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ABSTRACT

A comprehensive probabilistic methodology is proposed to
solve the buffer insertion problem with the consideration
of process variations. In contrast to a recent work, we
point out, for the first time, that the correlation between
the required arrival time and the downstream loading ca-
pacitance must be considered in order to solve the problem
“correctly”. We develop an efficient bottom-up recursive al-
gorithm to calculate the joint probability density function
that accurately captures the above correlation, and propose
effective pruning rules to exclude probabilistically inferior
solutions. We verify our buffer insertion using timing anal-
ysis with both device and interconnect variations, and show
that compared to the conventional buffer insertion algorithm
using nominal device and interconnect parameters, our new
buffer insertion methodology can reduce the probability of
timing violation by up to 30%.

1. INTRODUCTION

Ultra deep submicron process exhibits significant varia-
tions [1] [2]. One of the causes is due to critical dimension
being scaled quicker than the development of its controlling
process technology [3]. The variability of physical dimen-
sions such as the effective channel length of a transistor is
therefore proportionately increasing. As a result of these
effects, the performance of manufactured circuits differs sig-
nificantly from what a circuit simulator predicates under
nominal circuit parameters.

Studies on process variations have been mainly focused on
variability modeling and statistical timing analysis (STA).
For example, [4] proposed three approaches to compute the
probability density functions (p.d.f.) that describe the tim-
ing distribution of the circuits. [5] advocates to estimate
circuit timing variations by computing bounds. However,
there are very few works on design optimization that con-
sider process variation effects. For example, essential to high
performance circuit design, buffer insertion has been studied
extensively in literature e.g., [6] and [7]. Yet, none of them
has considered the effect of process variations. To the best of
our knowledge, the only work that entails such a flavor is by
[8], where a buffer insertion problem that considers the ef-
fect of wire length variation has been formulated. However,
as we shall point out in Section 3, an unrealistic assumption
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is made in [8] in an attempt to solve such a problem.

The major contribution of this paper is two-fold: (1) we
formulate a buffer insertion problem with the consideration
of process variations for both devices and interconnects; and
(2) we propose a comprehensive probabilistic methodology
to solve the above problem efficiently. Preliminary exper-
iment results have shown that by using our methodology,
the timing constraints can be satisfied with a much higher
probability than the conventional design under nominal val-
ues [6].

The rest of the paper is organized as follow. Section 2
gives the preliminary and modeling aspects of this work.
We formulate the problem for buffer insertion considering
process variation (BIPV) in Section 3. Section 4 discusses
the details of the algorithm and the methodology for solving
the BIPV problem. We present experiment results in Section
5 and conclude the paper with discussion of our future work
in Section 6.

2. PRELIMINARY AND MODELING

2.1 Buffer Insertion Preliminary

For simplicity of presentation, we follow the same argu-
ment as [6] by assuming that the routing tree is given as a
binary routing tree and the legal buffer positions (nodes) are
directly after the branching points of the tree'. For a given
buffered routing tree, we associate every legal buffer position
t in the tree with two numbers: the input loading capacitance
(or downstream loading capacitance) L; and the required ar-
rival time T;. Denoting ¢ and r as interconnect’s unit length
capacitance and sheet resistance, respectively, we model each
interconnect segment in the routing tree with length I; as a
7 model, where the resistance is given by r X l;, and the
capacitance is given by ¢ x [;. For a given technology, we
associate each buffer from the library with three numbers:
the input capacitance Cy, the output resistance R, and the
intrinsic delay Ty. Under the Elmore delay model, the L,
and T; can be computed as follows.

If node ¢ is obtained by adding a wire of length [; at its
direct downstream node n, then

1
T, = Tn—r.li-Ln—E-r.c.l?. (2)

If node t is obtained by adding a buffer at its direct down-

'Note that the methodology to be presented in this work
does not depend on these assumptions.



stream node n, then

Ly = Cy (3)
T, = Tn—T,— Ry Ly. (4)

If node ¢ is obtained by merging two nodes m and n, then

T, = min(Th,Tn). (6)

It has been proved in [6] that the buffer insertion prob-
lem, without considering process variation, can be solved
optimally via dynamic programming. Moreover, by prop-
erly defining the dominance relationship (or pruning rule)
between two solutions, i.e., solution (L1,771) dominates so-
lution (L2, T%) if condition L1 < Ly and T1 > T5 are satis-
fied, [6] proved that by keeping only dominating solutions at
every node, the dynamic programming approach can solve
the problem in polynomial time without loosing optimality.

