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Abstract sis technique employing sparsification based on integer linear pro-
gramming is described in [5] and [6] presents a linear time algo-
) e ) : ° rithm based on random walks that is efficient for incremental local-
vice process variations on voltage fluctuations in power grids. We ized analysis. The analysis of power grids has only been recently
consider random variations in the power grid's electrical parame-  oyhanded to account for process variations. Assuming normal and
ters as spatial stochastic processes and propose a new and efficienf, g, ormay distributions for the device threshold voltages and leak-
method to compute the stochastic voltage response of the powe;slge currents, the authors of [12, 13], present a procedure to com-

grid. Our approach provides an explicit analytical representation 1, ;1o the mean and bounds on the variance of the voltage drops on
of the stochastic voltage response using orthogonal polynomials in 5 power grid. In [11], the voltage response of a power grid is ex-

a Hilbert space. The approach has been implemented in a proto- , eqseq as a convolution of the grid impulse response and load cur-
type software called OPERA (Orthogonal Polynomial Expansions renig Their approach to account for variability is to view the load
for Response Analysis). Use of OPERA on industrial power grids ¢, rents of the functional blocks (inputs to the power grid system)
demonstrated speed-ups of up to two orders of magnitude. The réyq rangom variables due to the large space of input patterns. Based

sults also show a significant variation of abatit35% in the nom- -, yhig they compute the mean and variance of the voltage response
inal voltage drops at various nodes of the power grids and demon- ¢ 4 grid

strate the need for variation-aware power grid analysis.

In this paper, we investigate the impact of interconnect and de-

2. Our Contributions

1. Introduction In this paper, we propose a new approach [18] to account for
One of the most difficult and important challenges posed by deepthe impact of process variations in the analysis of power grids. Un-
sub 100 nm IC technology is the increasing uncertainty in the per- til recently, stochastic analysis of systems generally meant that the
formance of CMOS circuits due to variations in the fabrication pro- system inputs were stochastic but the system itself was determinis-
cess [20, 21]. Examples of the parametric variations include vari- tic with deterministic parameters. The approach to be described here
ations in doping profiles, materials, interconnect widit) (and addresses the important case when the system parameters are also
thicknessT), device characteristics like the effective channel length stochastic quantities. For such a case, the physical system itself is
(Lesr) etc. Physical parameters lik€, T of the interconnects and  an outcome of a stochastic process. Our analysis, thus is completely
Lets of the MOS devices vary significantly [21] with strong intra-  different from all the previous power grid analyses. In this work, due
die (across die) and inter-die (across wafer) components. Thesdo the manufacturing variations in the interconnect widththick-
physical variations lead to substantial variations in the electrical pa- nessT and the device channel lengtl¢¢, the electrical parame-
rameters viz., conductance, capacitance, inductance, threshold voltters in the power grid (R,L,C) are modeled as continuous parameter
ages, leakage currergtc, of the CMOS devices and interconnects. (spatial) stochastic processes. The key development here is an ex-
An important aspect of the IC design process is the integrity of pansion for the stochastic voltage response as an infinite series of
the power grid. The exponential increases in transistor density hasorthogonal polynomials of random variables in an infinite dimen-
resulted in huge power distribution networks carrying large transient sional Hilbert space. The expansion candmgimally truncated to
currents, that result in significant voltage drops (IR a@tlj) in the any order depending on the available computational resources and
voltage levels at the power grid nodes. This combined with contin- accuracy requirements. With an explicit analytical representation of
uous reduction in supply voltages (1.2V for the 90 nm process)  the voltage response available in terms of the random variables, mo-
make the voltage drops critical as they can severely impact the func-ments and probability density functions of voltage can be directly
tionality and the performance of the ICs. Process variations in the computed. This provides an attractive alternative to the computa-
power grid conductors and onchip CMOS devices of the functional tionally expensive Monte Carlo simulations. Our approach has been
blocks can have a significant detrimental impact on the voltage lev-implemented in a prototype software called OPERA.
els at the power grid nodes. Given the critical dependence of the sub  In Section 2, we discuss the core contributions of our work. Sec-
100nm ICs on th&/pp voltage variations, its important to charac- tion 3 contains the problem definition. In Section 4, we discuss the
terize the effects of process variations on the voltage levels at thetheoretical foundations of our approach. In Section 5, we demon-
power grid nodes. strate our method through an example followed by the discussion of
An established body of literature is available on the analysis and @ special case. We also provide a brief discussion on the implemen-
optimization aspects of power grids [1-5, 7, 9-13]. Some of the tation issues. The experimental results are shown in Section 6 and
early work on power grid analysis used DC analysis to obtain the conclusions are presented in Section 7.
IR drops [1-3]. The variations in current profiles of the functional
blocks are often obtained by simulation [1, 7,9, 10]. The authors 3. Problem Statement
of [4] describe a multi-grid approach where coarser meshes are firs ~ We consider an RC model of the power grid with a mesh struc-
solved using fast PDE solvers and the results are extrapolated tdure in which the metal interconnects and the vias are modeled as
solve the original mesh. An efficient hierarchical power grid analy- passive RC networks. Power sources provide connections from the
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external supply to the grid and are modeled as ideal voltage sourcesbles. Let® : Q — R denote the vector space of all random vari-
between the grid nodes and the ground. The functional blocks (logicablesg;. In the presence of process variations the MNA equations
gates/latches) that are distributed across the chip act as power drain$or the interconnect can be expressed as:

