
Integration of Learning Techniques into Incremental Satisfiability for Efficient
Path-Delay Fault Test Generation ∗

Kameshwar Chandrasekar and Michael S. Hsiao ({kamesh, hsiao}@vt.edu)
Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061

Abstract

In recent years, several Electronic Design Automation
(EDA) problems in testing and verification have been for-
mulated as Boolean Satisfiability (SAT) instances due to
the development of efficient general-purpose SAT solvers.
Problem-specific learning techniques and heuristics can be
integrated into the SAT solver to further speed-up the search
for a satisfying assignment. In this paper, we target the prob-
lem of generating a complete test-suite for the path delay
fault (PDF) model. We provide an Incremental Satisfiabil-
ity framework that learns from (1) static logic implications,
(2) segment-specific clauses, and (3) unsatisfiability cores of
each untestable partial PDF. These learning techniques im-
provise the test generation for path delay faults that have
common testable and/or untestable segments. The experi-
mental results show that a significant portion of PDFs can
be excluded dynamically in the proposed incremental SAT
formulation for large benchmark circuits, thus potentially
achieving speed-ups for PDF test generation.

1 Introduction

The increasing clock frequencies and reduced feature
sizes have made delay testing a necessity. While various
fault models have been proposed to capture the effect of de-
lay defects, the path delay fault (PDF) model is the most ac-
curate in characterizing the cumulative effect of distributed
delays along each path in a circuit. However, the main bottle-
neck in the PDF model is the exponential number of paths
in a circuit. As a result, Automatic Test Pattern Generation
(ATPG) suffers from temporal explosion if each path delay
fault needs to be targeted in the circuit. In order to reduce
the number of PDFs that need to be considered for test gen-
eration, several methods have been proposed to identify the
untestable PDFs a priori. In [1], static logic implications are
used to identify many untestable path delay faults in a cir-
cuit. Other methods have been proposed in [2, 3] to quickly
identify the untestable PDFs. In general, these techniques
identify a set of PDFs that are untestable and predict a lower

∗supported in part by NSF Grants CCR-0196470 and CCR-0305881.

bound on the number of untestable PDFs. However, inte-
grating these techniques into the test generation algorithm
leads to an additional overhead for the ATPG engines that
directly work on the circuit structure and use different logic
systems [4–6]. More recently, in [7], the authors propose
a Zero-suppressed Binary Decision Diagram (ZBDD) based
technique to identify all the testable PDFs in a circuit. The
PDFs are stored as a ZBDD and set operations are used to re-
move all the untestable PDFs from the ZBDD. Subsequently,
an ATPG engine can be invoked to generate the test vectors
for all the testable PDFs identified by their technique.

Boolean Satisfiability (SAT) was first used for delay test-
ing in [8], in which all the paths in a circuit are enumer-
ated, and hence it may not be applicable for large circuits.
In [9], the authors suggest that incremental SAT is suitable
for PDF testing. They provide a basic framework to generate
non-robust test vectors for all the PDFs in the circuit. How-
ever, their framework is devoid of problem-specific learn-
ing techniques that can improve the performance of the SAT
solver. To improve the performance of SAT, it has been sug-
gested in [10–12] that circuit-related information can enrich
the clause database of the SAT solver for equivalence check-
ing and model checking problems. This opens an opportu-
nity for problem-specific learning to discover the knowledge
that could enhance the SAT solver.

In our work, we present efficient learning techniques to
incrementally reduce the number of paths that need to be
considered, thereby speeding up the Incremental SAT solver,
for PDF test generation. We target the problem of generating
a complete test suite for all the path delay faults in a circuit.
The contributions of our work are as follows:

1. We convert the static logic implications in a circuit into
clauses and add them to the clause database of SAT
solver. Since implications were shown to be efficient
in identifying the untestable PDFs in a circuit, they will
help to quickly identify the untestable path delay faults
during test generation.