2.2 Device and Interconnect Variations

Device variation and interconnect variation are consid-
ered as two typical effects of process variations in this work.
Because of the process variations in gate thickness, doping
density and channel length, buffers’ Cy, Ry, and T}, deviate
from their respective nominal values. We model such an
effect by describing them as random variables that are char-
acterized by a joint probability density function (j.p.d.f.)
9(Cs, Ry, Tp,), whose domain is given by Q¢, r,,7,. Due to
variations in masking, the manufactured interconnect width
and space are also different from their nominal values. We
model such an effect by assuming that interconnect’s ¢ and
r are random variables and that they can be described by
the j.p.d.f. as h(c,r), whose domain is given by {2, . As the
mechanisms of inducing variations on devices and intercon-
nect are different, it is reasonable to assume that the device
and interconnect variations are mutually independent.

3. BIPV PROBLEM FORMULATION

FORMULATION 1. Buffer Insertion considering Pro-
cess Variation (BIPV) Problem: Given the topology of
a routing tree with parasitic capacitance and resistance, re-
quired arrival times and loading capacitances specified at all
sinks, determine the placement of buffers in the routing tree
such that the probability of the required arrival time at the
root meeting the design specification is maximized with the
consideration of process variations for both interconnect and
devices, and as a secondary objective, the number of buffers
used are minimized.

Even though the conventional buffer insertion problem
can be solved optimally via dynamic programming [6], solv-
ing BIPV problem “optimally” becomes much complicated.
The difficulty lies in that:

e [; and T} are no longer fixed values, but two random
variables. How do we compare two random solutions
to tell that one is better than the other?

e [; and T} are interdependent, as both are complicated
functions of all downstream random variations. There-
fore, j.p.d.f., instead of their respective p.d.f., should
be used to correctly characterize L; and T%.

Obviously, the conventional deterministic dominance re-
lationship between two solutions is no longer applicable. A
straight forward extension is to use the mean value as a
metric to compare two random solutions. Despite the sim-
plicity of this metric, however, by using the following small
example, we show that this simple parametric scheme do
not suffice to provide a good guideline for designers to dis-
tinguish different design alternatives.

Suppose we are given four buffer insertion solutions, and
for simplicity, we assume that all solutions have the same
loading capacitance L with different required arrival time 77,
which is described by a discrete probability mass function.
The four solutions are: (A) (L,T1) with P(Ty = 100) = 1,
(B) (L,T2) with P(T2 = 200) = 0.5 and P(72 = 0) = 0.5;
(C) (L, T3) with P(T3 = 1000) = 0.1 and P(73 = 0) = 0.9;
(D) (L,Ty) with P(Ty = 200) = 0.9 and P(T4 = —800) =
0.1.

It is obvious that the above four solutions have very dif-
ferent characteristics and designers definitely want to distin-
guish them for a given design. However, after some simple
calculations, we find that all four solutions result in the same
mean value of 100 for the required arrival time T:. There-
fore, if the metric is purely based on the mean values, we
cannot distinguish the above four designs at alll It may
seem tempting for people to argue that they can extend the
mean value metric (first order moment) by including vari-
ance (second order moment) or even higher order moments
as additional metrics to compare solutions. But it is easy to
construct cases such that none of the above simple metrics
would work in order to distinguish different solutions with
variations?.

Another common practice that people tend to adopt is to
ignore the dependence between L; and T;. For example, in
[8] where the wire length is the only source of variation?®,
it is assumed that there is no correlation between L; and
T:, so that the pruning rules can be carried out based on
simple multiplication of their respective p.d.f.s. However,
this assumption does not hold in general. For example, if
a downstream node n is connected to an upstream node t
through an interconnect of length I, then from (1) and (2),
we can clearly see that any increase in [ by ¢ increases L.
by ¢d while decreases Ty by 1 + %rc(%l + 6?). Treating T}
and C} as two independent parameters ignores the fact that
increasing [ in fact collectively decreases T; and increases
C', thus causing the solution to degrade much more quickly
than before. Therefore, the j.p.d.f. must be used to correctly
describe L; and Ti’s interdependence.

