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Abstract 
Assessing IC manufacturing process fluctuations and their 
impacts on IC interconnect performance has become 
unavoidable for modern DSM designs. However, the 
construction of parametric interconnect models is often 
hampered by the rapid increase in computational cost and 
model complexity.  In this paper we present an efficient yet 
accurate parametric model order reduction algorithm for 
addressing the variability of IC interconnect performance. 
The efficiency of the approach lies in a novel combination of 
low-rank matrix approximation and multi-parameter moment 
matching. The complexity of the proposed parametric model 
order reduction is as low as that of a standard Krylov 
subspace method when applied to a nominal system. Under 
the projection-based framework, our algorithm also 
preserves the passivity of the resulting parametric models.   

1. Introduction 
The every-increasing variability of modern IC 

manufacturing process has introduced significant variations 
in circuit performances. Accordingly, assessment of these 
performance variations has become an integral part of 
analysis and optimization of modern VLSI designs. In the 
past decade, efficiency in IC interconnects analysis has been 
facilitated by powerful model order reduction techniques 
[1]-[4]. Two classes of model order reduction techniques 
have gained popularity: moment-matching based method 
(e.g. AWE [1] and Krylov subspace methods [2]-[4]) and 
control-theoretic approaches (e.g.  truncated balanced 
realization (TBR) [5][8][11]).  The first class of methods are 
very attractive in terms of computational cost while the 
methods that fall into the second class tend to be more 
accurate, but suffer from a dramatic increase in 
computational cost. The high cost associated with the latter 
often preclude these methods from being directly applied to 
large practical problems.  

Variational modeling of interconnects can be classified 
similarly: moment-matching (Krylov subspace) based [6] vs. 
TBR-based [7][12][13]. In [6], Liu et. al. proposed to 
construct variational models by fitting the projection vectors 
over the samples taken in the variational parameter space. In 
[7], Heydari et. al. performed TBR analysis on perturbed 
systems. Additionally, a linear fractional transform (LFT) 
formulation based TBR-like approach was proposed in 
[12][13]. Almost the same comparison can be drawn for 
these variational methods: moment matching based 
approaches are computationally more efficient while TBR 
methods tend to be more accurate but with a significantly 
higher cost.   

Nevertheless, in comparison to modeling techniques 
employed for the nominal system, the inclusion of 

variational effects into the model order reduction implies a 
significant increase in computational cost and/or model 
complexity. This can be true even for the more efficient 
moment matching methods. Hence, in this paper we focus on 
developing more efficient Krylov subspace methods.  

 In this paper, we first show that in principle, variational 
modeling of interconnects can be cast as a general multi-
parameter Krylov-based moment matching problem [10]. 
We then point out that for the particular problem of 
modeling process variations this is not an entirely suitable 
choice due to its limitation in model complexity. As an 
improvement, we show that exploiting multi-point expansion 
under the same Krylov framework can lead to more compact 
interconnect models but with an increase in computational 
cost. Furthermore, we propose a novel combination of low-
rank matrix approximation and multi-parameter moment 
matching scheme and show that we can maintain the same 
low cost of standard Krylov methods while significantly 
improve model complexity. The new approach allows us to 
achieve a higher moment-matching order for multi-
parameter moments than what was possible before, thereby 
significantly improving the model accuracy. One further 
advantage of the approach is that the passivity of reduced 
parametric models can be easily guaranteed. We 
demonstrate the proposed technique on several variational 
interconnect modeling examples.    

2. Prior Work 
An interconnect network can be described by the following 

MNA (modified nodal analysis) formulation: 
 xLyBuGxxC T=+−= ,D  (1) 
where G , C , B  and L  are system matrices, mRu ∈  and 

mRy ∈  denote port voltages and currents, nRx∈  is the 
vector consisting of nodal voltages and branch currents for 
voltage sources and inductors. The PRIMA algorithm of  [4] 
computes an orthonormal basis qnRV ×∈  for a Krylov 
subspace of CGA 1−−≡ , which is spanned by several block 
moments of the system transfer function. The reduced order 
model of (1) is obtained by computing the following 
matrices of smaller dimensions: 
 LVLBVBCVVCGVVG TTTT ==== ~,~,~,~  . (2) 

