

Mutation Sampling Technique for the Generation of Structural Test Data

M. Scholivé1, V. Beroulle1, C. Robach1, M.L. Flottes2, B.Rouzeyre2
1 LCIS-ESISAR, 50 rue B. de Laffemas, BP 54, 26902 Valence, France

2 LIRMM, Université de Montpellier, 34090 Montpellier, France
<Mathieu.scholive, Vincent.beroulle, Chantal.robach>@esisar.inpg.fr

<flottes, rouzeyre>@lirmm.fr

Abstract
Our goal is to produce validation data that can be

used as an efficient (pre) test set for structural stuck-at
faults. In this paper, we detail an original test-oriented
mutation sampling technique used for generating such
data and we present a first evaluation on these validation
data with regard to a structural test.

1 Introduction

The presented approach addresses the data generation
problem for both validation and physical tests. Data for
validation are generated from high-level descriptions
using a software testing technique. This paper focuses on
the interest of re-using and optimizing these validation
data for hardware testing purpose. As validation data are
already generated when structural test generation begins,
we propose to use them as a primary and "free" test set
for structural faults. Obviously, to achieve very high fault
coverage, this first test set only relying on the validation
data will be completed with additional data obtained from
a classical gate-level Automatic Test Pattern Generation
(ATPG) process. Validation data reuse should decrease
the gate-level test generation effort and final test
application time.

This paper presents a software testing method for
generating validation data. It is based on the well-known
mutation testing principle and uses an original sampling
technique for decreasing test generation time of these
validation data without degrading validation results.

The sequel of this paper is organized as follows.
Section 2 presents the classical mutation testing
approach. In section 3, mutation operator efficiency is
studied. Then, in section 4, we propose a new mutation
sampling technique. The paper concludes with section 5.

2 Mutation Testing Overview

Originally proposed in [1] as a technique for unit
software testing, the aim of mutation testing is to measure
the efficiency of a test set to exercise the different
functions of a program. This measure can also be used to
generate test cases selecting only input data that are
mutation adequate. It has been proved in [2] that the data
generated by this approach meet most of design
validation criteria such as statement coverage, branch
coverage, ….

To generate validation data with mutation testing, we
select vectors that can distinguish a program from a set of

faulty versions of this program, the so-called mutants.
These faults, i.e. "small" and syntactically correct
modifications of the original instructions, are classified
with the help of mutation operators. For VHDL
descriptions, a set of ten operators has been defined in
[3].

Through mutant simulation, this approach leads to a
metric called the Mutation Score (MS). This metric
measures the Test Set (TS) quality with respect to a
program P. Before to define the MS, lets first define
killed and equivalent mutants.

A killed mutant is a mutant that can be distinguished
from the original program because it exists at least one
data in TS that, when applied on inputs of the original
program or the mutant, results in different outputs.

An equivalent mutant cannot be distinguished from the
original program whatever the simulated input data.

The mutation score MS is computed as follow:

()
EM

KPTSMS
−

=,

Where M is the number of generated mutants,
 K is the number of killed mutants,
 E is the number of equivalent mutants.

3 Mutation Operator Efficiency

The mutation-based technique is a very time/memory
consuming validation technique that must be optimized
for complex circuits. A common strategy called mutation
sampling consists in selecting a subset of mutants among
the whole set of mutants generated from all the mutation
operators. At the evidence, if we want to limit the
generation effort performed at high level and re-use the
validation sequence for a structural test, we must adjust
our sampling strategy according to the fault coverage
efficiency of the mutation operators. For this, we are
going to select all the more mutants generated from one
mutation operator than this operator is efficient with the
regard to the stuck-at fault coverage.

Because validation data are considered as free data
with regard to the detection of stuck-at faults, we
compare the so generated test data with pseudo-random
test sets generally used as initial test sets before to run an
Automatic Test Pattern generation for hard to detect
faults. We define metric, called the Non Linear Fault
Coverage Efficiency (NLFCE) that allows to take into
account the non-linear increasing difficulty to achieve
high fault coverage level. This metric considers both the

1530-1591/05 $20.00 © 2005 IEEE

achieved fault coverage and the corresponding test
length. First, stuck-at fault simulations performed with
validation data on gate-level descriptions deliver
corresponding fault coverages: the Mutation Fault
Coverage (MFC). In the same way, fault simulations
performed with pseudo-random test vectors allow to
compute the Random Fault Coverage (RFC). ∆FC% is
the relative fault coverage gain between mutation and
random data for equal length sequences. ∆L% is the
relative length gain between mutation and random data to
achieve the same fault coverage. NLFCE is the product
∆FC%.∆L%.

