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Abstract

1 The first path implicit and exact non–robust path de-
lay fault grading technique for non–scan sequential cir-

cuits is presented. Non enumerative exact coverage is
obtained, by allowing any latched error representing

a delayed transition to propagate to a primary output

with the support of other potentially latched errors. The
generalized error propagation is done by symbolic sim-

ulation. Appropriate data structures for function ma-

nipulation are used. The advantage of the proposed
method is demonstrated experimentally with consistent

improvement in coverage over an existing pessimistic
heuristic despite enforced bounds on the memory re-

quirements.

1 Introduction

The need for verifying the temporal correctness of the

manufactured circuit is ever increasing. The objective
of delay testing is to detect timing defects which could

degrade the performance of a circuit. The path delay

fault (PDF) model is considered to be the most accurate
and also the most appropriate delay model for testing

delay defects in deep sub–micron technology. A PDF
can be tested robustly, but in many circuits the majority

of PDFs can only be sensitized non-robustly. We con-

sider non-robust fault grading of PDFs in non-scan se-
quential circuits in this paper. The goal of fault grading

is to determine the faults tested by a test set under a

specific delay fault model. It is used to reduce the ef-
fort of the delay test generator as well as to indicate the

completion of the test generation process by verifying
that the desired coverage levels have been obtained.

Various techniques have been designed for PDF

grading in combinational and sequential circuits. Most

1This research is supported in part by a grant from Intel Corp.

of the techniques assume that the flip-flops(FF) feed-

ing the combinational part of the circuit are directly ob-

servable and controllable using full scan [4, 7]. These
full-scan techniques require the usage of enhanced scan

flip-flops which are excessively expensive in many cir-

cuit designs. For example, microprocessor testing is tra-
ditionally done without such DFT support. Area, perfor-

mance and feasibility considerations may prevent the
use of full scan. Furthermore, testing using full-scan,

targets many sequentially untestable PDFs.

The fundamental difficulty in PDF testing of non-
scan sequential circuits is associated with the propaga-

tion of latched errors (each representing a potentially
delayed transition along a set of PDFs that end on the

same flip-flop) to primary outputs(PO). Existing tech-

niques introduce assumptions during the error propa-
gation phase to simplify the process at the expense of

pessimism in the grading process [3, 9, 10]. The most

restricted method allows for error propagation along a
path as long as it does not depend on any other er-

ror captured in another flip-flop. This guarantees se-
quential robustness [3]. A less restrictive sequentially

non-robust approach assumes that only one error can

be captured at a flip-flop during the PDF sensitization
phase [3]. We will consider this method for comparison

in the rest of the paper.
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Figure 1: Multiple latching of PDFs

Figure 1 shows two robustly sensitized critical

PDFs 1-2-4 and 1-3-5 latched as potentially delayed
transitions at flip-flops 4 and 5. Even under the as-

sumption that both paths are critical, with similar gate
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delays, it cannot be guaranteed that when there is a de-

lay fault in PDF 1-2-4, there will also be a delay fault
in PDF 1-3-5. Furthermore, delays of the gates vary

with different sensitizing patterns and also due to pro-

cess variations in manufacturing. Therefore the latched
value on the end flip-flop of each (critical) sensitizable

path should be considered as a potential error that may
or may not occur. In the proposed method there are

no restrictions on the number of flip-flops that are al-

lowed to have an error during the propagation phase.
The method is also exact. The grading methods in [3]

cannot handle this generalization unless the underly-

ing grading algorithm is invoked an exponential num-
ber of times to the length of the error propagation sub-

sequence.

Testing for delay faults can be done so that all
patterns are applied at the rated clock (at-speed), (see

[8], among others) or using a variable clock method

(see [3, 9], among others). The latter is a pessimistic
method where only one pattern in the test sequence is

applied at a rated clock and will be the approach fol-
lowed in this paper. Let this pattern be p2 and the pre-

decessor pattern p1. The sub–sequence prior to pattern

p1 initializes the flip-flop in appropriate states. The slow
application of p1 allows for all signals to settle to an ap-

propriate logic prior to the rated-clock application of p2.

