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Abstract

This paper presents a new mathematical approach to
modeling EM wave coupling noise so that it can be eas-
ily integrated into chip-level noise analysis tools. The
new method employs Chebyshev approximation tech-
nique to model the distributed sources arising in the
Telegrapher’s equations due to EM wave coupling. A uni-
form plane wave illumination metric is provided to de-
termine the order of approximation. Closed-form formu-
las for the noise transfer functions’ moments are derived.
By utilizing the formulated moments, reduced order mod-
els can be efficiently obtained to generate the induced noise
caused by EM wave illumination. The accuracy of the pro-
posed method is verified by Hspice simulation.

1. Introduction

Signal integrity is of paramount importance for reli-
able operation of very deep submicron CMOS VLSI chips.
Noise analysis is performed by designers to verify the sta-
bility and timing specifications of the chip [3], [7]. Pre-
viously, IR drop, Ldi/dt noise, coupling noise induced by
signal switching were mainly considered [1], [11]. How-
ever, interconnect noises induced by external electromag-
netic wave illumination must also be addressed. For exam-
ple, PC board can carry high-frequency signals through the
long metal wires. They often behave as antenna by illu-
minating the pins of the mounted VLSI chip by system-
generated EM waves. The induced noise incident on the
chip pins can propagate inside the chip to severely affect
the signal integrity of the internal circuit. EM effect, there-
fore, can manifest itself, e.g. as timing failures, due to im-
pairment of signal integrity.

The analysis of the EM wave coupling to long wires
is traditionally based on full-wave field solvers or SPICE-
like simulators [2], [9]. However, such type of approaches
are generally unsuitable for chip-level noise analysis due to

their prohibitive computational costs. This paper presents
a new approach to modeling the external EM wave cou-
pling in signal traces between two circuit components, e.g.,
buffer/repeaters inside a chip, or I/O ports on PCB. The
proposed approach efficiently generates the induced noise
waveforms that should be used as noise sources into chip-
level noise analysis flows to verify the signal integrity of the
chip illuminated by external EM waves.

One difficulty in the modeling of EM wave coupling
noise is the handling of distributed sources in the Telegra-
pher’s equations describing EM wave coupling, since they
correspond to an infinite number of lumped sources in the
resultant equivalent TL (transmission line) circuit. To han-
dle these sources, the proposed approach employs Cheby-
shev approximation technique because of its fast conver-
gence and minmax property. After the order of approxi-
mation is determined by using the proposed uniform plane
wave illumination metric, actual field values will be used
for further computations. Therefore, the usual assumption
of uniform plane wave illumination in analyzing EM wave
coupling is not required any more.

Reduced order models (ROM’s) are proposed in the pa-
per to generate noise waveforms. ROM’s have been derived
for RC, RLC, TL circuits [6], [4], [10]. They either require
efficient moment generation, which is, however, lacked for
the TL circuit considering EM wave coupling, or do not
provide closed-form representations. This paper presents
closed-form representations of the transfer functions’ mo-
ments for the used TL circuit. Therefore, ROM’s can be
quickly obtained to generate noise waveforms.

The rest of the paper is organized as follows. Section 2
introduces the modeling EM wave coupling with long in-
terconnects, driver circuit model, and its noise transfer
functions. Section 3 introduces the modeling of distributed
sources using Chebyshev approximation, and the proposed
uniform plane wave illumination metric to determine the or-
der of approximation. Section 4 presents the derived closed-
form moments’ representations, and ROM’s of noise trans-
fer functions. Section 5 presents the experimental results.
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2. EM Wave Coupling Noise Modeling

2.1. Telegrapher’s Equations with EM Coupling

The behavior of the long interconnect (TL) being illumi-
nated by EM waves, is governed by the Telegrapher’s equa-
tions, with distributed source terms having been incorpo-
rated [5]. For a TL of length d and height h, locating in the
x− z plane given by y = 0, with x axis as its longitudinal di-
rection, the governing equations in s-domain, when the line
is illuminated by EM wave, is written as:

d
dx

V (s,x)+ [R(x)+ sL(x)] I(s,x) = Vf (s,x) (1a)

d
dx

I(s,x)+ [G(x)+ sC(x)]V (s,x) = I f (s,x) (1b)

Vf (s,x) and I f (s,x) denote source terms describing the in-
cident EM wave coupling. They are given as:

Vf (s,x) =
[
Ei

x,0,h(s)−Ei
x,0,0(s)

] · ex −
∂V i

f (s,x)

∂x
(2a)

I f (s,x) = − [G(x)+ sC(x)]V i
f (s,x). (2b)

V i
f (s,x) is the defined incident voltage, which is given, us-

ing the incident electric field Ei of the EM wave, as:

V i
f (s,x) =

� h

0
Ei

x,0,z(s) · ezdz.