The experiments are performed on the ITC’99
benchmarks [4] and on the ISCAS’85 benchmarks [5].
Table 1 presents several results per mutation operator.
Note that all mutation operators are not necessarily
applied on every benchmark circuit. For instance, the CR
(Constant Replacement) operator is only used if the high
level description includes a constant declaration.

Circuit Operator ∆FC% ∆L% NLFCE

LOR 0.66 10.84 +7.16
VR 1.36 17.43 +23.7

CVR 1.72 18.81 +32.3 b01

CR 2.32 37.60 +87.3
VR 4.10 28.39 +116

CVR 8.08 55.29 +447 b03
CR 9.57 49.89 +477

LOR 4.14 32.35 +134
VR 9.40 56.62 +532 c432

CVR 11.67 81.86 +955
LOR 4.72 64.26 +303
VR 6.18 73.10 +452 c499

CVR 4.53 84.96 +385

Tab. 1: Operator Fault Coverage Efficiency

These experimental results show that the LOR (Logical
Operator Replacement) mutation operator is always the
least efficient operator for stuck-at fault detection. Other
operators can be ordered with regards to the efficiency
(increasing order): VR (Variable Replacement), CVR
(Constant for Variable Replacement) and CR. In other
words, when the circuit descriptions include constant
declarations, CR seems to be the most efficient operator.
Obviously, this high level fault model is also well related
to the stuck-at fault model.

4 Mutation Testing Strategy

The usual mutation sampling strategy [6] consists in
sampling a low percentage of mutants, for instance 10%.
Generally, this 10% are selected randomly. Our strategy
consists in selecting the same final number of mutants
(10% over the whole set of mutants) but this selection is
not performed randomly. We select different percentages
of mutants in the mutant subsets generated from different

operators. The proportion of mutants selected from each
operator is function of its stuck-at fault coverage
efficiency.

Several experiments have been conducted on
benchmark circuits for comparing the classical and the
proposed sampling technique. Since the proposed
strategy must preserve validation and structural test
efficiencies, both MS (computed on all mutants) and
NLFCE parameters are observed. These results are
summarized in table 2. Obviously, the two strategies
extract exactly the same percentage of mutants, which has
been fixed to 10%.

Test-oriented
sampling 10%

Random Sampling
10%

Circuit MS% NLFCE MS% NLFCE
b01 85.98 +340 83.71 +278
b03 64.16 +1089 62.22 +712
c432 88.18 +708 85.62 +419
c499 94.75 +518 90.32 +500

Tab. 2: Our Testing Strategy Vs Mutant Sampling

For instance, concerning the c432 circuit, 77 mutants
have been selected from the two strategies. Validation
data are generated from this subset of mutants, and then
applied to the entire population of mutants to provide the
MS. With the classical random sampling technique, this
MS equals to 85.62% and the NLFCE roughly equals to
+400. With our sampling strategy, we increase the MS to
88.18%, and the NLFCE is roughly +700. Our strategy is
thus more efficient for structural test comparing to the
classical mutation sampling technique.

5 Conclusion

In this paper, we have proposed a strategy to reduce
the simulation time preserving both validation and test
efficiencies. This strategy consists in performing
mutation sampling and is built thanks to the study of the
efficiency of each mutation operator.

To demonstrate that validation data re-use leads to an
efficient reduction in terms of ATPG effort, further
experiments must be conducted on more complex
designs.

6 References

[1] R. De Millo, R.J. Lipton, and F.G. Sayward, “Hints on Test Data
Selection: Help for the Practicing Programmer”, IEEE Computer,
vol. 11, No. 4, pp. 34-41, 1978.

[2] R. De Millo and A. Offutt, “Constraint-based Automatic Test Data
Generation”, IEEE Transactions on computers, Vol. 17, No. 9, pp.
900-910, 1991.

[3] G. Al-Hayek, C. Robach, “From Design Validation to Hardware
Testing: a Unified Approach”, Journal of Electronic Testing :
theory and application 14, pp 133-140, 1999.

[4] http://www.cad.polito.it/tools/itc99.html
[5] http://www.eecs.umich.edu/~jhayes/iscas/benchmark.html
[6] A.J. Offutt, R.H. Untch, “Mutation 2000: Uniting the Orthogonal”,

Mutation 2000: Mutation Testing in the Twentieth and the Twenty
First Centuries, pages 45--55, San Jose, CA, October 2000.

http://www.cad.polito.it/tools/itc99.html
http://www.eecs.umich.edu/~jhayes/iscas/benchmark.html

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