2. For each fanout-free segment in the circuit, we try to
sensitize the segment-fault constraints individually and
store the conflict clauses generated during the search
as learned segment clauses. Then, during the ATPG,

1530-1591/05 $20.00 © 2005 IEEE

ad

de

eh

hj

jmjl

SAT UNSAT

a=1, d=1, b=0

e=0, c=1, m=1

h=1, f=0

j=1, i=1, g=1

l=1, k=1

(A) Circuit (C) Sensitization clauses

(D) Incremental SAT(B) Circuit CNF

Path Recursion

Depth

1

2

3

4

5

5

Segment

Clauses Added

(On & Off path)

ad
de
eh

(a) (d) (−b)

(−e) (c)

(h) (−f)

(j) (i)

(l) (k)

(m) (−c)

a

b d

c

i

h

j

l

m

k
f

g

e

o
p

n

jm

hj
jl

(−a + d) (−b + d) (a + b + −d) (c + e) (d + e) (−c + −d + −e) (−e + −h) (−f + −h) (e + f + h)
(−e + i) (−g + i) (e + g + −i) (h + −j) (i + −j) (−h + −i + j) (j + −l) (k + −l) (−j + −k + l)
(−c + m) (−j + m) (c + j + −m) (−i + −m + −o) (i + m + −o) (−i + m + o) (i + −m +o)

Figure 1. Incremental SAT for Non-Robust PDF testing

we add these clauses along with the sensitization con-
straints for each fanout-free segment.

3. When an untestable partial PDF is encountered dur-
ing test generation, we extract the unsatisfiable core
of clauses. These clauses are used to identify other
untestable PDFs, on the fly, during test generation.

The experimental results show that a significant portion
of PDFs can be excluded dynamically in the proposed incre-
mental SAT formulation for large benchmark circuits, thus
potentially achieving speed-ups for PDF test generation.

The rest of the paper is organized as follows. In Section
2, we provide a brief introduction to incremental SAT and
path delay faults. In Section 3, we describe the mechanism
to add static logic implications and learned segment clauses
to the SAT solver. Section 4 presents the idea of extracting
unsatisfiable cores for untestable PDFs and using them to
avoid other untestable path delay faults. The experimental
results on ISCAS 85 and ISCAS 89 circuits are reported in
Section 5 and Section 6 concludes the paper.

2 Preliminaries
2.1 Incremental Satisfiability (ISAT)

The Boolean Satisfiability problem is to determine
whether a satisfying variable assignment, V , exists for a
given Boolean formula, Φ(V), commonly expressed in con-
junctive normal form (CNF). A CNF is a conjunction of
clauses, where each clause is a disjunction of literals. A lit-
eral is a variable occurring in its positive or negative polarity.
The general form for the formula is as follows:

Φ(v1,v2, ...vn) = C1 .C2Cm (1)

where,

• Φ is a propositional formula in CNF

• vi is the ith Boolean variable in the CNF

• C j is the jth clause in the CNF

In conventional SAT, all the clauses in the CNF are ma-
nipulated to find a satisfying variable assignment for Φ. In
the case of incremental SAT, we partition the clauses into
different groups. Initially, only a single partition of clauses
is in the clause database. If a satisfying assignment is found
for the existing set of clauses, we add the next partition of
clauses iteratively. If no satisfying assignment is found in an
iteration, then the SAT solver can stop and report that no sat-
isfying assignment exists for Φ, since a subset of clauses in
Φ cannot be satisfied.

Incremental SAT is advantageous if the SAT solver can
conclude that Φ is unsatisfiable using a smaller set of clauses.
In the worst case, we have to add all the partitions into the
clause database of the SAT solver. It should be noted that the
solver can proceed from its previous variable assignments
when we add-in the next partition of clauses to the SAT
solver in the subsequent iteration. Since a huge number of
untestable PDFs exist in a circuit [13], and many untestable
path delay faults have common untestable segments, incre-
mental SAT can identify the untestable PDFs in groups and
speed up the test generation.