In the above, ex and ez are unit vectors in the x direction and
z direction, respectively.

2.2. Equivalent Circuit Description

Let V (s,x) in (1) be represented as the difference of two
terms, i.e. V (s,x) = V s

f (s,x)−V i
f (s,x), where V s

f (s,x) is the
scattered voltage. (1) is reformulated as

d
dx

V s
f (s,x)+ [R(x)+ sL(x)] I(s,x) = Vs(s,x) (3a)

d
dx

I(s,x)+ [G(x)+ sC(x)]V s
f (s,x) = 0, (3b)

where Vs(s,x) is the distributed voltage source, given by

Vs(s,x) =
[
Ei

x,0,h(s)−Ei
x,0,0(s)

] · ex. (4)

Fig. 1 shows the modeling of driver circuit under EM
wave illumination based on (3). The corresponding circuit
model used in noise analysis is shown in Fig. 1(b), where ef-
fective driving resistance and parasitic capacitance are used.
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Figure1.Equivalentdriver circuitunderEMwave
illumination.

2.3. EM Wave Coupling Noise Transfer Functions

Using the principle of linear superposition, the output
voltage at loading capacitor CL is represented as the sum-
mation of four voltages in s-domain, i.e.

VCL(s) = Vi(s)H1(s)+V i
f (s,0)H2(s)−

V i
f (s,d)H3(s)+Vdist(s), (5)

where Vdist(s) denotes the voltage at the output produced by
the distributed voltage sources, given by

Vdist(s) =
� d

0
Vs(s,x)Hdist(s,x)dx. (6)

Noise transfer functions H1(s), H2(s), H3(s) and
Hdist(s,x) are given as follows:

H1(s) =
Z0ZL

HA
1 coshγd +HB

1 sinhγd
(7a)

Hdist(s,x) =
ZL(Z0 coshγx +ZD sinhγx)
HA

dist coshγd +HB
dist sinhγd

(7b)

H2(s) = Hdist(s,0), H3(s) = Hdist(s,d) (7c)

In the above, rd = γ ·d, γx = γ · x, and

HA
1 = Z0(Rs +ZL +RsYCDZL)

HB
1 = Z2

0(1+RsYCD)+RsZL

HA
dist = Z0(ZD +ZL), HB

dist = Z2
0 +ZDZL

ZL =
1

sCL
,YCD = sCD,ZD =

1
1/Rs + sCD

Note that γ =
√

(R0 + sL0)(G0 + sC0), which is the propa-

gation constant of the TL, and Z0 =
√

(R0+sL0)
(G0+sC0) , which is

the characteristic impedance of the TL. The PUL (per unit
length) parameters of the TL are R0,L0,G0 and C0.

3. Handling of Distributed Sources Using
Chebyshev Approximation

3.1. Using Chebyshev Approximation

To model voltage Vdist(s) generated by those distributed
sources, Chebyshev polynomials are used to approximate



(6). Vs(s,x)Hdist(s,x) in (6) is represented using Chebyshev
polynomials up to order N as:

Vs(s,x)Hdist(s,x) ≈
N

∑
k=0

tk(s)Tk(2x/d −1). (8)

Tk(·) is the k-th order Chebyshev polynomial. The coeffi-
cients tk(s) is given by

tk(s) =




N

∑
j=0

Vs(s,x j)
N +1

Hdist(s,x j) k = 0

N

∑
j=0

2Vs(s,x j)
N +1

Hdist(s,x j)Tk(y j) k > 0

and y j = cos

[
2 j +1
2N +2

π
]
,x j =

d
2
(1+ y j). (9)

Based on (6) and (8), Chebyshev approximation of Vdist(s)
is derived as

Vdist(s)=
d

N+1

N

∑
j=0

Vs(s,x j)Hdist(s,x j) f ( j,N), (10)

where f ( j,N) = 1+∑N
k=1 cos

[
k(2 j+1)
2N+2 π

]
1+coskπ

1−k2 .