4. BIPV ALGORITHMS
4.1 Algorithm Overview

We follow the same dynamic programming paradigm as [6]
to solve the BIPV problem. The overall algorithm (BIPV-
ALG) is shown in the top block of Fig. 1. We first traverse
the routing tree bottom-up once and build a set of dominant
BIPV solutions for all sub-trees. After we reach the root,
we pick an optimal solution from the set of kept dominant

2Readers are encouraged to verified that the last two so-
lutions in the above small example in fact have the same
variance.

3We do not model the interconnect length variation in this
work as that is not a typical process variation.



solutions, optimizing for the required arrival time and the
number of buffers inserted. We then back-track the chosen
optimal solution to determine the solution for each sub-tree
recursively. The key part to this algorithm is the bottom-up
traversal of the routing tree. Therefore, we also present the
detailed bottom-up algorithm in the bottom block of Fig. 1.

BIPV-ALG(D)
Input: root of the routing tree t.
Output: Solution to BIPV problem.
Z = BIPV-BOTTOM-UP-ALG(t);
Z* = PICK-BEST-SOL(Z);
BACK-TRACK-SOL(Z*);
BIPV-BOTTOM-UP-ALG(?)
/* bottom-up traversal of the routing tree */
If node t is sink
/* Initialization, see section 4.2.4 */
Z1=(L, T;)=INIT-ADD-WIRE-JPDF(L,,T%);
Z;=ADD-BUFFER-JPDF(Z,);
return (Z, U Zs);
Else
/* Compute solutions from sub-trees */

m = BIPV-BOTTOM-UP-ALG((t.left);
Z, = BIPV-BOTTOM-UP-ALG(t.right);
/* Merge two solutions */

Z = 0;
For each solution (Ly,, T,,) from Z,,

For each solution (L., T, ) from Z,

/* see Section 4.2.3 */.
(Lt, Tt)=MERGE-SUBNODE-JPDF((Lmm, T ),(Ln, Tn));
Z=2ZU (L, Ty,

/* see Section 4.3 */

Z; = PRUNE-JPDF(Z);

if node t is root

return(Z);

Z = 0

For each solution (L, Ty) in Z;

/* adding a wire, see Section 4.2.1 */

Compute (Lq,T) according to (1) and (2);

Z1 = ADD-WIRE-JPDF(L,,,Ty);

Z=2UZ;

/* adding a buffer, see Section 4.2.2 */

Z> = ADD-BUFFER-JPDF(Z,);

Z = ZU Zs;
return Z;

Figure 1: BIPV Algorithm.

4.2 Computation of J.P.D.F.

According to (1) and (2), or (3) and (4), we know that the
upstream variations do not change the distribution of L; and
T:, as Ly and T; are only functions of node t’s downstream
random variations. Therefore, L; and T}’s distributions are
independent of their upstream random variations. More-
over, if (L¢1,Tt1) and (L¢2, Ty2) share some (or do not share
any) common down-stream paths, then L1, T¢1, Li2, and
T2 are mutually correlated (or independent).

Even thought (L¢,T:) depend on their downstream ran-
dom variations in a complicated way, the way we compute
(L¢, Tt) is via the recursive equations according to either (1)
and (2), or (3) and (4), or (5) and (6). Therefore, we develop
an efficient algorithm to compute the j.p.d.f. of (L¢,T}) in a
recursive fashion while we traverse the routing tree. This is
particularly useful in the context of dynamic programming,
because only incremental computation is necessary at each
node. To develop the recursive computation formula, we
employ the multivariate transformation technique [9]. We
denote the j.p.d.f. of node t’s direct downstream nodes as
fr,, 1, with its domain given by Qr, 7, -
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To compute the j.p.d.f. of (L¢,T;) obtained from (1) and
(2) via the multivariate transformation technique, we intro-
duce two new random variables X and Y as follows:

X = g (M)
vV = (8)
Li = Lp+c-li; 9)
T, = Tn—r~li-Ln—%-r~c~lf. (10)
By transforming variables, we obtain
c = X; (11)
r =Y, (12)
T, = Tt+Y~li~Lt—%~Y-X~lf. (14)

It is easy to verify that the mapping between (¢, 7, Ly, T)
and (X,Y, L, T;) is a one-to-one mapping. Therefore, the
Jacobian is given by

e dc B dc
o0X oY oLy oTy
o or b r
_ X oY 5l T
J = 0L, 9L, OLL v
X Y dL, OT}
T, Ty, Ty, n
X oY dL, oT}
1 0 0 0
B 0 1 0 0
- —1l; 0 1 0
LY LLe—3- X0 YL 1
= 1 (15)

As ¢ and r are independent of L, and T,, the j.p.d.f.
of (¢,r,Ln,Tn) is given by: fer .1 = hle,7) - fr, o,
Therefore, we obtain the j.p.d.f. of (X,Y, L, T}) as follows:

fxvier = J| - ferpn,m (¢ 7 Ln, Tn) (16)
= h(c7 T) : anan (Ln7 Tn)
X.vY-?
=h(z,y) frnr (Le =X b Te+Y b L — ———
Then the j.p.d.f. of (L¢,T3) is obtained by
thth = / fX,Y,Lt»TthdY7 (17)
Qx v (L, T%)

where Qx,y (L, T3) is the domain for X, Y in terms of L; and
T;. Knowing ¢ and r’s domain Q¢ and (Ln,Tr)’s domain
Qr,,,n, we can deduce Qx vy (L, Tt) according to (7), (8)
(9) and (10).

4.2.2 JPD.F after Adding a Buffer

To compute the j.p.d.f. of (L¢,T;) obtained from (3) and
(4) via the multivariate transformation technique, we intro-
duce three new random variables X, Y and Z as follows:

X = Lp; (18)
Y = Ry (19)
Z = Ty (20)
Ly = Cy ( )
T. = To—To— Ry L. (22)



By transforming variables, we obtain
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T, = Ty+Z2+Y - -X.

It is easy to show that the mapping between (Cy, Ry, Tty Ln, Th)

and (X,Y, Z, Ly, T}) is a one-to-one mapping. Therefore, the
Jacobian is given by

ac, ac, 9C, 9C, AC,
X 9y 9z 0Ly 0Ty
dR, ©OR, OR, 0R, ORy,
X 9y 9z OL: Oy
J = aT, oT, oh, oL, 0T,
= X @Y 0Z 0L; 0T
oL, 9L, 0Ly L, M
X oY 0Z 0L; 0Ty
oT, 0T, 9Ty T, oT,
aX @Y < 0Z OL; 0Ty
0 0 01 0
0 1 0 0 O
= 0 0 1 0 0|=-1 (28)
1 0 0 0 O
Y X 1 0 1

As Ch, Ry, and T}, are independent of L, and T,, the
def of (Cb,Rb,Tb,Ln,Tn) is given by: fcb,Rb’Tb)Lan
=g(Cs, Ry, Tb) - fr,,,T,,- Therefore, we obtain the j.p.d.f. of
(X,Y, Z, L, T) as follows:
|J| ' fcvavavanyTn
g(cby Rb7 Tb) ) an’Tn (29)
9(Le,Y,Z) - fr,r, (X, Tt + Z+Y - X).

Then j.p.d.f. of (L, T}) is obtained by

Ixy.z,L,,m,

fror, = / Fxv.zn.m,dXdYdZ, (30)
Qx.y,z (L, Tt)

where Qx y,z(X,Y, Z) is the new domain for X, Y and Z
in terms of L; and T;. Knowing Cj, R, and Tp’s domain
Qcy,r,, 1, and (Ln,Ty)’s domain Qp,, 7, we can deduce
Qx,v,z(X,Y, Z) according to (18), (19), (20), (21) and (22).