2.2 Path Delay Fault Testing

For each structural path in the circuit from the primary
input to the primary output, two path delay faults are associ-
ated - rising PDF and falling PDF. In order to detect a path
delay fault, we require two test vectors < t1, t2 >, where a ris-
ing (falling) transition is asserted at the beginning of the path
for the corresponding rising (falling) PDF. In addition to the
initial transition, we sensitize the off-path inputs of the path
to propagate the transition to the output. A test < t1, t2 >,
for a given path delay fault, is said to be robust if the test
can detect the fault independent of other path delay faults in
the circuit. On the other hand, if the path delay fault can be
masked by the presence of other faults in the circuit, then
the test < t1, t2 > is called a non-robust test. In our work,
we target non-robust tests, since non-robust test generation

is a direct application of incremental SAT and the non-robust
conditions are present in robust tests as well. Nevertheless,
the proposed techniques can be extended to robust test gener-
ation or any other circuit problem that is an application of in-
cremental satisfiability by modifying the incremental clauses
for each iteration in the CNF.

For non-robust PDF test generation, it is sufficient to sen-
sitize the off-path inputs in the second test vector t2, such
that the on-path transition propagates to the primary output.
In Figure 1, we demonstrate the non-robust test generation
for PDFs using incremental satisfiability. The circuit is illus-
trated in Figure 1 (A). The consistency clauses for the gates
in the circuit is given in part (B) of the Figure. The sensi-
tization clauses for each segment is shown in part (C). We
start from segment ad ↑ and recursively add the sensitization
clauses for the fanout segments. The recursive addition of
segments is illustrated by the tree structure in Figure 1 (D).
When a fanout stem is reached (eg. segment h j ↑), we add
the segments in its branches recursively in a depth-first fash-
ion. In this example, we first add jl ↑. If we reach a primary
output during recursion, then all the sensitization clauses for
the current PDF have been satisfied, and the variable assign-
ments at the primary inputs is the test vector for that PDF. In
this example, the rising path delay fault at a−d−e−h− j− l
is testable. Then, we backtrack in the segment recursion tree,
delete the sensitization clauses of jl ↑ and try to sensitize the
next fanout segment - jm ↑. If the SAT solver reports that
a partial PDF is untestable, all PDFs with this partial PDF
as a prefix are untestable. In this example, the partial rising
PDF a− d − e− h− j−m is untestable. So, the ATPG can
backtrack immediately in the segment recursion tree without
sensitizing the segment mp. In this way, the ATPG proceeds
for all the paths in the circuit and generates test vectors for
all the testable PDFs.

3 Static Learning

In general, for solving circuit problems using Boolean
Satisfiability, the clauses for all the gates in the circuit are
built to form the complete clause database. It has been
shown in [10–12] that additional constraints can be added
to the clause database to speed up the search process. In or-
der to take advantage of static learning for path delay faults,
we add the static logic implications, generated from the cir-
cuit, as well as certain segment-specific clauses to the clause
database. It should be noted that these clauses are quickly
generated in a preprocessing technique and are computed
only once, before the actual test generation.

3.1 Static Logic Implications

The implications in a circuit provide useful information
that helps to deduce relations between different lines in the
circuit. They have been widely used to detect a huge num-
ber of untestable path delay faults in [1–3]. In the Boolean

Satisfiability domain, implications can be seen as the circuit
information that aid in accelerating the Boolean Constraint
Propagation (BCP) (the most time consuming routine in the
SAT solver [14]). In order to speed up the SAT solver and
detect untestable path delay faults faster, during ATPG, we
convert the implications into clauses and add them to the
circuit CNF. As direct implications are already encoded in
the circuit clauses, we add only the indirect implications and
extended backward implications to the circuit CNF. These
implications are generated using the techniques proposed
in [15].

Each implication is converted into a clause as follows.
Suppose we have a static implication: a → b. The clause
equivalent of this implication is (ā + b). Similarly, for all
the implications obtained from the circuit, we add the cor-
responding clauses to the circuit CNF. Because of the low
computational overhead involved in generating static logic
implications, this step is simple. Though simple, it can en-
rich the clause database with additional constraints that will
increase the deductive power of the SAT solver.