3.2. Uniform Plane Wave Illumination Metric

To determine the order of Chebyshev polynomials re-
quired in general EM wave coupling situation, the uniform
plane wave illumination case is analyzed at first. In this sit-
uation, the electrical field of the incident EM wave is in the
following form:

Ei
x,y,z(s) = E0e f e−

s
v ek·(x,y,z)T

(11)

with




e f = (cosβcosθ,sinβ,cosβsinθ)
ek = (cosαsinθ− sinαsinβcosθ,sinαcosβ,

− cosαcosθ− sinαsinβsinθ)

v is the phase velocity of the wave in the medium, e f is the
unit vector representing the direction of electric field, and ek

is the unit vector representing the EM wave propagation di-
rection. By denoting the projection of Ei in x− z plane as
Ei

xz, β is then defined as the angle between Ei and Ei
xz, θ is

defined as the angle between x axis and Ei
xz, and α is de-

fined as the angle between propagation direction and vector
Ei ×Ei

xz.
Using the defined uniform plane wave in (11), and using

(4), Vs(s,x) is given as

Vs(s,x)=E0cosβcosθe−sekxx/v
(

e−sekzh/v−1
)

. (12)

ekx and ekz are the x and z components of unit vector ek re-
spectively. From (6) and (12), the analytical representation
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Figure 2.Comparisons between analytical results
and chebyshev approximations.

of Vdist(s) is derived as

Vdist(s) =
ZLE0 cosβcosθ(C+ −C−)

(
e−sekzh/v −1

)
HA

dist coshγd +HB
dist sinhγd

(13)

where C± =
(Z0 ±ZD)

[
e±(r∓sekx/v)d −1

]
2(γ∓ sekx/v)

Fig. 2 compares |Vdist ( f )
E0

| using Chebyshev approxima-
tions based on (10) and using formula (13). For the tested
TL circuit (R0 = 120 Ω/m, L0 = 350 nH/m, C0 = 120 pF/m,
G0 = 0, d = 15 mm, CD = 0 and α = β = θ = π

4 ) with driv-
ing and loading conditions varied, the Chebyshev approxi-
mation method converges very quickly as N becomes larger.
When N = 2, the Chebyshev approximations of Vdist(s)
match the analytical results well up to 6 GHz, the frequency
of incident EM wave. The use of N = 3 matches the fre-
quency up to 14 GHz, and the use of N = 5 matches a fre-
quency range of 20 GHz.

In actual EM wave illumination situation, the incident
EM field distribution is arbitrary. Uniform plane wave is
employed at first to estimate the required order of Cheby-
shev approximation. By inserting the PUL parameters of
the used interconnection techniques into (13) and (10), N
is determined by judging the error between the two calcu-
lated results around the maximum EM wave frequency in
the actual illumination environment. Next, the actual field
values are used to calculate the time-domain noise wave-
form Vdist(t) according to (10).



4. Noise Transfer Function Modeling

Chebyshev approximation is proposed for modeling dis-
tributed sources in the last section, and the noise transfer
functions at Chebyshev points are required. In this section,
a set of concise moment formulas are proposed for the mod-
eling of these noise transfer functions, so that reduced order
models can be used to generate noise waveforms efficiently.

4.1. Moments and ROM of H1(s)

H1(s) is reformulated as

H1(s) =
1

HC
1 coshγd +HD

1
sinhγd

γd

, (14)

where HC
1 = HA

1 /(Z0ZL) = ∑∞
i=0 aC

i si = 1+ s(τL
s + τD

s ) and

HD
1 = HB

1 γd/(Z0ZL) =
∞

∑
i=0

aD
i si

= RsGd+(τL
d+τd

s )s+(LdCL+τL
dτD

s )s2+LdCLτD
s s3

In the above, Wd is the total W for the TL, i.e. Wd = W0 ·
d, for W ∈ {R,L,G,C}, and τb

a is a time constant defined as
τb

a = RaCb.
By using the property

coshx =
∞

∑
n=0

x2n

(2n)!
,

sinhx
x

=
∞

∑
n=0

x2n

(2n+1)!
(15)

H1(s) is rewritten as

H1(s)=
1

∑∞
n=0(Rd+sLd)n(Gd+sCd)n

(
HC

1
(2n)! +

HD
1

(2n+1)!

)

=
1

∑∞
k=0 qksk

(16)

For the most general case that G0 = 0, i.e. Gd = 0, to de-
termine the coefficient qk in (16), the following facts can be
utilized:

1. the term sk can be formed by using aC
i si and aD

i si in HC
1

and HD
1 to multiply a term sk−i from (Rd +sLd)n(sCd)n

in (16).