They are modeled as known transient current sources between the

grid nodes and the ground, in parallel with the non-switching capac- (G(&(w) +sCE(w) ) X(s,&(w)) = U(s&(w))  (2)
itances of the functional blocks. The transient current source sofile ) ) o ) )
are obtained from simulation of the functional blocks at a full sup- ~ EQuation (2) is known as a stochastic differential equation as

ply voltage for a large sequence of random input vectors. The pack-the operatoG(§(w)) +sC(§(w))) is a stochastic process depen-
age pin contacts that provide the power supply connection are mod-dent on a random variaband the deterministic Laplace parame-

eled as resistances in series with the supply sources. ters. Further, the excitation vectat(s,&(w)) has both determinis-
The power grid model can be described in the Laplace domain ti¢ and random components. For each manufacturing outcoane!
by the MNA equation for each corresponding value of the paramétes), x(s,&(w)) de-
notes the fixed response of the system for that particular manufactur-
(G+sCOx(s) = U(g) (1) ing outcome. In the next section, we discuss the theoretical founda-

tions of our proposed approach to compute the res w)).
where(G+sC) is the coefficient matrix an(s) is the response to prop PP P Pe(EsH(w))

be determinedJ (s) = (i(s),G1Vop)" is the known excitation; vec- 4. Proposed Approach
tor i(s) represents the functional block drain currei@s;is a diag-

onal matrix that consists of non-zero elements at those nodes wher%to
Vpp sources are connected. Almost all the conductance of the powe
grid comes from the metal interconnects while they contribute only
about 5% of the grid capacitance [8]. The majority of the capaci-
tance contribution of the power grid comes from the non-switching
load capacitances of the gates in the functional blocks. The load
capacitance of the gates in turn comes from two major sources -
the gate Css andCop) capacitance of the gates they drive and the ., 4oy iation W, W can always be expressed in a normalized
source/drain diffusion capacitanc&$g andCspg); the two sources form as W — W + W, &, where &y is a random vari-
contribute almost equally to the grid capacitance in the present tech-able with zero me::n and ucr’1it veiriance
nologies [8, 15]. The Fjrain currenit&s) consist of MOS drain cur- For simplicity, henceforth we will write () as. To explain
rents and_ the_ gate oxide and subthreshold leakage cu rr_ents. our approach, we state a few well known facts from the theory of

The circuit parameter& andC depend on the grid intercon-

nect and device parameters such as the metal thicki@smétal orthonormal expansions [24].