To model the variational effects of interconnects,  [6] uses 
the first order expansions to express the system conductance 
and capacitance matrices:  
 

22110212211021 ),(,),( CpCpCppCGpGpGppG ++=++=   (3) 
where 0G  and 0C  are conductance and capacitance matrices 

under the nominal conditions, 1p and 2p are parameters used 
to model variational sources such as the metal line width or 
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thickness variations. For convenience, we refer to 1p  and 

2p  as variational parameters, and 1G , 1C , 2G , 2C  the 
sensitivity matrices w.r.t variational parameters. When the 
circuit parameters vary due to process fluctuations, the 
projection matrix used in PRIMA also undergoes small 
variations. The projection matrix is therefore expanded using 
a Taylor series [6]: 
 2

222212
2
121111021 ),( pVpVpVpVVppV ++++=  (4) 

To determine the coefficient matrices in the above equation, 
samples are taken in the variational parameter space and the 
PRIMA algorithm is applied to the resulting perturbed 
systems. Based on these sampled projection matrices,  
coefficient matrices in (4) are determined by solving a set of 
linear equations. Inserting (4) into (2), a variational reduced 
order model parametrizable in spi '  is obtained.  

3. Multi-Parameter Moment Matching 
In this section, we first point out that parametric reduced 

order modeling can be more generally cast as a multi-
parameter Krylov  projection based moment matching 
problem. In what follows, we show the benefit of exploiting 
multi-point expansions under this context.  
3.1 Single-point expansion   

A Krylov projection based multi-parameter moment 
matching approach was adopted in [10] to generate 
parameterized interconnect performance models. We shall 
refer to the approach in [10] as a single-point expansion 
method since the system transfer function is expanded at 
only one point in the joint space of s and spi ' .  To see how 
multi-parameter moment matching can be applied,  let us 
consider a more general case of  (3) where conductance and 
capacitance matrices depend on pn parameters 

 
ppp

ppp

nnn

nnn

CpCpCpCpppC

GpGpGpGpppG

++++=

++++=

��

��

2211021

2211021

),,,(

),,,(   (5) 

We use the notation 
ppp nnn LBCCGGCG },,,,,,,,,{ 1100 ��
to specify 

a pn -parameter dynamic system as in (5). The transfer 
function of the system can be written as  
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(6) can be readily expanded into a power series in  several 
variables 

pnppps ,,,, 21 �  
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In (7) )( 1,,,, 1
kkkkM

ppns nskkkk =++ �
�

 is a k-th order multi-

parameter moment corresponding to the coefficient of the 
term pn

p

s
k
n

kkk ppps �
21

21
. Consider an orthonormal basis 

)( nqRV qn <∈ ×  of  the subspace spanned by the multi-
parameter moments with an order equal to or less than k 

 },,,,{)( ,,,0,1,10,0,0 1
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��� pns kkkkMMMspanVcolspan =  (8) 

We can employ V as a projection matrix to compute a 
reduced model; i.e.,  each system matrix of the full model 
including sensitivity matrices is reduced using matrix 
transformations of (2). For instance, the sensitivity of 

kpG is 

reduced to VGVG
kk p

T
p =~ . It can be shown that the resulting 

reduced model matches up to the k-th order multi-parameter 
moments of the original transfer function. 
3.2 Inefficiency of single-point expansion 

Although all the parameters are treated identically in the 
above multi-parameter moment matching scheme, there does 
exist an asymmetry between these parameters that arise 
practically in our manufacturing-variation-aware 
interconnect modeling problem. While variational 
parameters fluctuate in a small range around the nominal 
values due to process variations, the “variation” in the 
frequency variable s has to be considered over a wider range 
in order to capture the complete system frequency response.  