2. the term sk−i in (Rd + sLd)n(sCd)n can be formed by
letting n goes from � k−i

2 � to k − i, and using term
(sCd)n multiply the term sk−i−n in (Rd + sLd)n.

Hence, qk is derived as

qk =
min(3,k)

∑
i=0

k−i

∑
n=� k−i

2 �

[(
n

k− i−n

)

·Cn
dLk−i−n

d R2n+i−k
d

(2n+1)aC
i +aD

i

(2n+1)!

]
(17)
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Figure 3.Comparisons between analytical results
and Padé approximations of H1(s).

By (17), the approximation of H1(s) can be easily made.
In one way, the series in the denominator of (16) is trun-
cated to a finite order N, and a rational polynomial in the
form of 1

∑N
k=0 qksk is used to model H1(s). The other way is

to use general Padé approximation procedure with the or-
der of nominator polynomial chosen in a suitable manner.
By (17), the moments of H1(s) can be generated efficiently
for using in the general Padé approximation procedure.

For the completeness of formulation, qk, when Gd �= 0,
is derived from (16) as well. It is given in the following:

qk =
min(3,k)

∑
i=0




k−i

∑
n=� k−i

2 �

n

∑
j=k−i−n

[(
n
j

)(
n

k− i− j

)

·Rn− j
d L j

dGn−k+i+ j
d Ck−i− j

d
(2n+1)aC

i +aD
i

(2n+1)!

]

+
∞

∑
n=k−i

k−i

∑
j=0

[(
n
j

)(
n

k− i− j

)
Rn− j

d L j
d

·Gn−k+i+ j
d Ck−i− j

d
(2n+1)aC

i +aD
i

(2n+1)!

]}
(18)

Fig. 3 compares |H1( f )| using analytical formula (7a)
and using the truncated order representation of H1(s), the
first approach. Here the TL has the same parameters as in
Fig. 2. CD = 0 and the driver’s resistance is varied from
400 Ω to 10 Ω. In both of driving conditions, the use of
N = 18 matches the analytical results in the whole 10 GHz
frequency range. The use of N = 9 matches up to 5 GHz.
When N = 9 is chosen, it is suitable to use the general Padé
approximation procedure to produce, for example, a 5-pole
approximation of H1(s), relying on the known qks.

Using ROM’s by matching moments for TL circuits is
a convenient approach to address TL effects, for example,
[8] presents a set of formulas for such a purpose. However,
the limitation in [8] is that low order moments need be ap-
proximated sometimes, which may reduce the accuracy of
lower order models. The second limitation is that no formu-
lations for higher order moments are available, therefore,



no generalization can be made. This paper, however, gives
closed-form moments’ representations for the TL driver cir-
cuit by (17). The closed-form formulas for arbitrary order
transfer function moments are very convenient in deriving
ROM’s or other analytical metrics for the TL driver circuit.

4.2. Moments and ROM of Hdist(s)

Hdist(s,x) is reformulated as

Hdist(s,x)=
HE

dist coshγx+HF
dist

sinhγx
γx

HC
dist coshγd+HD

dist
sinhγd

γd

= ∑∞
m=0 pmsm

∑∞
k=0 qksk (19)

where

HC
dist = (1+ sτD

s )HA
dist/(Z0ZL) = HC

1

HD
dist = (1+ sτD

s )HB
dist/(Z0ZL) = HD

1

HE
dist =

∞

∑
i=0

bE
i si = 1+ sτD

s

HF
dist =

∞

∑
i=0

bF
i si = RsGx + sτx

s

Similarly, Wx is used to denote the lumped parameter for the
TL of length x, i.e. Wx = W0x, for W ∈ {R,L,G,C}.

Comparing (16) and (19), the two qks are the same. Fol-
lowing the similar way as deriving qk, the closed-form rep-
resentation of pm, for G0 = 0, is derived as

pm =
min(1,m)

∑
i=0

m−i

∑
n=�m−i

2 �

[(
n

m− i−n

)

·Cn
x Lm−i−n

x R2n+i−m
x

(2n+1)bE
i +bF

i

(2n+1)!

]
(20)

Similarly, using Wx to replace Wd in (18), for W ∈
{R,L,G,C}, and using bE

i and bF
i to replace aC

i and aD
i in

(18), the representation for pm, when G0 is not 0, can be ob-
tained as well.