4.2.3 J.PD.F. after Merging Two Solutions

To compute the j.p.d.f. for (L, T:) after merging two
solutions according to (5) and (6), we introduce two new
random variables as follows:

X = L, (31)
Y = T,+Tn (32)
L = Ly+Ln (33)
T, = min(Th,Tm) (34)

Because of the min-function, there is no one-to-one mapping
relation between (L, Tm, Ln,Tn) and (X,Y, L, Ty), thus
we cannot use the multivariate transformation technique to
compute the j.p.d.f. of (L, T}) directly. But we note that
the original domain Qr,, 7, L,, 7% f0r (Lm, Tm, Ln, Tn) can
be divided into two disjoint sub-domains €2; and 22, where
1 is the sub-domain with T, < T, and s is the other sub-
domain with 75, > T,,. For each disjointed sub-domain, we
can show that there exists a one-to-one mapping between
(L, T, L, Ty,) and (X,Y, L, T}), thus we can compute
the j.p.d.f. for each sub-domain by using the multivariate

transformation technique. Then by combining the two sub-
domains’ j.p.d.f., we can compute the j.p.d.f. for the whole
domain [9].

We first find the j.p.d.f. for sub-domain 1 with T}, < T,.
We have:

T, = min(Tm,Tn) =Tm (35)

After transformation of variables, we have

L, = X; (36)
Ln = Li—X; (37)
Tn = Ty (38)
T, = Y-T. (39)

The Jacobian is given by

ALy, ALy, ALy, ALy,
X oY OL+ OTy
ALy ALy OLy 9Ly
J = 0X oY OL+ OTy
- T OTm, OT OT
00X Y OL+ OTy
Ty, Ty, Ty, Ty,
0X oY OL+ OTy
1 0 0 O
101 0
= =1. (40)
0 00 1
0 1 0 -1

As (L, Tr) is independent of (L, T%), the j.p.d.f. of (Lm,Tm, Ln, Th)

is given by: fr,,. 7, Lo Ty =fLm T0 - fL, T, , Therefore, we
can obtain the j.p.d.f. of (X,Y, L, T}) in sub-domain Q; as
follows:

for = I fLm T in. T
SLm T~ fLn T
ST (X, T2) - fLg,m, (Lt — XY = T3). (41)

Similarly, for the sub-domain Q9 with 15, > T}, We have:
fa: = | from T Ln.Tn
= frm 1 (XY =T0) - fr, m, (Lt — X, Tt). (42)

Combining (41) and (42) together, we obtain the The
jp.d.f. for (X,Y, L, Tt) in the whole domain Qx vy, 7, as
follows [9]:

fﬂl(vaaLt7Tt)+f92(X7Y7Lt7Tt) (43)
= Jonon (X T0) - fr, o (Le = XY = T)) +
Jr 1 (XY =T0) - fr, o, (Le — X, T)

Then the j.p.d.f. of (L¢,T3) is obtained by

fx,v,Le, 1y

fLmTt(Ltht) = / Ix.v,L., 1, dXdY, (44)
Qx,y (L, Tt)

where Qx vy (L¢,Tt) is the new domain for (X,Y) in terms
of Ly and T;. Knowing (L., Tm)’s domain Qr, 71, and
(Ln,Tn)’s domain Q. 7n, we can deduce Qx,y (L¢, T¢) from
(31),(32), (33) and (34).

424 J.PD.F Initialization

To carry on the above recursive computation of j.p.d.f.,
we have to set up the initial conditions starting from sinks.
As sink’s Ly and Ts are constants and buffers are always
inserted at sink’s upstream node with a wire between them,
(1) and (2) should be used for j.p.d.f. initialization. After



transformation of variables, we have:

¢ = (L:—Ls)/l;; (45)
2(Ts — Ty)
—_ 46
" (Li + Lo)ls (46)
Therefore, the Jacobian is given by
dc  dc
J = ‘ G B ‘
8Ly OT;
1 0 -2
= | 21 —2 =7 (47)
(Lt+Ls); (Lt+Ls)l; (Lt + Ls)li