It is not surprising that the reduced order model size of the 
above approach grows  rapidly with the number of parameter 
and the orders of moment matching. With more careful 
analysis, it is quite interesting to see that the model size 
actually depends not so much on the moment matching order 
of individual parameters but the highest moment matching 
order with respect to any parameter. This is because a high 
moment matching order of any parameter will introduce a 
large number of cross terms in the multi-parameter 
expansion, thus lead to a large reduced model size. In other 
words, for interconnect variational modeling, choosing a low 
moment matching order for variational parameters (due to 
the small range of variation) does not significantly reduce 
the model size if the order for variable s remains high. As a 
result, the single-point expansion  produces an expensive 
reduced model even when the circuit is only perturbed 
within a small range about the nominal condition. 

3.3 Multi-point expansion 
Let us consider the multi-point expansion in Fig. 1, where 

multiple samples are taken within the specified ranges in the 
variational parameter space.  Let us assume that sn samples 
are taken and for each perturbed system  

T
niniii pp

ppppppP ],,,[ ,2,21,1 ==== �
, a projection matrix iV  

is computed to match the k moments of s using any standard 
Krylov method.  Finally, a parametric model can be 
produced by forming an orthonormal basis V  of the 



 

combined projection vectors },,,{ 21 snVVVcolspanV �=  and 
employing V as the final projection matrix. The resulting 
model preserves the first k moments of s at the above sn  
sample points. In some sense, the reduced model 
approximates the full model at the sample points using a 
standard model order reduction technique, and then 
interpolates implicitly between these samples in the 
variational parameter space.  

s

p

H(p,s)

Reduced order 
model at each 

expansion  
Fig 1. Multi-point expansion in the process parameter space.   

In addition to other benefits of a multi-point method, it 
can be used to reduce the model size. To see this, let us 
assume that we want to match multi-parameter transfer 
function moments corresponding to the following terms:  

i
k

iiii
k

iii pspsspppspspsps ,,,,,,,,, 20020100
�� , where the 

expansion order for some variational parameter ip  is the 1st 
order. To do so, using a single-point method will lead to a 
reduced order model of size mkk )1( 2 ++ , where m is the 
number of ports. In a quite equivalent way, one can employ 
a multi-point method to match the first 1+k  moments of  s 
at two distinct samples of ip . This gives a much smaller 
reduced model of size mk )1(2 + . A similar situation is 
encountered under the context of nonlinear system model 
order reduction [9]. 

The aforementioned multi-point method bears 
resemblance of the approach of  [6]. The major difference is 
that in [6]  interpolation between the sample points is done 
by direct fitting while in this approach it is accomplished 
implicitly via projection. Sometimes it is observed that the 
projection matrix is sensitive w.r.t variational parameters 
thus making a direct fitting less robust. Under these cases, 
multi-point expansion might be a more robust choice.     

4. Low-Rank Approximation Based Multi-
Parameter Moment Matching 
4.1 The proposed approach 

Although sampling in variational parameter space can lead 
to an improvement in model complexity, the computational 
cost and/or model size can still be high when several 
variational parameters are considered simultaneously. For 
instance, if we sample a four-dimensional parameter space 
by taking three samples per axis,  a total of 81 sample points 
will result that requires the same number of matrix 
factorizations.  To see the interactions between different 
parameters, we rewrite the transfer function expansion in (7)  
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where 
0

1
00 CGA −−= , BGR 1

00
−= , }1,0{,, ∈lll cga  and 

1=++ lll cga . We refer to each 
iGG 1

0
− , 

iCG 1
0
− ,  pni ≤≤1  as 

a generalized sensitivity matrix with respect to 0G .  

Consider one possible term in the summation of (9) 

 ( ) 00
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00 RAGGApsF q
i

t
i

qt −+ −=   (10) 
To match the moment expression in (10) more efficiently, 
we first seek the optimal 2-norm rank-

iGk )( nk
iG <<  

approximation of the generalized sensitivity matrix 
iGG 1

0
−  

using SVD (singular value decomposition) [16] 
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where 
iGjjj kjvu ≤≤1,,,σ are the 

iGk largest singular values 
and the corresponding left and right singular value vectors, 
respectively. Substituting (11) into (10) yields 
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Now defining 
ii G

T
G VGV ˆ~

0
−−= and TT

T CGA 000
−−= , we have 
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There are two important implications due to the 
approximation in (13). First, it suggests that there are two 
useful Krylov subspaces, one w.r.t 0A and the other w.r.t 