Delayed path propagations are then captured as errors
on flip-flops or observed directly at the POs. The sub-

sequence following pattern p2 is subsequently applied
with a slow clock to propagate any captured errors to

POs. Any vector in this sub-sequence is called a propaga-

tion vector.

Our technique is based on the derivation of func-
tions by symbolic simulation and their appropriate ma-

nipulation which ensures that any sensitized and ob-
servable PDF will be detected with or without the sup-

port of other latched error combinations representing

potentially delayed transitions. Such functions essen-
tially provide with parallelism of the traditional fault

simulation procedure in [3]. This also eliminates the

exponential time behavior of an exact grading simula-
tion method based on the procedure in [3].

The formed functions, model the propagation of

the delayed transitions from a flip-flop to another flip-
flop or PO. Their generation is independent to the num-

ber of PDFs. They are stored and manipulated using Bi-

nary Decision Diagrams (BDDs). In an initial step, the
proposed non-enumerative PDF grading method uses

the implicit technique in [7] for combinational circuits
to store the PDFs that are sensitized during the rated

clock phase in different ZBDDs. The distinction is made

upon the ending flip-flop or PO on each sensitized PDF.
That way, a latched error represents a set of implicitly

stored PDFs. Subsequently the proposed fault grading

method systematically and implicitly identifies whether

a propagation vector vi, results to an error at any FF or
PO denoted by ′F ′, and for each ′F ′ determines which

error prior to applying vi propagates to ′F ′. This is done

with the help of the functions formed by symbolic sim-
ulation. Thus, if ′F ′ is observable we are able to implic-

itly determine all PDFs propagating to it through the
corresponding error.

This paper is organized as follows. Section
2 presents an overview of the symbolic simulation

method required for the proposed fault grading tech-

nique. Subsequently, it outlines the fault grading
methodology and illustrates it with an example. The

methods are presented without explicit reference to the

data structures that are used to represent the functions.
Section 3 gives experimental results that demonstrate

the need for an exact grading scheme. The improve-
ment over existing heuristics is very significant for all

benchmarks we experimented with. Section 4 con-

cludes.

2 The proposed method

2.1 Overview

Let fj denote a flip-flop. Let dj be an error representing
a potentially delayed rising transition and d′j be an er-

ror representing a potentially delayed falling transition

latched at fj at the end of the rated clock. The four
different cases that may occur are shown in Table 1.

Table 1: Encoding delayed transitions
value Good Faulty

0 0 0

1 1 1

dj 1 0

d′

j 0 1

The propagation of an error captured at a flip-flop

(at the end of the respective sensitized PDF) is deter-
mined by symbolic simulation. Consider the applica-

tion of the first propagation vector. Since an error at

a flip-flop (encoding a delayed transition) may or may
not occur, we maintain a variable fj at the output of the

flip-flop fj to denote a dj error. Similarly a variable f ′

j

for a flip-flop fj denotes a d′j error. Note that a variable

is allowed to have any of the two assignments 0 or 1
and likewise an error may or may not occur. For conve-
nience of representation, we use the same name for the

flip-flop and its variable.

Consider a portion of the circuit as shown in Fig-

ure 2. Let f1, f2, f3 be three input flip-flops, and fx
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be the next-state flip-flop. Now assume that errors

d1, d
′

2, d3 are present at the beginning of the slow clock.
We do a symbolic simulation and for each next-state

flip-flop fx we obtain the function Fx at its input. Thus

Fx will be a function of (f1, f2, f3). Assume that Fx =
f1.f2.f

′

3
+ f ′

1
.f3. We conclude that error dx is latched

at fx either due to f1 (in the first cube) or f3 (in the
second cube). This indicates the existence of a possible

input assignment that could propagate both the errors

latched at f1 and f3, respectively to fx. The union of
PDFs represented by d1 and the PDFs by d3 will yield

the PDFs represented by error dx.
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Figure 2: Example