Fig. 4 shows |Hdist( f )| using the analytical formula (7b),
and using the truncated series representation in (19). The
same TL as in Fig. 2 is used. CD = 0, and the excitation
point x is set at the half length point of the TL, i.e. x = d/2.
For the purpose of demonstration, the numerator polyno-
mial is truncated to N −1, and the denominator polynomial
is truncated to N. The results show the correctness of mo-
ment function (20). Since pm and qk can be easily obtained
from the derived formulas, and it is straightforward to ob-
tain the moments for Hdist(s,x) from pm and qk, the standard
Padé approximation procedure can be employed to generate
ROM’s representing the function, Hdist(s,x).

With the closed-form moment functions (17) and (20),
either through direct truncation or using the general Padé
procedure, rational functions can be formed, and the noise
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Figure 4.Comparisons between analytical results
and Padé approximations of Hdist(s).

transfer function can be represented by several poles as be-
low:

H(s) =
W

∑
i=1

di

s− pi
, (21)

where pi is the i-th pole obtained from the rational form of
noise transfer function, and di is the residue. The step re-
sponse, response to pulse source input, or other type of re-
sponses can be obtained conveniently by using (21).

5. Experimental Results

To demonstrate the proposed approach, here the experi-
mental results are presented for a driver circuit, which drives
a TL of 20mm length with PUL parameters: R0 = 60 Ω,
L0 = 0.6 µH, and C0 = 61 pF. At the other end of the TL,
the load is modeled as a 300 fF capacitor. The modeled ef-
fective resistance Rs is 200 Ω. The line has a separation of
0.35 mm with the ground. The EM wave illumination situ-
ation has a maximum transient electrical field strength of 2
kilovolts per meter. The bandwidth of the incident EM wave
is around 10 GHz.

Fig. 5 illustrates the induced EM wave coupling noise in
the circuit. The lower graph in Fig. 5(a) shows the transient
incident EM field values around the half length point of the
TL, which looks like a Gaussian shape waveform and has an
amplitude of 2 KV/m and a spread of around 0.4 ns. How-
ever, the resulting distributed source (Ei

x,0,h(t)−Ei
x,0,0) · ex

has a far less amplitude, which is about 100 times smaller
than the amplitude of that location’s incident field strength.

Fig. 5(b) shows the results from Hspice simulations only.
To model the driver circuit into the Spice netlist, the TL is
broken into 20 sections with equal lengths. Then lumped

voltage sources
� d/20

0 (Ei
x,0,h(t)−Ei

x,0,0(t)) · dx are used to
connect adjacent two sections. In the figure, the noise wave-
form is only produced by the distributed sources, excluding
V i

f (t,0) and V i
f (t,d), since modeling the distributed sources

is the major task which raises the difficulty. The noise wave-
form induced by distributed sources has an amplitude of
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around 0.2 V in the tested case. It causes around 20 ps
delay variation. Since those pulses are as wide as 400 ps,
logic faults can also occur if the incident EM wave becomes
stronger. For example 8 KV/m field will produce a pulse
around 0.4 ns duration and as strong as 0.9 V, which can
cause the circuit operating in instable region and finally the
logic state may be changed.

Fig. 6 shows the results of the proposed modeling ap-
proach compared with Hspice simulation. Fig. 6(a) demon-
strates the accuracy of Chebyshev approximation in the
modeling of distributed sources. N = 3 is chosen as the
approximation order, using the uniform plane wave met-
ric and considering the bandwidth of the incident wave is
around 10 GHz. In the diagram, the transient noise wave-
forms using Hspice simulation of twenty-section TL model
and Chebyshev approximation with an order of 3 are very
close to each other. It shows the effectiveness and accuracy
of Chebyshev approximation approach. Fig. 6(b) compares
the obtained noise waveforms in the first cycle, by combin-
ing Chebyshev expansion and Padé approximation based on
the closed-form moment functions, and by using Hspice 20
TLs simulation. Note that in Fig. 6(a), exact transfer func-
tions are used together with Chebyshev approximation. It
has demonstrated the correctness of those derived formu-
las, with which ROM’s of various degree of accuracies can
be generated quickly.

6. Conclusion

This paper presents a novel modeling technique for con-
sidering EM wave coupling noise into conventional VLSI
noise analysis flows. The proposed Chebyshev approxi-
mation approach for processing the distributed sources is
shown as efficient and accurate. The paper gives the closed-
form representations of arbitrary order moments for the
noise transfer functions. The derived closed-form repre-
sentations can compute the moments exactly and quickly,
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Figure 6. Verification of Modeling Accuracy.

thereby the proposed method will be useful in many design
steps such as repeater insertion, timing models, and so on,
to produce ROM’s or other analytical metrics.
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