three important issues. The
also keep track of the memory space consumed (occupiedfirSt issue is about making our approach more effective by
so far. In the next step, we select, from the remaining nodes taking into account lifetimes of data. Next, we discuss how
the one with the maximum number of consumers and sched-Our baseline approach can be extended to work with multi-
ule it if the memory capacity constraint allows doing so. We level memories.
continue this way until all the nodes have been processed or S0 far, we have assumed that when the results of a node
the available memory capacity has already been reached. IfS stored in memory, it remains there until the end of ex-
this latter case occurs, the results of the remaining (unpro-€cution. In many cases, this may not be necessary as we
cessed) nodes are decided not to be stored in memory; tha¢an deallocate the memory space as soon as the result of
is, they are marked for re-computation. The goal behind this that node is not needed anymore by any of the remaining
heuristic is to store the most frequently used results as muctnodes, i.e., it islead.The time frame between the genera-
as possible, thereby utilizing the available memory space intion of the result and the point at which it is dead (i.e., it will
the most effective way. Notice that this heuristic tends to NOt be needed in the rest of execution) is calledificsime.
store the results of the nodes that reside in the upper porJt is to be noted that the lifetime for a given data (the result
tions of the flow graph as they are typically the ones whose Of & node) can be identified (conservatively) by analyzing

results are used by many nodes (consumers). the flow-graph. Identifying Iifetimes means that, for each
node3;, we need to determine the validvalues (where

.) ketch of this heuristi uti 1 < k < M). It does not make sense to reserve a space for
. F|gure 3gvesas et_c Ny this heuristic solution. Con- the result(s) of3; before we reach it during evaluation. And
sidering the flow graph in Figure 1 once more and assum-gjniiary it is possible to save memory space by deallocat-
ing that all the nodes in this graph require a memory SPaCing the memory space allocated i once it is last used.

of the same size to store their results, and that the On'ChipTherefore for eacts;, one can have the following bounds
memory can hold the result of only one node, this heuristic for k- k o <k <“k Note that.k _

would select3, amongpg,, 35, andFg (under the assump-

tion that the results of;, (>, and3; are already in mem- (o ¢, the Jifetime of nodes;. We can change the memory

ory), and store its result in memory. Note that, while this g,50 consumption expression in the static scheme as fol-
heuristic is a static one, it is easy to convertit to a dynamic |

one. In the dynamic version of the heuristic algorithm, one
can take lifetimes of individual graph nodes into account,
and also performs transfers betw&gand7 , depending on
the dynamic variations in available memory size. This can In this expression7”’ refers to a subset &f (which repre-
in turn lead to better utilization of available memory space. sents all nodes in the flow graph) with the property that life-

Figure 3. The sketch of the heuristic algorithm
(the static approach).

- kmin,i

gives the region in which the result gf is live. Let £; re-

Stotar = maz{ Y :S(B:)}.

BieT’!

times of all the nodes i7’ overlap with each other. The Stotal,L2 = Z ai,1.25(5:).

max expression finds the s&’ such that the cumulative BieT

memory space occupied by the results of all the nodes in it .)

is the largest among all possible alternativés. This can ~ consequently, assuming ti@fq., 11 (réSP.Sias,12) i the

be incorporated into our ILP formulation by constraining Maximum allowable memory space consumption (i.e., stor-
the range of; for each; and by dropping the constraints 29€ capacity) for memory L1 (resp. L2), we can formulate
ik — a; 1 > 0 from consideration our optimization problem for two-level memory in formal

i,k ik—1 = . .