3.2 Segment-specific learned clauses

In incremental satisfiability for path delay fault testing,
we solve the clauses for partial PDFs first and then augment
the clause database incrementally. The clauses added for
each increment corresponds to the sensitization of a segment-
fault (also referred as segments in the sequel). The initial
segments (partial PDFs) that form the common prefix for var-
ious path delay faults (see Figure 2 (A)) are targeted once and
are re-used while backtracking in the path recursion. Simi-
larly, the segments in the latter part of the circuit (near the
primary outputs) may be the common post-fixes for different
path delay faults (see Figure 2 (B)). The existing test gen-

seg1

seg2
seg3
seg4

seg5

seg6
seg7

seg8
seg9

seg10

(A) Scenario 1 (B) Scenario 2

Figure 2. Prefix & Postfix partial PDFs

eration methods do not account for the latter scenario in the
circuit. Moreover, in order to sensitize each segment, we add
only the on-path and off-path clauses. It will be beneficial
to the SAT solver if we add the clauses that prune the con-
flict search subspace for that segment. When a segment is
encountered multiple times as a prefix/postfix, these clauses
will guide the SAT solver to avoid the associated conflict-
space and reach at a conclusion more quickly.

Motivated by these factors, we learn the clauses that can
be added along with the sensitization constraints, for each

segment, to speed up the SAT solver. As a pre-processing
step, we assert the sensitization constraints for each seg-
ment and perform an all-solutions SAT search [16]. We
store the conflict-induced clauses, generated during the SAT
search, as learned segment clauses. All these conflict-
induced clauses constrain the solution space for the target
segment. These clauses should be satisfied (a necessary con-
dition) for detecting any PDF involving this segment. It
should be noted that a proper subset of the conflict clauses
define a solution super-space for that segment. Hence, these
clauses represent constraints for the given segment and will
preserve the satisfiability of the original problem.

In general, solving for the sensitization constraints of a
single segment is very easy. Moreover, it is not necessary
to complete the all-solutions SAT search for every segment,
since each conflict clause can be individually stored as a
learned segment clause. Considering the time constraints,
it may be sufficient to learn the clauses only for certain seg-
ments, instead of all the segments. Due to the nature of seg-
ment recursion from input to output in incremental SAT, the
segments with large number of fanout paths is more likely
to be traversed fewer times (Figure 2 (A)) as compared to
the segments with the same number of fanin paths (Figure 2
(B)). We use a scoring mechanism to determine the segments
that will be traversed many times during PDF test generation.
We assign the number of fanin paths in each segment (found
using a linear time algorithm) as its score. Then, we compute
the weighted average of all the scores and learn for segments
whose scores are higher than the weighted average. Since
the segments with higher scores will be encountered more
times during ATPG, it is necessary to quickly traverse these
segments to accelerate the ATPG.

4 Dynamic Learning from Unsatisfiable Cores
of untestable partial PDFs

Definition 1 Given an unsatisfiable CNF formula Φ, a sub-
set of clauses, φ ⊆ Φ that is unsatisfiable by itself is called
an unsatisfiable core of clauses.

The unsatisfiable cores were initially used to validate a
SAT solver in [17, 18]. In their work, all the conflict clauses
that are generated during SAT search and their resolvent
clauses are stored externally. They propose an algorithm
to generate an unsatisfiable core from these clauses. Start-
ing from the final conflict clause, the algorithm backtraces
through the resolvent clauses. Finally, the set of all original
clauses reached during the backtrace is identified as the un-
satisfiable core. We use the same procedure to generate the
unsatisfiable core. However, we do not need to store the con-
flict clauses externally, since our objective is to extract the
unsatisfiable core rather than validate the SAT solver.

In the segment recursion of incremental SAT, we obtain a
partial PDF that is untestable. The corresponding clauses in
the database of the SAT solver form an unsatisfiable CNF.

The sensitization clauses in the unsatisfiable core for this
CNF can be mapped to a group of segments that cannot be
sensitized together. All the path delay faults that contain
these segments are guaranteed to be untestable. They are
called the untestable core of segments (or simply untestable
core) in the sequel. A motivating scenario is given in Figure
3. Suppose we obtain an unsatisfiable CNF corresponding to
an untestable partial PDF (a−b− c−d − e− f −g−h− i).
The untestable core of segments is found to be {ab,e f ,hi}. It
can be concluded that all the path delay faults that contain all
these three segments are untestable. This will help to avoid
testing for other untestable path delay faults and to speed up
the test generator.

a b

c d

e f

g

h i

Figure 3. Unsatisfiable core of segments

After encountering each untestable partial PDF, we iden-
tify the untestable core of segments and store them in a table,
T . If any partial PDF contains all segments of any untestable
core, then that PDF is guaranteed to be untestable. Before
choosing a segment for path recursion, we need to look up
the table, T , to check if the current partial PDF will cover any
of the untestable core of segments. If it covers any untestable
core of segments, we ignore that segment and look for the
next segment in the path recursion. This step helps to avoid
one iteration of adding clauses, solving for SAT and deleting
clauses in the incremental SAT framework.