TA0 that can be used for matching the corresponding 
moment: 
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Secondly, the use of low-rank matrix approximation for 
generalized sensitivity matrices has decoupled the Krylov 
subspace construction w.r.t various parameters, i.e. these 
subspaces can be computed independently from each other 
and combined at a later time to build the overall projection 
matrix. Although we have only shown this decoupling 
between frequency variable s and parameter ip  in the 
simple case of (10) due to the space limitation,  the same 
property remains even for an arbitrary combination of 
multiple parameters. This comes from the fact that we 
include the Krylov subspaces associated with all the low-
rank approximation vectors in the projection. The immediate 

q terms 



 

benefit of this result is that the size of the reduce order 
model can be significantly reduced as the cross terms of 
multi-parameter moments are no longer an issue.  

It is worth mentioning that a similar reduction in model 
size can be achieved if low-rank approximations are applied 
to sensitivity matrices instead of generalized sensitivity 
matrices. However, this choice will incur a larger error in 
approximating the true transfer function. We have observed 
that approximating the generalized sensitivity matrices work 
much better in practice due to their stronger connection to 
moments, as evident in (9). We outline the proposed low-
rank approximation based single-point multi-parameter 
moment matching scheme in algorithm 1 (Fig. 2). We 
summarize the moment matching property of algorithm 1 in 
theorem 1. Due to the space limitation, we omit the proof of 
the theorem.  
Theorem 1 (moment matching property of algorithm 1):  

For the approximate parametric system 

ppp nnn LBCCGGCG },,~,,~,~,,~,,{ 1100 mm
, where T

GGi ii
VUGG ˆˆ~

0−= , 

T
CCi ii

VUGC ˆˆ~
0−= , pni ≤≤1 ,   the reduced order model using the 

projection matrix computed in algorithm 1 preserves the transfer 
function moments with respect to all parameters up to order k. 

 

As in Theorem 1, the projection V computed in Algorithm 
1 corresponds to a nearby system that is based on the low-
rank approximation of generalized sensitivity matrices. In 
other words, we compute an approximate projection matrix 
for the original parametric system and employ it for 
parametric model order reduction. It should be noted that the 
same moment matching property of theorem 1 can be 
achieved by neglecting the Krylov subspaces with respect to 

TA0 , namely 2,iGV  and 2,iCV  in step 2.2 of the algorithm, but 

adding 
iGV̂  and 

iCV̂ to the projection matrix. This 
simplification can reduce the model size approximately by a 
factor of two. Nevertheless,  once the projection matrix is 
computed we will apply matrix reduction on the sensitivity 
matrices but not their low-rank approximations as in step 4 
of the algorithm. Therefore, incorporating the useful Krylov 
subspaces of TA0  improves the accuracy of the model order 
reduction.  The congruence transforms employed in step 4 of 
the algorithm also implies that the passivity of the reduced 
model will be guaranteed if the original parametric model is 
passive. 

4.2 Computational cost and model complexity 
One appealing property of Algorithm 1 is that the 

dominant cost of the parametric model order reduction is the 
same as that of a Krylov subspace method when applied to a 
deterministic system. The dominant cost is again one-time 
factorization of a sparse matrix, 0G .  

Although the generalized sensitivity matrices are dense, 
the computation of a few dominant singular values/vectors 

for them (step 1 of algorithm 1) can be efficiently facilitated 
by  the matrix-implicit nature of iterative sparse SVD 
techniques [14][15]. For instance, a low-rank approximation 
of T

iGG 1
0
−− can be efficiently done using a few subspace 

iterations wherein the dense generalized sensitivity matrix is 
not explicitly required but only its matrix-vector products. 
The latter can be provided efficiently by reusing the same 
factorization of 0G . Furthermore, the computation of Krylov 
subspaces with respect to TA0 can be achieved by the same 
sharing. Notice that if the LU factorization of 0G  is 

ggULG =0
, then T

g
T
g

T LUG =0
. The matrix-vector product 

xAy T ⋅= 0  can be achieved by solving xCyG TT
00 =−  or 

xCyLU TT
g

T
g 0=− . Therefore, the cost of the algorithm is linear 

in both the moment matching order k and the number of 
variational parameters pn , and almost linear in the number 
of circuit nodes.  