We now discuss how our approach can be extended®'™MS:

to work with multi-level memories. While our discussion “Minimize Ciotar UNAEIrStotal, 1 < Smaz,1 and
mainly focuses on a two-level memory, it is straightfor- Stotal,L2 < Smaz,L2”
ward to extend it to memory hierarchies with larger num-
ber of levels. We denote the first level and the second level

memory using L1 and L2, respectively. Typically, the first erarchy is considered. For example, instead of the one

level memory is smaller, faster, more power-efficient, and o
. . - above, one could try to minimiz&;,;,; undero;Siotal 1
more expensive (in terms of dollars/bit) than the second _Lorab
+ 02Stotal,L1, < Smaz Whereo; ando, are positive con-

level memory. We mainly focus on the static scheme hereStants that sati_sfy =1
but it is not difficult to extend this description to the dy- Loz =t
namic scheme. We first need some modifications to the def- .

inition of our 0-1 variables. Specifically, the new variables 5. Conclusions

should distinguish between the two memory levels:

We also want to mention that there are other possi-
ble memory constraints when a multi-level memory hi-

Most embedded systems operate under tight memory and

1, if B; is stored in L1 memory power constraints. Therefore, their performance require-

i, L1 = { 0, otherwise ments must be carefully balanced against their memory
space requirements and power consumption. While state-

O g = { 1, if B is stored in L2 memory of-the-art code/data optimization techniques try to make
N 0, otherwise best use of available memory space, they are inherently

An important design decision needs to be made about'estricted by available data reuse. The work presented in
whether two copies of the same data (one in L1 and thethis paper takes an alternate approach where it employs re-
other in L2) are allowed or not. If multiple copies are notal- computation instead of memory accesses if doing so is ben-

lowed, we need the following additional constraint: eficial from performance and/or memory space occupancy
viewpoints.
V@it i1+ aipe <1

This constraint can easily be included into the ILP-based References

formulation. Based on thesg 1, ando; 12 variables, new [T M. Austin. The SimpleScala/ARM Toolset.
cost formulations are as follows: http://www.eecs.umich.edwtaustin/simplescalar
[2] F. Catthoor et alCustom Memory Management Methodology — Ex-
C(83; = a1 M) a: rolM.) C(5; ploration of Memory Organization for Embedded Multimedia Sys-
(%) i1 M1 (Bi) + 012 Mwr2(5i) + C(5:) tem DesignKluwer Academic Publishers, June 1998.
+ Z D(B;). [3] J. Huang and D. Lilja. Exploiting Basic Block Value Locality with
3, €pred(Bi) Block Reuse. InProc. the Fifth International Symposium on High
J&p ’ Performance Computer Architectu®ylando, Florida, 1999.
D(ﬁi) = ai,LerLl(ﬁi) + 0411,L2MrL2(5i) [4] M. Kandemir et al. Dynamic Management of Scratch-Pad Memory
+(1 — (411 + a;.1,2))C(5s). Space. IrProc. the 38th Design Automation Conferenicas Vegas,
(1= (o, i.22))C(5:) NV, June 2001.
i i ; [5] P. R. Panda et al. Efficient Utilization of Scratch-Pad Memory in
In this _expressmnMle a.ndM“’LQ refer to memory write Embedded Processor Applications. Proc. European Conference
costs (in terms of execution cycles) for L1 and L2, respec- on Design and Tes,997.

tively. Similarly, M,.;,; andM,.;» denote the corresponding [6] A.Sodaniand G. Sohi. Dynamic Instruction ReusePtac. the 24th

memory read costs. Then, the overall cost can be expressed ~ [niefnational Symposium on Computer Architectbenver, Col

as: [7]1 R. P. Wilson et al. SUIF: An Infrastructure for Research on Paral-
Ciotal = C(ﬁs)7 lelizing and Optimizing CompilersA\CM SIGPLAN Notice®9(12),
December 1994, pp. 31-37.
whereg; is the terminal node in the graph. Finally, the to- [8] L. Wang et al. Optimizing on-chip memory usage through loop re-

i ; ; structuring for embedded processorsPhc. 9th International Con-
:)62- Toemmsl?{/esdp:ge consumptions in memories L1 and L2 can ference on Compiler Constructioklarch 30—31 2000, pp. 141-156,
. Berlin, Germany.

Stotal, L1 = Zoéi,ms(ﬁi)-

BieT

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