As the j.p.d.f. for (c,r) is already known as h(c,r), we
can obtain the j.p.d.f. of (L¢,T}) as follows:

thyTt = |J|~h(c,r)
2 Li—Ls 2(Ts —Ty)
h , 48
T2 7 P S el o ey T

4.3 Pruning Rules

A straight-forward way to extend the conventional domi-
nance relationship between two solutions in the presence of
process variation is as follows: solution (L1, T1) is said to
dominate solution (L2, T2) if condition P(L; < L2) = 1 and
P(Ty > Tz) = 1 are satisfied. In other words, solution (L1,
T1) always results in a larger required arrival time but with
a less loading capacitance when compared to solution (L2,
T>). The physical interpretation of this criterion is well un-
derstood. However, there are two problems when it comes
to practical implementation. First, for a continuous j.p.d.f.
for two random variables (L; and T}), the domain is usually
defined over the whole feasible region: i.e., 0 < L; < oo and
0 < Ti < oco. Therefore, it is almost impossible to satisfy
the conditions of P(11 > T2) = 1 and P(L1 < L2) =1 for
any two given solutions. Second, assuming the first prob-
lem can be solved, there is no guarantee that the number of
solutions after pruning will increase polynomially. Chances
are that it will, most likely, grow exponentially, and this has
been experimentally confirmed by [8]. In the following, we
propose a new set of pruning rules that not only solves the
above problems, but also supports designers’ intuition.

We recognize that for designers, there is always a design
goal in their minds when they compare different design al-
ternatives. For the same example as shown in Section 3,
if the arrival time for a design is required to be 100, then
obviously solution (A) is the best choice, as it satisfies the
required arrival time constraints without any uncertainty.
On the other hand, if the arrival time is required to be 200,
then solution (D) would be the best choice, as this gives the
highest probability to satisfy the design requirement.

Based upon the above observations, we give the following
definition of dominance relationship between two solutions,
which is closely related to designers’ willingness to accept
uncertainty for a given design. Recall that the (100a)™
percentile of a p.d.f. f(z) is a number 7, such that the area
under f(x) to the left of of mq is a [10]. That is,

a= /:: f(z)dz. (49)

In other words, 7, gives a measure of designers preference
for certainty in choosing the design parameter = in the pres-
ence of variations, such that the final design would have x
less than 7 with (100a)% certainty.

Figure 2: Graphic interpretation of dominance re-
lationship between (L.,71) and (L2,72), where (a)
refers to (50) and (b) refers to (51).

Suppose designers choose 7o, and m., as L’s two per-
centiles with 0 < a; < ay < 1, and 7g, and 7g, as Ti’s
two percentiles with 0 < 3; < 8, < 1, which reflect design-
ers preference for certainty in choosing different solutions
(L¢, T}) to the BIPV problem. Then solution (L1, T}) is said
to dominate solution (Lz,T5) if the following conditions are
satisfied:

71'&13 < ﬂﬁ) (50)
1 2
7o) > ) (51)

Another way to look at this dominance relationship is that
solution (L1,71) has a high probability of producing solu-
tions with a larger required arrival time and a smaller load-
ing capacitance. A graphical interpretation of this domi-
nance relationship is shown in Fig. 2. Knowing oy, o, 0,
and 3., we can compute T, Ta,, Tg,, and g, according
to (49), which requires us to know the p.d.f. of L; and Tz,
respectively. As we already know the j.p.d.f. of (L¢, T3) from
section 4.2, the p.d.f. of L; and T} can be computed as two
marginal p.d.f.’s of the j.p.d.f., respectively [10].

5. EXPERIMENT

A preliminary version of the above BIPV algorithm is im-
plemented in C++ on a Linux machine. Because there is
no existing work that can take into account the accurate
computation of j.p.d.f. for (L, T3) in the context of buffer
insertion, direct comparison of our work with existing works
is not possible. The only work that considered process varia-
tion for buffer insertion is [8], which does not consider either
the interconnect parasitic variation or the device variation.
Moreover, it is assumed that all random variables are in-
dependent, which is not correct in general. Therefore, in
the following, we compare our BIPV design with the con-
ventional design under nominal design parameters (DUN)
similar to [6].

Parameter Mean Standard Deviation
Buffer input capacitance 0.04 pF 0.01 pF
Buffer output resistance 180 © 30 Q
Buffer intrinsic delay 20 ps 5 ps
Unit wire capacitance 0.08 fF/um 0.02 fF/um
Unit wire resistance 0.08 Q/pum 0.02 Q/pum

Table 1: Device and interconnect variations.