Consider the untestable core of segments (UC) and the
current partial PDF (PP) as sets of segments. If an untestable
core of segments is a subset of the partial PDF, UC ⊆ PP,
then we have to backtrack in the path recursion. However,
checking for a subset in the table of unsatisfiability cores, for
every iteration of ISAT, is time consuming. As an alternative,
we introduce a single watched segment technique (motivated
by the two-literal watching rule in zChaff [14]) to look for
subsets on the fly.

While adding an untestable core to the table, T , we assign
one segment, which is not yet chosen in the path recursion,
as the watched segment for that row. For each segment, we
store a watched list that contains the row numbers of the ta-
ble, T , where it is a watched segment. Please note that each
row corresponds to an untestable core. During test genera-
tion, before a segment is chosen, we traverse the rows of T
in its watched list. For each row/untestable core, we search

Table 1. PDF ATPG for ISCAS ’85 & ’89 circuits
Circuit #FF-seg #PDFs Incremental Satisfiability

No Learning Static Learning Only Static+Dynamic Learning #Testable
Time(s) #Addtnl cls Time(s) #PDFs excl. % excl. Time(s) PDFs

c432 236 167,852 0.59 480 0.46 7,044 4.3 0.49 2,477
c499 264 18,880 12.13 2,561 13 1,482 14.7 13.08 8,800
c880 451 17,284 4.51 137 4.59 135 21.4 4.58 16,652
c1908 995 1,458,114 309.25 2,070 297.2 911,046 82.6 257.21 355,168
c1355 776 8,346,432 1391.59 1,819 1467.94 1,654,492 22.9 1400.85 1,110,304
c2670 1,422 1,359,920 407.87 1,306 297.12 277,111 22.5 297.2 130,626
c3540 1,825 57,353,342 3709.58 1,483 3628.1 15,359,492 27.4 3441.87 1,202,584
c5315 2,885 2,682,610 911 1,645 971.93 482,286 20.6 919.36 342,117
s635 315 2,490 0.36 91 0.38 0 0 0.38 2,459
s641 260 3,488 1.08 54 1.09 248 20.4 1.09 2,270
s713 320 43,624 4.08 336 3.68 10,098 26.1 3.39 4,922
s991 436 14,920 5.12 89 5.04 2,282 52.7 4.92 10,590
s1512 648 6,972 3.95 434 3.81 1,233 48.2 3.66 4,414
s1269 646 79,140 17.19 237 17.64 14,246 31.1 16.9 33,382
s1423 704 89,452 25.49 285 26.32 11,370 25.7 26.04 45,198
s3271 1,661 38,388 51.81 5,854 48.29 4,434 23.2 47.59 19,292
s3384 1,688 39,582 61.3 1,818 57.15 367 4.8 57.03 31,966
s5378 2,395 27,084 130.35 3,861 123.76 1,271 24.7 126.01 21,928
s9234 3,480 489,708 678.04 3,603 641.5 159,031 37.0 635.06 59,854

Note a) #FF-segments - #fanout-free segments
Note b) #Addtnl cls - #additional clauses learned due to static learning
Note c) excl. - untestable PDFs identified by untestable cores

for the next available segment to be assigned as the watched
segment for that core. If no free segment is available, then
that core has been covered and we can conclude that the cor-
responding partial PDF is untestable.

The watched segment technique is explained in the fol-
lowing example. Let P = {s1,s2,s3,s4} be the set of seg-
ments in the current partial PDF, and we have to choose s5

as the next segment in the path recursion. Let us consider
the following UTC, a table of untestable core of segments,
where ∗ denotes the watched segment in each row.