We also conclude that error d′x is latched either

due to f2(in the first cube) or f ′

3(in the first cube) or
f ′

1
(in the second cube). Thus there exists a possible

input configuration that could also bring a d′x at fx. As
far as PDF coverage linked to error d′x we take the union

of PDFs represented by d′
2
, d′

3
and d′

1
. It should be noted

that the set of PDFs represented by both d1 and d′1 is the
same. Then for the next slow clock propagation vector

we will have both dx and d′x in flip-flop fx for symbolic

simulation.
Let F f1

x represent all the cubes that contain vari-

able f1 and F f3

x represent all the cubes that contain

variable f3 in Fx. Functions F
f2

x′ ,F
f ′

3

x′ , F
f ′

1

x′ are derived

similarly for error d′x. Consider another flip-flop fy and
without loss of generality assume that only error dy is

latched. Error dy is the same as dx if and only if F f1

x

= F f1

y and F f3

x = F f3

y , and, in addition, f1 and f3 must

be the only variables that allow error dy. If this is the

case, for the next slow clock propagation vector, dy is
denoted as dx.

Likewise dy is the complement of dx if and only

if F f2

y = F
f2

x′ and F
f ′

3

y = F
f ′

3

x′ and F
f ′

1

y = F
f ′

1

x′ , and, in

addition, f2, f
′

3
, f ′

1
are the only variables that allow error

dy. If this is the case, for the next slow clock propaga-
tion vector, dy is denoted as d′x. The above mentioned

variable bindings are needed to ensure that the use of
symbolic simulation during any propagation vector is

correct and does not overestimate the coverage. It can

be shown that the number of BDD operations required
to determine all variable bindings prior to any symbolic

simulation is in the order of O(F 3) where F is the num-

ber of flip-flops. However, the procedure is much faster

in practice.

The same process is followed for any subsequent

propagation vector. A minor difference is that at the
beginning of the simulation a flip-flop may have both

errors latched. A flip-flop fi that has both errors di

and d′i latched, is still treated as variable fi. Assume
that after symbolic simulation we obtain function Fx =
fi(A) + f ′

i(B). Then both di and d′i propagate due to
dx and d′x as long as either ′A′ or ′B′ is not NULL. We

calculate the PDFs covered under dx (respectively, d′x)

as before, by taking the union of the PDFs in errors for
di(respectively, d′i) as depicted by variable fi.

2.2 Illustration

The grading method supports any number of initializa-

tion and propagation vectors provided that only one

vector is applied at the rated clock to detect PDFs, and is
illustrated with an example. For each propagation vec-

tor we show how to use symbolic simulation method to
implicitly identify any detectable PDF. The example also

shows that the approach in [3] is quite pessimistic.

Consider the circuit shown in the Figure 3.

Assume a four vector sequence v1(1110000100),

v2(0010000011), v3(1011100011), v4(1111100011)

where v2 is applied at the rated clock, and v3, v4 are

propagation vectors. Figure 3 shows the symbolic sim-

ulation values at different clocks, separated by commas.
Testable PDFs are detected using vectors v1,v2 as in [7]

and are stored as a ZBDD. PDFs ending in flip-flops are
latched as errors representing potentially delayed tran-

sitions. Table 2 (left part under clock 2) shows the de-

layed transitions, and the PDFs represented by them in
columns 1 − 3. Symbols ′f ′(respectively, ′r′) denotes a

falling transition (respectively, rising transition) on an

edge of a PDF. Also note that all PDFs ending at the
same flip-flop are represented by a symbol as shown in

column 3 of Table 2. Let Fk list be a list of symbols that
represents all PDFs detected by v2 at flip-flop fk. For

example the symbol P d′
4

is listed in Ff4
list instead of

the ZBDD representation.