For a given technology, foundry needs to characterize the
j.p-d.f. for both devices and interconnects with consider-
ation of process variations. Without loss of generality, we
assume that the j.p.d.f. of both interconnect and devices are



| 1 [ 2 [ 3 [ 4 [ 5 [ 6 ] 7 [ 8 |
Test Case | Terminals # Segment Delay Conventional DUN Design BIPV Design
Lengths (um) | Constraint (ps) | Timing Violation % [ Buffer # | Timing Violation % Buffer #
1 5 1000-1400 2450 41% 4 33% 5
2 9 400-800 2200 35% 9 10% 9
3 9 600-1000 2300 32% 9 9% 10
4 9 800-1200 2400 43% 9 13% 9
5 9 1000-1400 2500 39% 9 15% 10

Table 2: Experimental result.

available to us as user inputs in the following. Normal distri-
bution has been assumed for all test cases, and all parasitic
values are adapted from [7] as shown in Table 1.

Different combinations of «a;, a., £i, and (3, values have
been tested for pruning. Because the choice of these values
only reflects designers’ preference to certainty and does not
significantly affect our conclusions, we only report experi-
ment results with a; = 8 = 0.2 and «,, = B, = 0.8 in the
following.

Global interconnects with multiple terminals are used in
our experiment. For simplicity, every test case is assumed
to have a uniform required arrival time specified at different
sink terminals. To make the test case challenging, we set
the required arrival time at sinks to be half of the critical
path delay without buffers. Results from five test cases are
reported in Table 2. Column 2 gives the total number of
terminal pins for test cases that are typical for global in-
terconnects. The range of interconnect length between two
adjacent Steiner points in the routing tree is reported in col-
umn 3. Column 4 gives the required arrival time specified at
all sink terminals. Column 5 and 6 are the results measured
at the root of the buffered routing trees from the conven-
tional DUN design, while column 7 and 8 are the results
from our BIPV design. Column 5 and 7 are the probabili-
ties of the designed buffered routing tree that would violate
the required timing constraints. The number in column 6
and 8 are the total number of buffers inserted.

According to Table 2, it clearly shows that the conven-
tional DUN design exhibits very large timing violation when
process variations are considered, while our process variation
aware BIPV design consistently results in smaller timing vi-
olation than the DUN design. Moreover, when the test case
becomes larger, the improvement of BIPV design over the
DUN design is more significant. For example, for test case
4, the conventional DUN design gives 43% timing violation,
while our BIPV design results in only 13% violation, and
the relative reduction is 30%. In terms of the total num-
ber of buffers inserted in the final buffered routing tree, the
BIPYV design uses sightly more buffers than the conventional
DUN design, but there is never more than one extra buffer
in all experiments. This further confirms that the BIPV al-
gorithm inserts buffers at locations such that the probability
of achieving timing constraints is optimized.

6. CONCLUSION AND FUTURE WORK

‘We have proposed a probabilistic methodology to solve the
problem of buffer insertion considering process variations for
both devices and interconnects. A very recent work solved
the buffer insertion with wire length uncertainty by assum-
ing that there is no correlation between the variations of
required arrival time and downstream loading capacitance.
We have shown that this assumption does not hold in gen-
eral and that the j.p.d.f. should be employed to accurately

capture the above correlation. We have developed an ef-
ficient algorithm to calculate the j.p.d.f. recursively. Our
preliminary experiment results have shown that compared
to the conventional buffer insertion under the nominal pa-
rameters, the proposed variation aware buffer insertion can
reduce the probability of timing violation by up to 30%.

Note that the proposed methodology is very general and
can be extended to consider other process variation effects.
For example, we have assumed that there is no correlation
between device and interconnect variations, and that wires
not sharing downstream paths are independent. However, in
a modern process, the variation between devices and inter-
connects may be interdependent, and wires nearby may also
exhibit correlation due to chemical-mechanical planarization
(CMP). One of our future work is to extend the proposed
methodology to handle more general process variations, like
across-chip-line-width variation (ACLV). We will also study
the process variation aware routing topology generation and
device sizing problems in the future.
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