For a k-th order multi-parameter moment matching, the 
size of reduced order model is kmnkO psvd )4( + , where svdk  
is the rank of the SVD approximation, and m the number of 
ports (using the simplification pointed out in section 4.1 

Algorithm 1:  
1. Compute a low-rank approximation for each 

generalized relative sensitivity matrix: 
T

GGi ii
VUGG ˆˆ1

0 ≈− − , T
CCi ii

VUCG ˆˆ1
0 ≈− − , 

pni ≤≤1  

2. Compute an orthonormal basis of  the following 
Krylov subspaces: 
2.1. },,,{ 000000 RARARcolspanV k

m=  
where BGRCGA 1

000
1

00 , −− =−=  

2.2. For each pnii ≤≤1, , 

ii G
T

G VGV ˆ~
0
−−= ,

ii C
T

C VGV ˆ~  0
−−=  

}ˆ,,ˆ,ˆ{ 001, iiii G
k

GGG UAUAUcolspanV m=  

}~,,~,~{ 1
002, iiii G
k
TGTGG VAVAVcolspanV −= m

 

}ˆ,,ˆ,ˆ{ 1
001, iiii C
k

CCC UAUAUcolspanV −= m
 

}~,,~,~{ 2
002, iiii C
k
TCTCC VAVAVcolspanV −= m

 

where TT
T CGA 000

−−=  

3. Compute an othonormal basis V for the combined 
subspaces: 

},,,

,,,,,,{

2,1,2,1,

2,1,2,1,0 1111

pnpnpnpn CCGG

CCGG

VVVV

VVVVVcolspanV m=  

4. Construct the final reduced order model: 
LVLBVBVCVCVGVG TTTT ==== ~,~,~,~

0000
, 

VGVG i
T

i =~ , VCVC i
T

i =~ , for pni ≤≤1  

Fig 2. Low-rank approximation based single-point 
multi-parameter moment matching. 



 

leads to a model size of kmnkO psvd )2( + ). In practice, we 
have observed that a rank-one approximation is usually 
sufficient to provide a good accuracy. This model 
complexity is in contrast to that of a multi-point expansion 
approach, )( mkcO pn , in which c samples per parameter are 

taken in the pn -dimensional variational parameter space.  

5. Numerical Results 
5.1 An RC network 

We consider an RC network of 767 circuit unknowns 
subjected to two  independent variational sources. We 
randomly vary the RC values of the circuit, and then extract 
the sensitivity matrices w.r.t. these two variational sources 
correspondingly. Finally, we applied the proposed algorithm 
to construct a variational reduced order model of size 37 
(number of states).  As outlined in Fig. 2, this model 
(approximately) matches  up to 4th order multi-parameter 
moments w.r.t all parameters of the full model. For 
comparison, by taking 8 samples in the variational parameter 
space, we compute a 40-state multi-point expansion based 
model that matches up to 4th order moments w.r.t s at each 
sample point.  
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Fig 3. A RC net for which the RC elements  are subjected to a 
maximum 80% parametric variation. 

We evaluate the model accuracy for a perturbed network 
obtained by injecting up to 70% parametric variations into 
the nominal system.  In Fig. 3, the transfer function from the 
voltage input to an observation node are plotted for five 
models: the nominal system, the perturbed system and three 
reduced models of the perturbed system. In addition to the 
aforementioned two reduced order models, we also include 
the third reduced order model in Fig. 3., which is obtained 
by projecting the variational model using a projection matrix 
obtained by applying PRIMA algorithm to the nominal 
system (matching 8 moments of s).  It can be clearly seen 
from Fig. 3 that while the model based on the nominal 
projection matrix fails to capture the variation in transfer 
function, the other two reduced models become almost not 
indistinguishable with the perturbed full model in the plot.  