UTC = {{s1,s3,s5∗,s7,s9}, (Row 1)

{s5,s10,s15∗,s20}, (Row 2)

{s1,s3,s5∗}} (Row 3)

The watched list for s5 contains row 1 and row 3 in the
table. For row 1, {s1,s3} have already been chosen in P, and
{s7,s9} are free segments. So, we can change the watched
segment and assign s7 or s9 as the next watched segment.
However, for row 3, all the other segments in that row have
already been chosen in P. This means that the untestable
core in row 3 will become a subset of the partial PDF if we
choose s5. Therefore, we avoid s5 and look for the next seg-
ment in the segment recursion to proceed with the test gener-
ation. Note that we did not consider row 2 during this entire
manipulation and it is not necessary to update the watched
segments for the backtracks in segment recursion.

5 Experimental Evaluation
The above techniques were implemented in C++ and inte-

grated with zChaff [14], downloaded from the web-site [19].
However, the proposed techniques can be integrated into any
DPLL based SAT solver. In fact, it may be beneficial if we
use a SAT solver with sophisticated incremental SAT solv-
ing capabilities such as MINISAT [20]. zChaff was chosen
since it has an inbuilt feature to extract unsatisfiable cores.
The experiments were conducted on a 3 GHz Pentium 4 ma-
chine with 1 GB RAM running the Linux OS. A non-robust
PDF ATPG was implemented to generate test vectors for all
the path delay faults in ISCAS 85 and ISCAS 89 benchmark
circuits with a time limit of 5000 seconds. We compare our
technique with [9] only, since it is the most recent Boolean
Satisfiability technique proposed for PDF test generation.

The experimental results are shown in Table 1. For each
circuit, the number of fanout-free segments and the number
of path delay faults are first reported. Next, the results of
PDF ATPG using incremental SAT are listed for (1) no learn-
ing (similar to the ISAT in [9]), (2) static learning only, and
(3) combined static and dynamic learning. The final column
of the table reports the total number of detected PDFs by
all three methods. Note that each method is able to com-
plete detection of all testable PDFs in the circuit. Under the
Static-learning ISAT, both the number of clauses added and
the time taken for test generation are reported. For the com-
bined static and dynamic learning, the number of PDFs ex-
cluded due to unsatisfiability cores during dynamic learning,
the number of PDFs excluded as a percentage (%) of total

number of untestable PDFs, and the time taken for test gen-
eration are given.

From Table 1, it is observed that there is an improve-
ment in time for many circuits, such as c1908, c2670, c3540,
s5378 and s9234. The efficacy of dynamic learning is
demonstrated by the number of untestable path delay faults
identified by the untestable cores. The untestable cores are
able to dynamically identify that more than 20% of the PDFs
are eligible to be excluded during ATPG for most of the cir-
cuits. While there is some overhead in pruning the num-
ber of PDFs, the corresponding speedup is also obtained for
larger circuits. For several small circuits, there is no appre-
ciable improvement in time taken to complete the test gener-
ation. It is likely that the clauses added, during static learn-
ing for fanout-free segments, and the unsatisfiability cores,
take more time than simply running the original SAT solver
without learning for these cases. Finally, it should be noted
that the implementation of the proposed techniques and the
variable ordering are deciding factors for the performance
of a SAT solver. In zCHAFF, the solver has to re-adjust
its clause database and variables’ status, every time a new
clause is added incrementally. So the addition of many stati-
cally learned clauses may lead to a significant time-overhead
as seen in c1355.

6 Conclusion and Future Work

In this work, we introduce static and dynamic learning
techniques for an incremental satisfiability framework. We
use the framework to generate a complete non-robust test
suite for the path delay fault model in a circuit. We learn
from static logic implications and segment-specific clauses,
at each iteration of the increment, in order to enrich the
clause database of the SAT solver. We use the unsatisfiability
cores of unsatisfiable CNFs, generated for untestable PDFs,
to identify other untestable path delay faults. Experimental
results show that these unsatisfiable cores help to identify a
large number of untestable PDFs and they are subsequently
avoided during test generation. Potential directions for future
research include:

• Represent all the PDFs as a ZBDD [7] and use the
ZBDD structure for ISAT. This representation will help
to physically remove the untestable PDFs on-the-fly.

• Generate test vectors for a particular subset of PDFs
(e.g., critical paths only), by representing them as a
ZBDD and proceed with ISAT.