The approach presented here is based on representing the
; chastic voltage responsés, &(w)) of the power grid as an in-
finite series of orthogonal polynomials in an infinite dimen-
sional Hilbert space of random variables. We assumextlse§ (w))

is a second order process, i.e. all the random variables have fi-
nite variancesWithout loss of generality, we also assume that the
variablesg (w) are random variables with zero mean and unit vari-
ance. Given a random variable W with mean, \@nd stan-

width (W), channel lengthl(c¢¢) etc. In addition, the MOS drain e LetV be an inner product space, with the inner product de-
currentsi(s) in the excitatiorlJ (s) vary significantly with changes noted by(-,-). For non-zerey € V, x andy areorthogonalif
in Les¢. In the presence of random process variations, these physi- (x,y) = 0. They areorthonormalif ||x|| = |ly|| = 1.

cal characteristics of the interconnects and devices, and hence their o« An complete inner product spa¢e (i.e. one in which every
electrical characteristics are modeled as spatial stochastic processes  Cauchy sequence converges) is called a Hilbert space.
(they vary randomly and spatially across a die for intra-die varia- o An infinite family of orthonormal vectorg@}_, , in a Hilbert

tions and across a wafer for inter-die variations). space is called aarthonormal basisf it is a maximal set of
In the present work, we assume that the conduct&hoé the mutually orthonormal vectors.

grid varies with parametef/ and T. We ignore variations irC
due toW andT. We assume that the gate capacitance contributes
about 40% of the total grid capacitance and that this gate ca-

o If {@}¢ ; is a orthonormal basis of a Hilbert spadethen the
infinite seriesy 4 (X, @) @ converges in norm tg.

pacitance varies withefs. We have from SPICE modeByate U We now return to the problem of representing the stochastic
Wer f Lef fCox WhereWe 1, Cox represent the effective width and gate  Voltage responsg(s,§). From Section 3, we know that the space
oxide capacitance of a MOS transistor. The drain currdgjghat @ : {Q — R} denotes the infinite dimensional vector space of map-

consist of MOS drain currents and leakage currents are known toPings, each mapping representing a random vari&fus. Let P be
vary significantly withLe. We consider only the inter-die varia-  the probability measure on the sample sp@dee., the random vari-
tions in this work and hence the variationsGrandC are fixed for ~ ablesg have the probability density functidd This space of map-
any one single die. Thus, they are modeled as random variables an®ings forms a Hilbert spacélp, where the inner product of any two

not as spatial random processes. mappings is the expected value of their product uiidrhat is,
Consider the manufacturing process. Every trial of the manu-
facturing process (trial denotes the fabrication of a die or a wafer) <&m&n>=EEm&) = /Q En &, dP 3)

results in a different value fow, T and Le¢s of the intercon-

nects and devices. These parameters are thus functions that maphe stochastic voltage responss, €) is an element of. There-

one point in the manufacturing sample space to some real valuefore, if we can find a orthonormal basfg; (£),y2(£),...} for Hp,
Thus,W, T andLeyt are random variables over the manufactur- thenx(s, &) can be represented by

ing sample space. In general, 2tdenote the manufacturing sam-
ple space. Fow € Q, & : w — R denotes a random variable. Let
&(w) = (§1(w),...,&n(w)) denote a vector of such random vari-

X(s,§) = Z) an(s) (%) (4)