Vector v3 is applied with a slow third clock to

propagate the set of latched errors {d1, d3, d
′4 }. To de-

termine the propagation of these errors, we perform a

symbolic simulation with the corresponding variables

{f1, f3, f4}, and v3. The function Ff ′

2
is f ′

3.f4. Thus
at the end of the third clock errors d3 and d′

4
prop-

agate to flip-flop f2 and will be represented by error
d′
2

for symbolic simulation purposes when considering

propagation vector v4 later. It is important to note that

since both d3 and d′4 propagate to the same output, a set
union operation of the PDFs corresponding to these er-

rors will yield the PDFs covered by both. Thus Ff2
list
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Table 2: Delayed transitions and PDFs
Clock2 Clock3

Delayed transition PDFs represented Symbol Delayed transition PDFs represented Symbol

d1 2f − 12r P d1 d′

1 2f − 12r P d1

d3 8f − 18r P d3

9r − 16r − 21f, P d3

9r − 16r − 21f, P d′

4 10r − 16r − 21f, +P d′

4

d′

4 10r − 16r − 21f, d′

2 8f − 18r − 21f,
8f − 18r − 21f 8f − 18r

13

14

15

16

17

18

19

20

0,1,1,1

1,0,0,0

0,1,1,1

0,0,1,1

1,1,1,1

1,0,0,1

1,0,1,1

0,1,1,10,0,0,0
0,0,0,0

21

1,0,0,0

0,0,1,1

0,1,

1
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Figure 3: PDF grading

will have both the symbols P d′3 and P d4. Flip-flop f2

cannot have a d2 value as there are no variables in the

cube that could latch a d2 error.

Similarly Ff ′

1
= f ′

1 and can latch d′1. It can be seen
that variable binding is not possible in this case as both

Ff ′

2
and Ff ′

1
have different variables. The above men-

tioned activities are summarized in the right hand side
of Table 2 (under clock3), columns 4-6, when applying

the first propagation vector v3.

This demonstrates the advantage of the method,
as the existing non-robust model of [3] could not have

propagated either of the latched errors. This is because,

the good machine value as considered in [3] at f4 is 0
(f3 is 1), which leads to a controlling value to the gate

20, thus in such cases there is a significant loss of fault

coverage.

The procedure is repeated for v4 with variables

{f1, f2} representing {d′
1
, d′

2
} respectively. It is observed

that the function formed at PO is F19 = f ′

1+f ′

2 denoting
a possibility of d19 at PO due to f ′

1
or f ′

2
. Since PDFs cor-

responding to different delayed transitions are mutually

exclusive, we work in an implicit manner and perform a
union of PDFs represented in the Ff1

list and Ff2
list,

which is a constant time operation. PDFs P d′
4
,P d3 and

P d1 are covered by this test. Thus this method yields
high coverage in testing non-scan sequential circuits by

allowing delayed transitions to propagate to flip-flops
in the presence of other potentially delayed transitions,

non-robustly and non-enumeratively.

2.3 The fault grading algorithm

The procedure of the fault grading algorithm is given
below. C is the circuit and t is the test set consisting of

three types of vectors. Let tin denote the set of initial-

ization vectors, tr the single activation vector and tp the
set of propagation vectors, respectively.

PROCEDURE Fault Grading( C, t)

initialization(C,tin)

( PDFs detected, X list)=grading(C,tr)

For every tpj
∈ tp do

For every output X ∈ (PO/FF ) do

Csub=cone(C,X)

Fa = symbolic sim (Csub, tpj
)

For every fi ∈ Csub with possible (di or d′

i) do

If (check propagation(fi, Fa)) then

variable binding(fi, C)
If( X ∈ FF ) then update(X list, fi list)
else If( X ∈ PO) then

add( PDFs detected, fi list)

The initialization() function initializes the flip-

flops by simulating tin. The grading() function iden-
tifies the PDFs tested, with tr applied at the rated clock,

as per [7]. PDFs ending at the PO are added to the

ZBDD PDFs detected while those ending at flip-flop
are stored as ZBDDs and added as symbols to their re-

spective X list.
The cone() function returns the sub-circuit cone

Csub with respect to X . Working with every output

cone of the circuit reduces the complexity of the algo-
rithm. The symbolic sim() function performs the sym-

bolic simulation with the flip-flop variables and tpj
and
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returns Fa as explained in section 2.1 and 2.2 where ′a′

can be either X or X ′ or both. The check propagation()
function checks whether the di or d′i in fi propagates as

dX or d′X to X . If the latched di or d′i propagates to X

then the binding() function checks for possible partial
variable binding with previously computed dX or d′X
errors in the circuit ′C′. At the end of the loop any pos-
sible variable binding is detected and the symbols are

substituted.