• Provide a seamless integration of these techniques into a
specialized incremental SAT solver like MINISAT [20].

References

[1] K. Heragu, J.H. Patel, V.D. Agrawal, “Fast Identification of
untestable delay faults using implications”, In Proc. of ICCAD,
1997, pp. 642-647.

[2] Z.C. Li, R.K. Brayton, Y. Min, “Efficient Identification of Non-
Robustly Untestable Path Delay Faults”, In Proc. of ITC, 1997,
pp. 992-997.

[3] Y. Shao, S.M. Reddy, S. Kajihara and I. Pomeranz, “An Effi-
cient Method to Identify Untestable Path Delay Faults”, In Proc.
of ATS, 2001, pp. 233-238.

[4] K. Fuchs, M. Pabst and T. Rossel, “RESIST:A Recursive Test
Pattern Generation Algorithm for Path Delay Faults consider-
ing Various Test Classes”, In IEEE Trans. on CAD of Integrated
Circuits and Systems, Vol. 13, No. 12, 1994, pp.1550-1562.

[5] Y. Shao, I. Pomeranz and S.M. Reddy “Path delay fault test
generation for standard scan designs using state tuples”, In Proc.
of DAC, 2002, pp. 767-772.

[6] D. Battacharya, P. Agrawal, V.D. Agrawal, “Test Generation
for Path Delay Faults using Binary Decision Diagrams”, In IEEE
Trans. on Computers, Vol. 44, No.3, 1995, pp.434-447.

[7] S. Padmanaban and S. Tragoudas, “Using ZBDDs and BDDs
for efficient identification of testable path delay faults”, In Proc.
of DATE, 2004, pp. 50-55.

[8] C. A. Chen and S. K. Gupta, “A Satisfiability-Based Test Gen-
erator for Path Delay Faults in Combinational Circuits”, In Proc.
of DAC, 1996, pp. 209-214.

[9] J. Kim, J. Whittemore, J.P. Silva and K. Sakallah, “On Apply-
ing Incremental Satisfiability to Delay Fault Testing”, In Proc.
of DATE, 2002, pp.380-384.

[10] M.K. Ganai et al., “Combining strengths of circuit-based and
CNF-based algorithms for a high performance SAT solver”, In
Proc. of DAC, 2002, pp. 747-750.

[11] F. Lu, L.C. Wang, K.T. Cheng, R. C. Huang, “A Circuit SAT
solver with Signal Correlation Guided Learning”, In Proc. of
DATE, 2003, pp. 892-897.

[12] R. Arora and M.S. Hsiao, “Enhancing SAT based Equivalence
Checking using static logic implications”, In Proc. of HLDVT,
2003, pp. 63-68.

[13] K.T. Cheng and H. C. Chen, “Classification and Identifica-
tion of Nonrobust Untestable Path Delay faults”, In IEEE Trans.
CAD Integrated Circuits and Systems, Vol. 15, No. 8, 1996, pp.
843-853.

[14] L. Zhang and S. Malik, “Chaff: Engineering an Efficient SAT
solver”, In Proc. of DAC, 2001, pp. 530-535.

[15] J.K. Zhao, E.M. Rudnick and J.H. Patel, “Static Logic Impli-
cations with application to redundancy identification”, In Proc.
of VTS, 1997, pp. 288-293.

[16] B. Li, M. S. Hsiao and S. Sheng, “A novel SAT all-solutions
solver for efficient preimage computation”, In Proc. of DATE,
2004, pp. 272-277.

[17] L. Zhang and S. Malik, “Validating SAT solvers Using an
Independent Resolution-Based Checker: Practical Implementa-
tions and other Applications”, In Proc. of DATE, 2003, pp. 880-
885.

[18] E. Goldberg and Y. Novikov, “Verification of Proofs of Un-
satisfiability for CNF Formulas”, In Proc. of DATE, 2003, pp.
886-891.

[19] S. Malik, “Boolean Satisfiability Research Group at Prince-
ton”, http://www.princeton.edu/ chaff/zchaff.html.

[20] Niklas Een and Niklas Sorensson, “An Extensible SAT
solver”, In Proc. of SAT, 2003.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