Equation (4) is a general representation of the stochastic volt- Note: A closer look at Equations (6), (7),(4) shows that Equation (4)
age response process, &) in terms of the orthonormal basis func- is simply a rearrangement of the terms in Equation (7). The remain-
tions of random variable§. The primary task now is to identify  ing task then is to determine the coefficiefigs} of the expansion
the orthonormal basi$y;(§),y2(%),...} in §. One such orthonor-  given in Equation (4).
mal basis is the set of Hermite polynomials of all orders. This ba-  The expansion shown in Equation (7) called themogeneous
sis is valid for any second order process. However, other types ofChaoswas developed by Weiner [23]. The celebrated result of
polynomials can also serve as orthonormal bases. The orthogonalCameron and Martin [17] extended the expansions to general func-
ity is defined w.r.t the norm in Equation (3) which is dependent on tion spaces, and is now referred toRaynomial ChaosGhanem
the probability density functio® of €. So, for different probabil- and Spanos [18] developed applications of these results to the study
ity distributions of the random variables, different orthonormal ba- of systems with stochastic parameters.
sis sets need to be identifiethe well established Askey scheme of
polynomials [19] helps us identify the orthogonal polynomials for
different probability density functions. For example, if the under-  Though the number of random variablare finite, the ordep
|y|ng random variables are Gaussian or |Ognorma|’ then Heest and hence the number of teI’INS+ 1 in the stochastic response ex-
choice (in terms of speed of convergence) would be Hermite p0|yn0_pansi0n are infinite. For practical computation purposes, the infinite
mials. Similarly, for Gamma, Beta and Uniform random variables, series needs to be projected onto a finite space, i.e. truncated. The
the best choices would be Laguerre, Jacobi and Legendre polyno-general approach is to limit the response expansion to a finite or-
mials respectively der p, which in turn determines the accuracy. Often, a second or-

For the sake of demonstrating our approach, we consider a poweder (0 = 2) or third order p = 3) expansion is sufficient. If there
grid subjected to inter-die Gaussian variations in interconnect width &ren random variables, the response expansion obtained by limit-
(W), thickness T) and device channel lengthdsf). The method-  ing the order tqowould be N
ology described here can be easily extended to consider other prob- &)= % ai(s) vi(8) ®)
ability distributions and any number of variables. =

4.2. Evaluation of the Coefficients

4.1. Gaussian Random Variables whereN = Elf:o n- iJ“ k
Let€ ={&1,€2,&3,...,&n} € © be zero mean orthonormal Gaus- The error due to truncation is given by
sian random variables. Hermite polynomials of all order§ form
an orthonormal basis fokg. They are defined by Ap(s,&) = (G(&) +sC(&)) x(s,§) —U(s ) ©)

Once we have the truncated expansion from Equation (8), we
need to evaluate thisestdeterministic coefficient$a; } that result
in the best minimization of the truncation error. We follow the prin-
ciple of orthogonality which states that the best approximation of

U3 S A ¥ 3
(—1)Pe? aalaaz--~aape 255 (5)

,Op}) =

Hp({ag, 0z,

where{a;j} are any set op variables chosen from the set

{&€1,82, -+ ,&n} with repetitions. Sincep variables can be chosen
from a set ofn variables inM = (p+n—1)!/p!(n—1)! ways, the
number of Hermite polynomials of degrges given by M. As an
example, Hermite polynomials if€1,&2} of order 0, 1, 2 can be
found as follows.

order0: Ho({}) =1,

the responsg(s, &) is one in which the truncation errdy,(s,§) is
orthogonal to the approximation. The application of the principle of
orthogonality to obtain a finite projection is known as the Galerkin
method. The orthogonality is defined w.r.t to some norm, which in
this case is given by Ap(s,§),vi(§) >. Thus, to obtain the deter-
ministic coefficients we need to solve the system of equations given
by

<AD(57£)7W(E) >:0> |:O7172>N (10)
order 1:  Hy(&1) = &1, Hi(&2) = &2, ©) 5. |llustration
order2:  Hp(81,&1) =&2—1, Ha(81,82) = £182, As an example to illustrate the methods, we consider a power
Hz(Ez.‘Ez) = E%— 1 grid subjected to random process variations wigye&T, & de-

note thenormalized variations in width, thickness and the effective
Let {€1,&,,&3,...} denote an infinite set of zero mean orthonor-  device channel Iength respectively. Then
mal Gaussian random variables. Then the stochastic response can Alets
be represented as a convergent infinite series expansion of Hermite =
polynomials as [18] Letf

i L

(11)

Without loss of generality, we assume that they are uncorrelated

bo(S) Ho + z bi, () H1(Ei,) Gausglan random variables. Certainly if they were _not, given their
i=1 covariance matrix, they can always be transformed into a set of un-

® correlated random variables by an orthogonal transformation tech-

X(s,&)