If X is a flip-flop the update() function updates the

X list with the PDFs in fi list. If X is a PO the PDFs
in fi list are added to PDFs detected. The procedure

is further simplified by updating the PDFs detected as

a list of symbols, rather than a ZBDD and performing
a final ZBDD Union operation, as no new PDFs are in-

troduced in the propagation phase. The fault grading

procedure ends when all the propagation vectors have
been applied. This procedure is repeated for other test

sets and PDFs detected is updated. The total number
of PDFs stored in the PDFs detected will give the cov-

erage of PDFs for the set of test patterns. The time com-

plexity of the proposed algorithm is polynomial. The
method is exact as it guarantees the detection of any

sensitized PDFs, provided they are sensitized in only

one clock.

3 Experimental Results

We present experimental results for the non-scan ver-

sion of some ISCAS’89 and ITC’99 sequential circuits

to demonstrate the enhancement in the fault coverage
over the existing method in [3]. To ensure low mem-

ory requirements by the BDD data structure, we imple-

mented a restricted version of the proposed algorithm
where flip-flops are greedily partitioned into sets of size

utmost ten. The propagation of an error latched at flip-
flop fi in set ′A′ can only be assisted by errors on flip-

flops within set ′A′. All other flip-flops that are not in set
′A′ are assigned error free good machine values. Thus
very simple functions Fx are formed and the approach

can execute with less than 256 MB RAM. This however,

may increase the execution time for some benchmarks
because for each propagation vector we have to perform

as many symbolic simulation as the number of sets.
Note that the method in [3] requires O(F ) logic sim-

ulations per propagation vector where ′F ′ is the num-

ber of flip-flops. The proposed grading tool has been
implemented in the C language.

Two sets of experiments were performed on a

750MHz SunBlade 1000 workstation and are shown in

Table 3. In all the experiments, the initial state of flip-
flops is assumed to be 0. In both experiments the PDFs

are stored as ZBDDs. BDDs are used for generating the

functions, determining variable binding and determin-

ing the propagation of latched delayed transitions.

The first set of experiments, listed in the left-hand
side of Table 3 (columns 2 − 6), are conducted con-

sidering three vector sequences for sequential grading.
The first two vectors are obtained from function–based

ATPGs [5, 6] for PDFs in combinational or full-scan cir-

cuits, and are used as the initialization and fault acti-
vation vectors in the sequence. The second vector is

applied at the rated clock to sensitize the PDFs non-

robustly. Test sets for the first three circuits were de-
rived from a compact ATPG [5]. As it was time con-

suming to derive test sets for larger circuits using [5],
we used the ATPG from [6], which is less compact. The

last propagation vector which is applied at a slow clock

is the same as the second vector of the ATPGs [5, 6].
The PDFs represented by the latched errors propagat-

ing to a primary output are immediately detected. The

latched errors that propagate to next state flip-flops, by
the third vector are assumed to be shifted out to an ob-

servable point, for determining the possible coverage.
We experiment with such three vector sequences be-

cause we were unable to obtain the sequential ATPG

tool in [3].

Column 1 of Table 3 gives the circuit names. Col-
umn 2 presents the number of test sets (each test set

has three vectors). Column 3 and 4 compare the cov-
erage of PDFs with the non-robust model of [3]. The

5th column shows the improvement in the coverage as

a percentage. It can be observed that the proposed
methodology yields a better coverage than [3]. Often

the improvement is very significant and over 20%. The

results for s6669, s38417 and s38584 confirm the scal-
ability and implicitness of the method. It also shows

that the method can handle path intensive circuits. It
should be noted that, though the percentage improve-

ment is not so high in s38417 and s38584, the num-

ber of PDFs covered has significantly increased over the
heuristic method. It is also important to note here that

appropriately derived error propagation sequences (by

a sequential ATPG for PDFs) could favor the presented
method, and the improvement would have been more

drastic, since they could allow for many errors to prop-
agate to PO or flip-flop. Column 6 in Table 3 gives the

execution time in seconds. The listed time includes the

time for generating all the required functions, but most
of the execution time is spent on the actual fault grad-

ing process.