5.2 A 4-port RLC network 
Next, a two-bit bus is modeled as a coupled 4-port RLC 

network, where each line consists of 180 RLC segments. The 
size of MNA formulation for the bus is 1086. We follow the 
same procedure as in the previous example to generate 
parametric variations for two independent variational 
sources. Again, we consider three variational reduced order 
models. The first one has a size of 52, is obtained by 
employing the nominal projection matrix.  The second 
model has a size of 144 and is computed by applying the 
proposed approach to (approximately) match the moments of 
all parameters (including cross-terms) up to 12th order. 
Among the moments matched, 52 are multi-port moments 
w.r.t s. The last reduced model is generated by taking three 
samples in the variational parameter space and applying the 
multi-point expansion. This model has a size of 156 and 
matches 52 multi-port moments w.r.t. s at each sample point.  
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Fig 4. A 4-port coupled RLC network. The perturbed system is 

subjected to a maximum 30% parametric variation. 

Various models are examined by evaluating a perturbed 
system subjected to a maximum of 30% parametric variation 
in Fig. 4. In the figure, we plot port admittance 11Y  based on 
the nominal full model, perturbed full model and three 
reduced order models.  As shown in the plot, , the frequency 
domain response of a RLC circuit  becomes more sensitive 
to parametric variations. It is also evident that for this case 
that building a variational model based upon only the 
information of the nominal system is far from adequate. 
However, by incorporating the variational information 
effectively into the model order reduction, the low-rank 
approximation based model is able to capture the variations 
in circuit response fairly accurately. In comparison, the 
larger multi-point-method model is not as accurate and the 
domain computational cost is three times larger.   

5.3 Clock Trees 
For more realistic examples, we consider two industrial 

RC networks, RCNetA and RCNetB. They are portions of a 
clock tree, and routed on three metal layers: M5, M6 and 



 

M7. RCNetA has 78 nodes while RCNetB 333. We consider 
three independent metal line width variations on these metal 
layers. In this case, the sensitivity matrices w.r.t metal line 
width variations are obtained by performing multiple 
parasitic extractions.   

For RCNetA, we applied the low-rank based parametric 
model reduction to compute a reduced order model of size 
29 while matching the moments of s to the 4th order and the 
rest of multi-parameter moments to the 2nd order. We 
independently vary the three metal line widths up to 30% 
( σ3 variations) of the nominal values according to the 
normal distribution. For each perturbed circuit instance, we 
compare the reduced order model with the full model in 
terms of the 5 most dominant poles. The error distribution in 
these poles across all the instances is plotted in Fig. 5 (left 
plot). For this relatively small example, the error in these  
dominant poles is completely negligible.  In Fig. 5 (right 
plot), we show the error in the most dominant pole as a 
function of  M5 and M6 metal line widths (within -30% to 
30% of their nominal values). This again confirms the 
accuracy of the reduced order model.  

 
Fig 5. Model accuracy for RCNetA. Left:  error distribution in 
the 5 most dominant poles; Right: the error in the most 
dominant pole as a function of metal width variations.  

The same steps are taken to examine the model accuracy 
for RCNetB. We first compute a reduced order parametric 
model of size 40 while matching all the multi-parameter 
moments to the 3rd order. Then, we independently vary the 
three metal line widths up to 30% ( σ3 variations) of the 
nominal values using the normal distribution and plot the 
error in the 5 most dominant  poles across all the instances in 
Fig. 6 (left plot). The maximum error out of 1000 poles is 
less than 0.12%. Next, we examine how the error in the most 
dominant pole changes as we vary the metal line widths of 
M5 and M6 in between -30% and 30%. As shown in Fig. 6 
(right plot), the reduced order model is very accurate as the 
largest error is less than 0.3%. 
6. Conclusion 

We have shown that multi-point expansion in variational 
parameter space can be exploited to produce more compact 
parametric interconnect models than its single-point 
counterpart. Furthermore, we show that by combining low-
rank matrix approximation and multi-parameter moment 

matching even more efficient parametric models can be 
constructed. Additionally, these variation-aware models are 
obtained at an almost linear cost and preserve the passivity.   

 
Fig 6. Model accuracy for RCNetB. Left:  error distribution in 
the 5 most dominant poles; Right: the error in the most 
dominant pole as a function of metal width variations. 