+ > z bisi, (9H2(&i,, &iy) (7) nique like principal component analysis [16]. As discussed earlier,
i1=1i2=1 the G matrix depends oy and&t and theC matrix depends on
00 | .
&L. We use a linear model to capture the dependendg ahdC
+ & 1|zz1|3z1bm2|3 )3 (8, iz Eio) on these random variables in accordance with the models in con-

temporary literature [20]. But there are no limitations on the spe-
cific model to be chosen. The MNA equation for the grid system is



given by:

(G(&) +sC(&)) x(s,&) = U(s.§) 12) C., 0 C 0O 0 o0
where& = (&w, &T, &) is the random variable vector and the per- 0 G 0 2 C O
turbed matrice$s andC andU (s) are given by =~ | G 0 C 0 0 2
c= 0O 0 0 Z 0 O (21)
G(§) = Ga(s)+Go(s)&w +Ge(s)&r 0 C 0 0 C O
C& = G9+Ce(g)eL (13) 0 0 X 0 0 X,
U(s&) = Ua(s)+Up(s)&w +Ua(s) &t +Uc(s) &L -
Matrix U (s) is given by
Ga,Ca,U, are the mean matrices a@y, Gc, Cc, Up, Ue, Ug repre-
sent the perturbation matrices@fC, U (s) w.r.tW, T, Lef+. U(s) = (Ua(s), Ug(s), Uc(s), 0, 0, o)r (22)
Consider Equation (13) and the physical definition for conduc-
tance per unit lengts = W.T. We can observe that for the linear Now, we can solve Equation (19) numerically to obtain the coef-
model in Equation (13)3p andG, are same a6, scaled by some  ficient vectora(s). Once the vectoa(s) is obtained, we have an ex-
constants So, we haveG, = d G; and G; = e G wheree andd plicit expression for the circuit responsés, &) in terms ofg given

are some constants. Since the scaled sum of two independent Gaudy Equation (15). With this explicit expression, we can obtain the
sian variablegy and&t (d&w + e&t) is a Gaussian variable with moments of the stochastic voltage response at any node of the power
calcuable mean and variance, mat@xand hencdJ (s, &) can be grid as follows:

re-represented using a single normalized varigblas

Mear(x(t,£)) = aoft)
Var(x(t,8)) = (au(t))*Var(Es)+ (az(1))? Var(€,)
G(§) = Ga(s9)+Gy(s)&a, +  (ag(t))?Var(Ec® — 1) + (au(t))?Var(€c) Var(€,)
U() = Ua(s)+Ug(s)&c+Uc(s) &L (14) + (a5(t))2Var(E|_2—1) (23)
CE = CGI+&O& Var(x(t.8)) = (@(t))+(20(t))? + (as(1)*2+ (2a(1)?
+ (as(t)?2

& is now given byE = (£, &.)T. Using Hermite polynomials as
the basis, we can expand the respox(sef) using a second order

expansion p = 2) from Equation (7) as To obtain higher order moments fxit, &), we can use the equal-

ity E(x"(t,&)) =< x""1(t,&), x(t,&) >, provided thax(t, &) has an
X(s.&) = ag(s)+au(s)Ec+an(s)EL+aa(s) (5c>—1) accurate representation using an expansion of sufficiently large or-
+  a4(s)(§céL) +as(9) (EL2 -1). (15) derp. Once the higher order moments are obtained, expansions like
_ o Gram-Charlier series or Edgeworth series could be used to obtain
whereg(s) is a vector. The coefficient vectofs; } need to be de-  the probability density function of(t, €) directly.
termined. )
Following the orthogonal truncation method from Section 4.2, 9.1. Special Case
we can define the error as in (9). As a special case, let's consider only the variations in the drain
Ap(s,E) = (G(E) +5 (s ) —U(s, 16 currentsU (s), i.e. the R.H.S of the MNA analysis Equation (1) say
p(58) = (GE) +sCAR) x(s8) (58 (16) due to threshold variations.(s) consists of MOS drain currents and
Coefficient vectorga;j(s)} are obtained by solving (see Equa- leakage currents; the latter are known to vary exponentially with the
tion (10)) threshold voltages. Our problem then becomes similar to the one ad-
dressed by Ferzli and Najm [12, 13]. We then have,