The second set of experiments, listed in Table 3
from columns 7 − 12, uses test sequences derived from

a genetic algorithm based ATPG (GATTO) [2] for stuck

at faults in non-scan sequential circuits. The columns
provide information similar to columns 2 − 6. Each test

sequence, which has n vectors, was repeatedly executed

5



Table 3: Result PDF grading
Single Propagation Vector using ATPG [5, 6] Multiple Propagation Vectors using ATPG [2]

Benchmarks Test Sets Coverage Exact Coverage Improvement Execution Test Sets Coverage Exact Coverage Improvement Average # Execution

[3] (proposed) (%) Time (sec) [3] (proposed) (%) Propagation Vectors Time(sec)

s641 947 1794 2039 13.65 10.54 265 366 401 9.56 11 2.16

s713 403 2429 3078 26.72 4.57 265 414 463 11.83 14 2.08

s820 753 883 968 9.62 2.25 240 192 215 11.98 19 1.56

s1269 10182 7125 8017 12.52 31.02 422 2888 4196 45.29 16 18.64

s3271 7707 2508 2807 11.92 15.23 1424 6634 9958 50.11 18 373.58

s6669 115272 280377 341677 20.71 913.36 438 104738 144907 38.35 15 383.01

s38417 39799 76451 81073 6.05 1583.20 704 7911 10718 35.48 21 6607.60

s38584 92239 90163 99533 10.39 2676.16 1266 14422 16294 12.98 19 4593.99

b03 1244 988 1213 22.77 6.95 151 163 198 21.47 10 1.35

b04 6152 5702 6078 6.59 14.32 627 6059 6537 7.89 18 36.86

b09 1058 1048 1392 32.82 7.47 456 211 243 15.16 21 10.77

b10 831 676 828 22.48 1.16 467 342 383 11.98 16 4.51

b11 3689 3310 3725 12.53 28.99 467 660 830 25.75 22 23.83

b12 6152 10025 10783 7.56 91.79 254 247 324 16.42 20 2.08

n times. Each time a different vector served as the fault

activation vector. The vectors applied before the activa-

tion initialize the states of the flip-flops and the vectors
applied after the activation vector propagate the cap-

tured delayed transitions to an output. Thus each test

set would have a varying number of initialization and
propagation vectors. The total number of such test sets

are reported in column 7. The average number of prop-
agation vectors per test set are reported in column 11,

and column 12 gives the execution time taking into ac-

count all the propagation vectors for the entire test set.
It is noted that the execution time for a single propa-

gation vector is very low and experimentally confirms

that the method is implicit and can handle any number
of propagation vectors.

The low PDF coverage in both experiments is at-
tributed to the lack of compact and implicit sequential

PDF ATPGs where each sequence detects many faults.

Such tests would have also better shown the impact
of the exact method over heuristic approaches. It is

known that the listed benchmarks are not PDF testable

by random pairs of vectors even in the presence of full
scan. The fault coverage using randomly generated

test sequences for sequential PDF testing results in very
low coverage and analyzing such an experiment has lit-

tle value. We were not able to access the sequential

ATPG in [3]. However, existing sequential PDF ATPGs
are fault enumerative[3]. Thus each generated test se-

quence targets only one PDF and incidentally may de-

tect a few more, but the PDF coverage still remains low.
Therefore, it is not expected that the impact of our ex-

act method over heuristic grading methods [3, 9] will
be greater (than what is shown here) when experiment-

ing with sequences from such tools.

4 Conclusions

We propose the first method for exact path delay fault
grading in non-scan sequential circuits using a variable

clock. The propagation of captured errors that repre-

sent delayed transitions, which has been treated in a

pessimistic manner by previous approaches, is handled

accurately using functions. ZBBDs and BDDs are used
to store PDFs compactly and manipulate functions, re-

spectively. Experimental results show that the fault cov-

erage is significantly increased over existing heuristic
approaches.
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