7. References 
[1] L. Pillage and R. Rohrer, “Asymptotic waveform evaluation for 

timing analysis,” IEEE Trans. CAD, vol. 9, pp. 352-366, April 1990. 
[2] P. Feldmann and R. Freund, “Efficient linear circuit analysis by Padé 

approximation via the Lanczos process,” IEEE Trans. CAD, vol. 14, 
pp. 639-649, May 1995. 

[3] L. Silveira, M. Kamon and J. White, “Efficient reduced-order 
modeling of frequency-dependent coupling inductances associated 
with 3-d interconnect structures,” Proc. of ACM/IEEE DAC, 1995. 

[4] A. Odabasioglu, M. Celik and L. Pileggi, “PRIMA: passive reduced-
order interconnect macromodeling algorithm,” IEEE Trans. CAD, 
vol. 17, no. 8, pp. 645-653, August 1998. 

[5] B. Moore, “Principle component analysis in linear systems: 
controllability, observability, and model reduction,” IEEE Trans. 
Automat. Contr., vol. 26, no. 1, pp. 17-32, Feb. 1981.   

[6] Y. Liu, L. Pileggi and A. Strojwas, “Model order reduction of RC(L) 
interconnect including variational analysis,” Proc. of ACM/IEEE 
DAC, 1999. 

[7] P. Heydari and M. Pedtram, “Model reduction of variable-geometry 
interconnects using variational spectrally-weighted balanced 
truncation,” Proc. of ACM/IEEE Intl. Conf. CAD, 20 

[8] J. Phillips, L. Daniel and M. Silveira, “Guaranteed passive balancing 
transformations for model order reduction,” Proc. of ACM/IEEE 
DAC, 2002. 

[9] P. Li and L. Pileggi, “NORM: Compact model order reduction of 
weakly nonlinear systems,” Proc. Of ACM/IEEE DAC, 2003. 

[10] L. Daniel, O. Siong, L. Chay, K. Lee and J. White, “A multiparameter 
moment-matching model-reduction approach for generating 
geometrically parameterized interconnect performance models,” IEEE 
Trans. CAD, vol. 23, no. 5, pp 678-693, May , 2004.  

[11] N. Wong, V. Balakrishnan and C. Koh, “Passivity-preserving model 
reduction via a computationally efficient project-and-balance 
scheme,” Proc. of ACM/IEEE DAC, 2004.  

[12] C. Beck, J. Doyle and K. Glover, “Model reduction of 
multidimensional and uncertain systems,” IEEE Trans. Automat. 
Contr., vol. 41, no. 10, pp. 1466-1477, Oct. 1996. 

[13] J. Wang, O. Hafiz and J. Li, “A linear fractional transform (LFT) 
based model for interconnect parametric uncertainty,” Prof. of 
ACM/IEEE DAC, 2004. 

[14] M. Berry, "Large scale singular value computations", Intl. J. of 
Supercomputer Applications, 6:1, pp. 13-49, 1992. 

[15] R. Larsen, “Lanczos bidiagonalization with partial 
reorthogonalization,” Technical Report DAIMI PB-357, Dept. of 
Computer Science, Aarhus University, Sept. 1998.  

[16] G. Golub and  C. Van Loan, Matrix Computations, The Johns 
Hopkins University Press, 1996. 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

50

100

150

200

250

300

350

400

O
c
c
u
re

n
c
e

−30 −20 −10 0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
el

at
iv

e 
E

rr
or

 o
f T

he
 D

om
in

an
t P

ol
e 

(%
) −30% M5 Variation 

−15% M5 Variation 
  0%  M5 Variation
 15% M5 Variation 
 30% M5 Variation 

0 0.2 0.4 0.6 0.8 1

x 10
−3Relative Pole Error (%)

−30 −20 −10 0 10 20 30
0

0.5

1

1.5
x 10

−4

R
el

at
iv

e 
E

rr
or

 o
f T

he
 D

om
in

an
t P

ol
e 

(%
)

M6 Variation (%)

−30% M5 Variation 
−15% M5 Variation 
  0%  M5 Variation
 15% M5 Variation 
 30% M5 Variation 


	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index