(Bp(s,8).y;(§))=0 forj=0,1,2,...,N 7
The inner productZ,(s.§),y;) is defined as (G+sOx(s§) =U(sE) (@4)
(Bp(s.8).Yj(8)) where§ represents the threshold variations. If a normal distribu-
o0 ptoo tion for Vi, is assumed, then the distribution for the leakage currents
= /_m . Dp(s,&)Yj(§)W(§) d€c d&L =0,  (18) becomes lognormal. To consider intra-die variationg;jp let's di-

vide the chip in to a finite number of regions say 2 for this exam-
WhereW(E) is the bivariate Gaussian probability density function. ple. Let's assume thdt = (21722) are the normalized uncorrelated
Thus for eachj = 0,1,2,---,N, Equation (17) results in a lin-  Gaussian random variables that represéntariations for the two
ear SyStem O(N + 1) equationS to solve for the deterministic coef- Ch|p regions]’hen’ the currents (572) can a|WayS be expressed us-

ficients vectorga; } represented by the vectafs). ing an orthogonal Hermite polynomial basis [25] &, &> to any
L. . required order (p) of accuracy, say = 2 for this case Since, the
(G+C)a(s) = U(s), (19) R.H.S of Equation (24) is stochastic, the response of the grid be-
where comes stochastic as well and can be represented using the Hermite

basis. We thus have,

Ga Gg 0 0 0 0
I R XSE) = 08 +xa(S)E (9 + xS (27 - 1)
G=1 0 26, 0 2. 0 0 (20) + xalS) (ErE2) +%5(9) (822 — 1) (25)
(¢] a 2
0 0 Gg 0 Gy O U(s,§) = Uo(s)+Ui(s)& +Uz(s)&2+Us(s) (81— 1)
0 0 0 0 0 B + Ua(s) (E182) +Us(s) (822 — 1) (26)



Following the error minimization procedure illustrated in Section 5, to Monte Carlo simulations are shown in the table. The errors re-

our analysis simply translates to solvimglependent equatiorcf ported in Table 1 are for data obtained from simulation across all
the form forn=0,1,...,5 nodes and all time points of the transient simulation of the grid. We
can see from the table that OPERA demonstrates good accuracy in
(G +5C) xn(8) = Un(s) 27) determining the mean and variance of the voltage response. The ac-

curacy in obtaining the variance by OPERA can be increased fur-
ther by increasing the order of the expansion.

The drain current profiles used for the transient analysis of the
power grid were such that the peak drop in the voltage at any grid
node was less than 10 % of tkigp. Under such conditions, it was
observed that for all grids the mean voltage drops at the grid nodes
5.2. Implementation Issues (1) with variations was more or less the same as the nominal volt-

The procedure for obtaining the voltage response has been im-29€ drops|fp) with out variations. And the difference between the
plemented in a prototype software called OPERA. One of the pri- tW0 drops (1— o) was negligible when expressed as a fraction of
mary issues involved is the computational complexity of our ap- %0 of Vbp. However on average for each grid, the3c variation in
proach. Solving the system of Equations (19) is computationally the the voltage drops at the grid nodes, was ab@85 % of 1y, where
most intensive step in our approach. The complexity of that step is Ho are the nominal voltage drops with out variatiofihis strongly
dependent on the length of the vectds) which varies a(rP), ;upports the necgssﬂy of considering the effects of process varia-
wherep is the order of the expansion ands the number of ran-  tions on power grids.
dom variables. We found an order 2/order 3 expansion to be suffi-  For the power grid with 19,181 nodes, we plotted the distribu-
ciently accurate for variational power grid analysis considering re- tion of the voltage response from OPERA and Monte Carlo simula-
alistic bounds for maximum variability in the grid interconnect and tions w.r.t to the variations idw, &1 and&, at arbitrarily selected
device parameters. Also, the matric@andC are very sparse and nodes in the power grid. Figures 1, 2 show the voltage distribution
they have been observed to become increasingly sparser with an inat a select node from Monte Carlo simulations and OPERA.
crease in the order of the expansiq) 6r the number of random
variables {).

Further, computational complexity of OPERA can be signifi-
cantly reduced by efficient techniques like model order reduction
(MOR) [14], multi grid analysis [4] and iterative block solvers with 8or
appropriate pre-conditioners [18]. MOR techniques can be used as 7o
the power grid node voltages in the top layers and their moments
w.r.t § are typically of no interest to the designer. Model order re-
lated stability issues have been addressed in a humber of litera-
tures and any existing stability technique can be incorporated in our
method.

6. Experimental Results
OPERA has been verified for many industrial power grids con- 0

All we need is a singld.U factorization of the original matrix

(G + sC) and then repeated solves for different values of the R.H.S.
Using the formulae from Equation (23), we can directly compute

the mean, variance and other higher order moments unlike [12, 13]
which can calculate only some bounds for the variance.
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sidering order 2/order 3 expansions for representing the stochastic Voltage drop as % VDD

voltage response. Results for a few grids are presented here. As dis- Figure 1. Voltage distribution from OPERA and MC
cussed earlier, we assume a Gaussian distribution for the variables

45 5

W, T andLe¢ for all the grids. We consider a linear or a first order
model for the variations i, C and the drain currentgs). Leak-
age currents are known to vary exponentially with 1 which may
suggest a higher order expansion fbfs) in Lef¢. But for the pur- We presented a general framework to accurately compute the
poses of this paper, we consider a linear expansion itself as theystochastic response of power grids in the presence of process vari-
constitute only 5% of the total currents in the current CMOS tech- ations. Using orthogonal polynomial expansions in a Hilbert space,

7. Conclusions

nologies [22]. we provide an explicit analytical representation of the stochastic
Table 1 shows the results for the transient analysis of 7 indus- response. The coefficients of the analytical expansion are deter-
trial grids for maximum3g variations 0f20% in &y, 15%in &1 mined precisely by utilising the orthogonality property of the poly-

(hence25%in &) and 20%in &, . Note that we are considering  nomials of the expansion. Further, the expansion facilitates the di-
the inter-die variations and that on§0%of the capacitance varies  rect and precise computation of the moments of the power grid re-
with Less as discussed earlier. A fixed time step was used in car- sponse. We also show that our analysis becomes very simplified
rying out the transient analysis and an order 2 expansion was usedf we consider just the impact of leakage current variations on the
for representing the stochastic response. Comparison of results fronpower grid. We implemented the algorithm in a prototype software
OPERA with Monte Carlo simulations (1000 samples for each case) called OPERA and verified it extensively for many industrial grids.
has been done for all the grids and the results are reported in Tabl®©OPERA demonstrates very good accuracy when compared with the
1. The average and the maximum errors in obtaining the m@an ( classical Monte Carlo simulations along with providing significant
and varianced) of the voltage response from OPERA compared speed-ups up to two orders of magnitude.



Size Ave. % Error | Max. % Error | Ave. % Error | Max. % Error | 4+ 3o variation | CPU time CPUtime | Speedup
(#nodes) inp inp ino ino (% of nominal | Monte (sec)| OPERA (sec)
drop o)

19181 0.0155 0.0282 253 2.78 +34 1444.00 14.32 101

25813 0.0422 0.0838 3.41 3.84 + 33 1565.30 77.93 20

34938 0.0204 0.5146 1.53 12.17 +32 1140.10 17.50 65

49262 0.1992 0.3713 6.73 7.37 + 37 4777.87 178.52 27

62812 0.0680 0.1253 3.82 6.45 + 46 1481.7 17.40 85

91729 0.0137 0.6037 3.28 18.03 + 30 3172.67 25.50 124
351838 0.0926 0.1457 5.27 18.39 +33 109315 1050.72 104

Table 1. Results for grids from OPERA and Monte Carlo simulations for order 2 expansion
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Figure 2. Voltage distribution from OPERA and MC
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